Abramowicz, Marek, 122 Absolute Magnitude, 102, 107, 561

Total Page:16

File Type:pdf, Size:1020Kb

Abramowicz, Marek, 122 Absolute Magnitude, 102, 107, 561 Index Abramowicz, Marek, 122 306, 321, 324, 328, 351, 369, 373, Absolute magnitude, 102, 107, 561 397, 399, 403, 406, 408, 446, 450, Absorption lines, 223, 224 483, 543, 552, 553 intergalactic, 567 for massive stars, 456 molecular, 540 super-Eddington, 322, 372, 405, 479 stellar, 25 Adaptive optics, 526, 528 Accretion disk, 154, 251, 350, 354, 385, 386, Advection dominated accretion flow (ADAF), 552, 554, 560 363, 372, 404, 406, 543 Fe K˛ emission, 168, 536, 552 Advection dominated inflow-outflow solution ablation, 257 (ADIOS), 404, 406, 543 atmosphere, 128, 361 AGNs column density, 367 first use of term, 28, 57 continuum emission, 360 total number, 537 geometrically thick, 122 type-1, 100, 110, 165, 166, 179, 192, 231, geometrically thin, 227 233, 236, 357, 361, 417, 447, 469, geometrically thin, optically thick, 54, 161, 491, 539, 552 296, 354, 555 type-1 and type-2, 112, 161, 162, 164, 222, geometrically thin, optically thin, 135 230, 236–240, 441, 443, 446, 557 instability, 117 type-2, 60, 230, 446 line emission, 255, 256, 360 ˛ox parameter, 124, 129, 243 models, 59, 338, 353, 367, 404 AM 2230-284, 65 off-axis illumination, 99 Ambartsumian, Viktor, 28, 45 optically thick, 363 Anglo-Australian observatory (AAO), 24, 40 paradigm, 6, 550 Angular momentum, 395, 400, 412, 554 Shakura–Sunyaev model, 54, 296, 361, of accreting gas, 393, 394 371, 398, 404, 406, 407, 416 conservation, 356, 472 structure, 122, 129, 138, 179, 182, 239, in a wind, 380 349, 360, 363, 404 excess, 404 temperature, 296, 325 extraction, 400 theory, 364, 369, 406 of gas in a galaxy disk, 557 thermal emission, 30, 124, 370 loss, 399, 407, 452, 453, 455, 471, 475 wind, 128, 129, 226, 229, 239, 257, 364, by a companion black hole, 138 416, 447, 555 problem in AGNs, 449 X-ray illumination, 161 transfer to radio jet, 138 Accretion rate, 8, 60, 99, 100, 108, 134, 146, transport, 16, 362, 380, 393, 398, 407, 408 149–151, 153, 162, 167, 168, 185, Anisotropic emission, 350, 383, 410 187, 240, 242, 243, 259, 269, 270, Annihilation, 383 J.W. Sulentic, P. Marziani, M. D’Onofrio (eds.), Fifty Years of Quasars, Astrophysics and 571 Space Science Library 386, DOI 10.1007/978-3-642-27564-7, © Springer-Verlag Berlin Heidelberg 2012 572 Index Antonucci, Robert, 34, 100 mass, 8, 16, 23, 31, 33, 52, 100, 133, 149, APM 08279C5255, 501 187, 241–243, 245, 263, 268, 270, Ariel V observatory, 41, 43, 44 271, 288, 297, 299, 307, 312, 363, Arp 102B, 47, 256, 366 523, 534, 553, 554, 556 Arp 151, 535 density, 53 Arp 220, 252, 457 as a function of z, 565 Arp 227, 62 limit, 413, 482 Arp Atlas, 62 in non-active galaxies, 300 Atacama large millimiter array (ALMA), 238, range, 219, 243 500, 525–527, 540, 542, 543, 557 turnover, 566 uncertainty, 315, 535 virial, 303, 304, 316, 320 Baade, Walter, 1, 147 in XRBs, 270 Back hole MBH– Mbulge correlation, 34, 52, 113, 258, mass, 304 308, 311, 312, 469, 523, 524, 556, Baldwin effect, 40, 125, 126, 503, 504 557 X-ray, 168 in NLSy1s, 244 Baldwin, Jack, 29 MBH relation, 307, 309, 313, 462, Balmer continuum, 346 469, 535 Balmer decrement, 17, 19, 37, 222, 344, 350 merging, 255, 256, 393, 479 Balmer lines, 3, 99, 100, 127, 128, 247, 255, potential well, 169 256, 291, 341, 344, 358, 360, 410, as power source, 54, 58, 77, 550, 558 531 primordial seed, 478, 564 optical depth, 350, 358 Schwarzschild, 181, 183, 391 profile, 257, 342, 364, 366, 367 sphere of influence, 309, 450, 469, 479, BALnicity index, 223 542, 543 Bar instability, 400, 401 spin, 77, 108, 147, 153, 158, 169, 182, Barred galaxies, 450 322, 390, 391, 394, 409, 418, 479, molecular distribution, 450 553–555, 560 Bars, nested, 403 as driver of radio loudness, 149 Baryonic acoustic oscillation (BAO), 567 stellar mass, 553, 558 Begelman, Mitch, 418 supermassive, 6, 9, 58, 121, 134, 141, 149, Big blue bump, 17, 151, 371, 372, 477, 554 150, 155, 161, 180, 301, 338, 397, BL Lacertae objects, 33, 42, 49, 60, 97, 118, 403, 405, 414, 419, 449, 464, 468, 120, 122, 123, 132, 151, 184–189, 479, 523, 556, 558 219–221, 312, 373, 383, 384, 477, in XRBs, 266 554 black hole Black body, 55, 266, 344, 368, 371, 376 mass, 27 disk emission, 324 Blandford, Roger, 33, 394 Black hole, 254, 552, 554, 558, 560, 563, 564 Blandford–Znajek mechanism, 391, 543, 554 binary, 138, 255, 256, 342, 366, 367, 555, Blazars, 121, 123, 151, 174, 184, 186, 187, 560 220, 221, 312, 373, 383, 477 ergosphere, 391 Blueshift, systemic of quasars, 77 estinguished, 552 Blurred reflection, 169, 171, 172 event horizon, 51, 158, 391, 409, 522, 541, Bolometric correction, 124, 320 558 Bolometric luminosity, 155, 491 imaging, 531 Braccesi, Alessandro, 23 fundamental plane of BH activity, 267–270, Bremsstrahlung, 95, 175 272, 553 Bridgman, Percy, 63 gravitational field, 354 Brightness temperature, 132, 140, 185, 306 growth, 77, 243, 524, 526, 531 Broad absorption line (BAL), 224, 227–229, in XRBs, 269 250, 251, 253, 254, 257, 375, 376, Kerr, 169, 391–393, 409 379, 543 magneto-sphere, 392, 396 blueshift, 224, 375 Index 573 FeLoBAL, 228, 230 X-ray absorption, 157, 166 ghost of Ly˛ , 229 Brown, Hanbury, 73 HiBAL, 225, 226 Bulge, 25, 474, 556 incidence, 226 escape velocity, 354 line locking, 376 of host galaxies of quasars, 556 LoBAL, 225, 226, 249, 253 luminosity, 301, 311 mini, 224 mass, 304, 307, 399, 400, 445, 474 polarization, 227 of the Milky Way, 400 profile, 223, 225, 227, 228, 234, 251, 252, pseudo-bulge, 400 360 structure, 399, 400 relation to emission lines, 228 velocity dispersion, 399 X-ray, 375 Bulk velocity, 164 Broad absorption line (BAL) QSOs, 224–230, Burbidge, Geoffrey, 2, 74 234, 241, 243–247, 249, 251–253, Burbidge, Margaret, 2 255, 296, 375–377, 456, 502, 557 Burst alert telescope (BAT), 160 Broad line region (BLR), 15, 30, 33, 95, 98, 100, 127, 151, 167, 222, 239, 289, 363, 534, 536, 555, 558 3C 48, 2, 4, 45, 63, 120 absence, 239 3C 66, 121 clouds, 30, 33, 297, 355–357, 555 3C 66A, 189, 221 motion, 356 3C 120, 48, 188 column density, 167, 352, 355–358 3C 175, 136 density, 17, 55, 96, 349 3C 273, 2–4, 21, 35–37, 41, 45, 61, 63, 74, 75, difference between population A and B, 105, 111, 184, 221, 523 563 3C 274, 62 formation, 136, 238 3C 275, 62 geometry, 33, 303, 363 3C 279, 184 geometry and kinematics, 535 3C 293, 461 hidden, 100, 551 3C 305, 460 high ionization, 32, 99 3C 332, 256 inclination, 533 3C 343.1, 64, 70 ionization stratification, 292, 536 3C 345, 22, 221 kinematics, 32, 239, 292, 297, 523, 3C 390.3, 47, 256, 366, 532 534–536, 550, 559 3C 454.3, 138, 220, 221 light travel time, 533 5C 3.100, 241, 245 low ionization, 99 C IV, 129, 144, 302 models, 350, 352, 364 Ceccarelli, Maurizio, 23 obscuration, 221, 238, 240 Centaurus A, 2, 20, 41, 132, 139, 186, 462 Osterbrock’s turbulent disk model, 34, 99, Central compact massive object, 558 341 Charge-coupled device (CCD), 4, 35, 119, 487, outflow, 34, 99, 534, 557 529, 530, 563, 566 physical conditions, 96 Chemical abundances, 95, 177, 288, 328, 350, produced by supernova remnants, 246 558, 563 radius, 96, 290, 354, 536, 558 Chemical enrichment, 290, 362, 487, 498, 500, radius–luminosity relation, 292, 297, 299, 501 531, 536 Circinus galaxy, 164 refractory element depletions, 290 Clustering size, 55, 239, 291, 307, 353, 523, 532, of quasars, 496, 497 534–536 at high redshift, 497 structure, 33, 111–113, 157, 293, 325, 341, Clusters of galaxies, 2 342, 352, 363, 531, 533–536, 550, catalogs 559, 560 Abell, 2, 43 velocity dispersion, 239 Zwicky, 2 velocity field, 290, 534 Cohen, Ross, 32 574 Index Cold dark matter, 57, 472 Critical density, 111 Collisional excitation, 37, 95, 96, 344 Crossley telescope, 36 Color, 121, 525 Cygnus A, 2, 13, 147 of AGNs, 222, 538 Cyosmic downsizing, 491 IR, 485, 525, 540 of Mrk 231 and HyNæ, 247 of quasar candidates, 101 Dark age, 500 of quasars, 102–104, 115, 122 Dark energy, 56 of stars, 36, 107 Dark matter, 56, 118, 253, 254, 308, 315, 354, sub-mm, 485 399, 401, 474, 493, 496, 497 Color-color diagram, 262 Decadal review 2010, 179, 529 IR, 249 Demography of quasars, 57 Color-magnitude diagram, 61 Density evolution, 481 Column density, 113, 156, 223, 224, 347–349, Density perturbation, 472 351, 352, 355, 501 Diagnostic diagrams, 258, 259 Comoving volume, 53 of BPT, 237, 258, 445 Compact groups, 261 Dibai, Ernst, 34 Compton hump, 158 Disk-jet coupling, 153 Compton reflection, 158, 162 Disk-wind model, 32, 99 Compton scattering, 121, 123, 154, 161, 175, Distance, 269, 565 183, 370, 396 angular, 524 Compton thickness, 161, 171, 179, 259, 262 comoving radial, 6, 7 Continuity equation, 56 of quasars Continuum, 291, 353, 487, 550, 553 independent of redshift, 567 IR, 411 Distance indicator, 4 non-thermal, 30, 54, 64, 555 Distance scale, 61 polarization, 226, 227 Doppler boosting, 158 thermal, 555 Doppler effect, 72, 78, 181, 229, 301, UV excess, 4, 19, 54, 63 375 variability, 32, 370, 532, 552 Doppler redshift, 61 Convection-dominated accretion flows Double-peaked profiles, 105, 219, 255–257, (CDAF), 404, 406, 543 364, 366, 404 Corona, 150, 154–156, 161, 170, 180, 243, 370 Dust, 190–192, 222, 226, 230–233, 235, 240, solar, 36 252, 264, 265, 354, 364, 417, 418, Corotation, 381 486, 527 Correlation function, 291, 496, 497, 503 absorption edges, 165 Cosmic age, 566 circumnuclear, 34, 191, 235, 237 Cosmic microwave background (CMB), 18, 55 cocoons, 484 Cosmic rays, 189, 253 emission, 191, 226, 530 Cosmology grains, 190, 222, 354, 411, 414 CDM, 6, 526 opacity, 355 big bang, 9, 55, 72, 114, 479, 501 reddening, 37 steady state, 2, 73 Dust/gas content, 100 Coulomb interaction, 229 Duty cycle, 219, 473, 481, 483, 494 Covering factor Dynamo engine, 385 in BAL QSOs, 223,
Recommended publications
  • Expanding Space, Quasars and St. Augustine's Fireworks
    Universe 2015, 1, 307-356; doi:10.3390/universe1030307 OPEN ACCESS universe ISSN 2218-1997 www.mdpi.com/journal/universe Article Expanding Space, Quasars and St. Augustine’s Fireworks Olga I. Chashchina 1;2 and Zurab K. Silagadze 2;3;* 1 École Polytechnique, 91128 Palaiseau, France; E-Mail: [email protected] 2 Department of physics, Novosibirsk State University, Novosibirsk 630 090, Russia 3 Budker Institute of Nuclear Physics SB RAS and Novosibirsk State University, Novosibirsk 630 090, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]. Academic Editors: Lorenzo Iorio and Elias C. Vagenas Received: 5 May 2015 / Accepted: 14 September 2015 / Published: 1 October 2015 Abstract: An attempt is made to explain time non-dilation allegedly observed in quasar light curves. The explanation is based on the assumption that quasar black holes are, in some sense, foreign for our Friedmann-Robertson-Walker universe and do not participate in the Hubble flow. Although at first sight such a weird explanation requires unreasonably fine-tuned Big Bang initial conditions, we find a natural justification for it using the Milne cosmological model as an inspiration. Keywords: quasar light curves; expanding space; Milne cosmological model; Hubble flow; St. Augustine’s objects PACS classifications: 98.80.-k, 98.54.-h You’d think capricious Hebe, feeding the eagle of Zeus, had raised a thunder-foaming goblet, unable to restrain her mirth, and tipped it on the earth. F.I.Tyutchev. A Spring Storm, 1828. Translated by F.Jude [1]. 1. Introduction “Quasar light curves do not show the effects of time dilation”—this result of the paper [2] seems incredible.
    [Show full text]
  • I. Is There an Accretion Mode Dichotomy in Radio-Loud AGN?
    MNRAS 440, 269–297 (2014) doi:10.1093/mnras/stu263 Advance Access publication 2014 March 10 An X-ray survey of the 2 Jy sample – I. Is there an accretion mode dichotomy in radio-loud AGN? B. Mingo,1,2‹ M. J. Hardcastle,1 J. H. Croston,3 D. Dicken,4 D. A. Evans,5 R. Morganti6,7 and C. Tadhunter8 1School of Physics, Astronomy & Mathematics, University of Hertfordshire, College Lane, Hatfield AL10 9AB, UK 2Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK 3School of Physics and Astronomy, University of Southampton, Southampton SO17 1SJ, UK 4Institut d’Astrophysique Spatiale, Universite´ Paris Sud, F-91405 Orsay, France 5Harvard–Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 6ASTRON, the Netherlands Institute for Radio Astronomy, Postbus 2, NL-7990 AA Dwingeloo, the Netherlands 7Kapteyn Astronomical Institute, University of Groningen, PO Box 800, NL-9700 AV Groningen, the Netherlands 8Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK Accepted 2014 February 6. Received 2014 February 6; in original form 2013 May 31 ABSTRACT We carry out a systematic study of the X-ray emission from the active nuclei of the 0.02 <z< 0.7 2 Jy sample, using Chandra and XMM–Newton observations. We combine our results with those from mid-infrared, optical emission-line and radio observations, and add them to those of the 3CRR sources. We show that the low-excitation objects in our samples show signs of radiatively inefficient accretion. We study the effect of the jet-related emission on the various luminosities, confirming that it is the main source of soft X-ray emission for our sources.
    [Show full text]
  • The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope M
    The Astrophysical Journal, 810:14 (34pp), 2015 September 1 doi:10.1088/0004-637X/810/1/14 © 2015. The American Astronomical Society. All rights reserved. THE THIRD CATALOG OF ACTIVE GALACTIC NUCLEI DETECTED BY THE FERMI LARGE AREA TELESCOPE M. Ackermann1, M. Ajello2, W. B. Atwood3, L. Baldini4, J. Ballet5, G. Barbiellini6,7, D. Bastieri8,9, J. Becerra Gonzalez10,11, R. Bellazzini12, E. Bissaldi13, R. D. Blandford14, E. D. Bloom14, R. Bonino15,16, E. Bottacini14, T. J. Brandt10, J. Bregeon17, R. J. Britto18, P. Bruel19, R. Buehler1, S. Buson8,9, G. A. Caliandro14,20, R. A. Cameron14, M. Caragiulo13, P. A. Caraveo21, B. Carpenter10,22, J. M. Casandjian5, E. Cavazzuti23, C. Cecchi24,25, E. Charles14, A. Chekhtman26, C. C. Cheung27, J. Chiang14, G. Chiaro9, S. Ciprini23,24,28, R. Claus14, J. Cohen-Tanugi17, L. R. Cominsky29, J. Conrad30,31,32,70, S. Cutini23,24,28,R.D’Abrusco33,F.D’Ammando34,35, A. de Angelis36, R. Desiante6,37, S. W. Digel14, L. Di Venere38, P. S. Drell14, C. Favuzzi13,38, S. J. Fegan19, E. C. Ferrara10, J. Finke27, W. B. Focke14, A. Franckowiak14, L. Fuhrmann39, Y. Fukazawa40, A. K. Furniss14, P. Fusco13,38, F. Gargano13, D. Gasparrini23,24,28, N. Giglietto13,38, P. Giommi23, F. Giordano13,38, M. Giroletti34, T. Glanzman14, G. Godfrey14, I. A. Grenier5, J. E. Grove27, S. Guiriec10,2,71, J. W. Hewitt41,42, A. B. Hill14,43,68, D. Horan19, R. Itoh40, G. Jóhannesson44, A. S. Johnson14, W. N. Johnson27, J. Kataoka45,T.Kawano40, F. Krauss46, M. Kuss12, G. La Mura9,47, S. Larsson30,31,48, L.
    [Show full text]
  • Stellar Clusters in Dwarf Galaxies
    A&A 448, 471–478 (2006) Astronomy DOI: 10.1051/0004-6361:20052949 & c ESO 2006 Astrophysics Stellar clusters in dwarf galaxies L. Vanzi1 and M. Sauvage2 1 European Southern Observatory, Alonso de Cordova 3107, Vitacura, Santiago, Chile e-mail: [email protected] 2 CEA/DSM/DAPNIA/Service d’Astrophysique – UMR AIM, CE Saclay, 91191 Gif-sur-Yvette Cedex, France e-mail: [email protected] Received 28 February 2005 / Accepted 13 October 2005 ABSTRACT We present new observations in the Ks (2.2 µm) and L (3.7 µm) infrared bands of a sample of blue dwarf galaxies with the larger aim of studying the population of massive stellar clusters, the occurrence of dust-embedded stellar clusters, and their properties. All Ks images show a rich population of clusters, but only a small fraction of them is bright in L.MostL sources have radio counterparts. We derived the luminosity function in Ks for the galaxies IC 4661 and NGC 5408, finding both to be consistent with those of similar galaxies. We also compared the number of clusters and their luminosities with the star-formation rate of the host galaxies and found no compelling evidence of correlation. We conclude that young clusters and embedded clusters are a common feature of blue dwarf galaxies and possibly of galaxies in general, we suggest that their occurrence is due to purely statistical effects rather than a phenomenon related to specific physical conditions. In this sense we expect these objects to be abundant at high red-shift. Key words. galaxies: dwarf – galaxies: starburst – galaxies: star clusters 1.
    [Show full text]
  • IRS Observations of Seyfert 1.8 and 1.9 Galaxies: a Comparison with Seyfert 1 and Seyfert 2 R
    University of Kentucky UKnowledge Physics and Astronomy Faculty Publications Physics and Astronomy 12-10-2007 Spitzer IRS Observations of Seyfert 1.8 and 1.9 Galaxies: A Comparison with Seyfert 1 and Seyfert 2 R. P. Deo Georgia State University D. M. Crenshaw Georgia State University S. B. Kraemer Catholic University of America M. Dietrich Ohio State University Moshe Elitzur University of Kentucky, [email protected] See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/physastron_facpub Part of the Astrophysics and Astronomy Commons, and the Physics Commons Repository Citation Deo, R. P.; Crenshaw, D. M.; Kraemer, S. B.; Dietrich, M.; Elitzur, Moshe; Teplitz, H.; and Turner, T. J., "Spitzer IRS Observations of Seyfert 1.8 and 1.9 Galaxies: A Comparison with Seyfert 1 and Seyfert 2" (2007). Physics and Astronomy Faculty Publications. 203. https://uknowledge.uky.edu/physastron_facpub/203 This Article is brought to you for free and open access by the Physics and Astronomy at UKnowledge. It has been accepted for inclusion in Physics and Astronomy Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors R. P. Deo, D. M. Crenshaw, S. B. Kraemer, M. Dietrich, Moshe Elitzur, H. Teplitz, and T. J. Turner Spitzer IRS Observations of Seyfert 1.8 and 1.9 Galaxies: A Comparison with Seyfert 1 and Seyfert 2 Notes/Citation Information Published in The Astrophysical Journal, v.
    [Show full text]
  • University of Southampton Research Repository Eprints Soton
    University of Southampton Research Repository ePrints Soton Copyright © and Moral Rights for this thesis are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holders. When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given e.g. AUTHOR (year of submission) "Full thesis title", University of Southampton, name of the University School or Department, PhD Thesis, pagination http://eprints.soton.ac.uk UNIVERSITY OF SOUTHAMPTON FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Physics And Astronomy Fast Spectral Variability in the X-ray Emission of Accreting Black Holes by Chris J. Skipper Thesis for the degree of Doctor of Philosophy October 2013 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF PHYSICAL SCIENCES AND ENGINEERING Physics And Astronomy Doctor of Philosophy FAST SPECTRAL VARIABILITY IN THE X-RAY EMISSION OF ACCRETING BLACK HOLES by Chris J. Skipper The X-ray emission from accreting black holes provides the perfect probe for testing the geometry, behaviour and conditions present in the innermost regions of the accretion flow. In this thesis I use X-ray spectral analysis to investigate the properties of accret- ing black holes that extend over several orders of magnitude in accretion rate (m˙ E) and black hole mass (MBH), from the stellar mass black holes in X-ray binary systems (XRBs) to the supermassive black holes in active galactic nuclei (AGN).
    [Show full text]
  • RESEARCH PROGRAMS 140-Foot Telescope
    VS/G LI NATIONAL RADIO ASTRONOMY OBSERVATORY Charlottesville, Virginia r Quarterly Report October 1, 1981 - December 31, 1981 RESEARCH PROGRAMS 140-foot Telescope Hours Scheduled observing 1955.75 Scheduled maintenance and equipment changes 179.25 Scheduled tests and calibration 1.00 Time lost due to: equipment failure 34.75 power 9.50 weather 133.25 interference 0.00 The following line programs were conducted during this quarter. No. Observer (s) Program T-156 I. Kazes (Meudon, France) Observations to study giant molecular B. Turner clouds at the main 18 cm OH line frequencies. T-145 B. Turner Search within the 13-16 GHz range for new molecular species. S-233 L. Buxton (Illinois) Observations at 20.9 and 24.4 GHz to E. Campbell (Illinois) search for the HCN dimer (HCN) 2 . W. Flygare (Illinois) P. Jewell (Illinois) M. Schenewerk (Illinois) L. Snyder (Illinois) B-381 R. Brown Observations at 5-cm to confirm and extend the detection of recombination line emission from 3C 245 and a search for this type of emission from other QSOs. S-246 M. Bell (NRC, Canada) Search at 5 cm for recombination lines E. Seaquist (Toronto) in compact extragalactic sources. No. Observer(s) Program M-176 L. Avery (NRC, Canada) Observations at 18.2 GHz of the J=241 N. Broten (NRC, Canada) transition of HC3N, generally toward J. MacLeod (NRC, Canada) dark clouds. H. Matthews (NRC, Canada T. Oka (Chicago) The following continuum programs were conducted during this quarter. No. Observer (s) Program C-194 M. Condon (unaffiliated) Survey at 14.5 cm of extragalactic J.
    [Show full text]
  • Second AGILE Catalogue of Gamma-Ray Sources?
    A&A 627, A13 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834143 & c ESO 2019 Astrophysics Second AGILE catalogue of gamma-ray sources? A. Bulgarelli1, V. Fioretti1, N. Parmiggiani1, F. Verrecchia2,3, C. Pittori2,3, F. Lucarelli2,3, M. Tavani4,5,6,7 , A. Aboudan7,12, M. Cardillo4, A. Giuliani8, P. W. Cattaneo9, A. W. Chen15, G. Piano4, A. Rappoldi9, L. Baroncelli7, A. Argan4, L. A. Antonelli3, I. Donnarumma4,16, F. Gianotti1, P. Giommi16, M. Giusti4,5, F. Longo13,14, A. Pellizzoni10, M. Pilia10, M. Trifoglio1, A. Trois10, S. Vercellone11, and A. Zoli1 1 INAF-OAS Bologna, Via Gobetti 93/3, 40129 Bologna, Italy e-mail: [email protected] 2 ASI Space Science Data Center (SSDC), Via del Politecnico snc, 00133 Roma, Italy 3 INAF-Osservatorio Astronomico di Roma, Via di Frascati 33, 00078 Monte Porzio Catone, Italy 4 INAF-IAPS Roma, Via del Fosso del Cavaliere 100, 00133 Roma, Italy 5 Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy 6 INFN Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy 7 Consorzio Interuniversitario Fisica Spaziale (CIFS), Villa Gualino - v.le Settimio Severo 63, 10133 Torino, Italy 8 INAF–IASF Milano, Via E. Bassini 15, 20133 Milano, Italy 9 INFN Pavia, Via Bassi 6, 27100 Pavia, Italy 10 INAF–Osservatorio Astronomico di Cagliari, Via della Scienza 5, 09047 Selargius, CA, Italy 11 INAF–Osservatorio Astronomico di Brera, Via E. Bianchi 46, 23807 Merate, LC, Italy 12 CISAS, University of Padova, Padova, Italy 13 Dipartimento di Fisica, University of Trieste, Via Valerio 2, 34127 Trieste, Italy 14 INFN, sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy 15 School of Physics, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein stateJohannesburg 2050, South Africa 16 ASI, Via del Politecnico snc, 00133 Roma, Italy Received 27 August 2018 / Accepted 12 March 2019 ABSTRACT Aims.
    [Show full text]
  • Neutral Hydrogen in Nearby Dwarf Galaxies B¨Arbel S
    Dwarf Galaxies: From the Deep Universe to the Present Proceedings IAU Symposium No. 344, 2018 c 2018 International Astronomical Union K. McQuinn & S. Stierwalt, eds. DOI: 00.0000/X000000000000000X Neutral Hydrogen in Nearby Dwarf Galaxies B¨arbel S. Koribalski CSIRO Astronomy and Space Science, Australia Telescope National Facility PO Box 76, Epping, NSW 1710, Australia email: [email protected] Abstract. Here I briefly highlight our studies of the gas content, kinematics and star formation in nearby dwarf galaxies (D < 10 Mpc) based on the `Local Volume H i Survey' (LVHIS, Koribalski et al. 2018), which was conducted with the Australia Telescope Compact Array (ATCA). The LVHIS sample consists of nearly 100 galaxies, including new discoveries, spanning a large diversity in size, shape, mass and degree of peculiarity. The hydrogen properties of dwarf galaxies in two nearby groups, Sculptor and CenA / M83, are analysed and compared with many rather isolated dwarf galaxies. Around 10% of LVHIS galaxies are transitional or mixed-type dwarf galaxies (dIrr/dSph), the formation of which is explored. | I also provide a brief update on WALLABY Early Science, where we focus on studying the H i properties of galaxies as a function of environment. WALLABY (Dec < +30 degr, z < 0:26) is conducted with the Australian SKA Pathfinder (ASKAP), a ∼6-km diameter array of 36 × 12-m dishes, each equipped with wide-field (30 sq degr) Chequerboard Phased Array Feeds. Keywords. galaxies: kinematics and dynamics | galaxies: structure | radio lines: galaxies | surveys 1. LVHIS { The Local Volume H i Survey The LVHIS project provides high-resolution H i spectral line and 20-cm radio contin- uum data products for nearly 100 nearby galaxies, based on over 2500 hours of ATCA observations.
    [Show full text]
  • SAC's 110 Best of the NGC
    SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog.
    [Show full text]
  • MEMORIA IAC 2013 Pero No Todo Son Balances Positivos
    MEMORIA 2013 “INSTITUTO DE ASTROFÍSICA DE CANARIAS” EDITA: Unidad de Comunicación y Cultura Científica (UC3) del Instituto de Astrofísica de Canarias (IAC) MAQUETA E IMPRIME: Printisur DEPÓSITO LEGAL: 7- PRESENTACIÓN Índice general 8- CONSORCIO PÚBLICO IAC 12- LOS OBSERVATORIOS DE CANARIAS 14- - Observatorio del Teide (OT) 15- - Observatorio del Roque de los Muchachos (ORM) 16- COMISIÓN PARA LA ASIGNACIÓN DE TIEMPO (CAT) 20- ACUERDOS 22- GRAN TELESCOPIO CANARIAS (GTC) 26- ÁREA DE INVESTIGACIÓN 29- - Estructura del Universo y Cosmología 47- - El Universo Local 80- - Física de las estrellas, Sistemas Planetarios y Medio Interestelar 107- - El Sol y el Sistema Solar 137- - Instrumentación y Espacio 161- - Otros 174- ÁREA DE INSTRUMENTACIÓN 174- - Ingeniería 188- - Producción 192- - Oficina de Proyectos Institucionales y Transferencia de Resultados de Investigación (OTRI) 201- ÁREA DE ENSEÑANZA 201- - Cursos de doctorado 203- - Seminarios científicos 207- - Coloquios 207- - Becas 209- - Tesis doctorales 209- - XXIV Escuela de Invierno: ”Aplicaciones astrofísicas de las lentes gravitatorias” 211- ADMINISTRACIÓN DE SERVICIOS GENERALES 211- - Instituto de Astrofísica 213- - Oficina Técnica para la Protección de la Calidad del Cielo (OTPC) 216- - Observatorio del Teide 216- - Observatorio del Roque de los Muchachos 217- - Centro de Astrofísica de la Palma 218- - Ejecución del Presupuesto 2013 219- GABINETE DE DIRECCIÓN 219- - Ediciones 220- - Carteles 220- - Comunicación y divulgación 232- - Web 234- - Visitas a las instalaciones del IAC 237-
    [Show full text]
  • Wiggly Jet Distribution and Jet Wobbling with Strong Variability In
    Wiggly Jet Distribution and Jet Wobbling with Strong Flux Variability in 3C 66A Jeonguk Kim (Yonsei Univ. / KASI) Guang-Yao Zhao, Bong Won Sohn, Zhi-Qiang Shen, Yong-Jun Chen, Hiroshi Sudou, Pablo de Vincente, Taehyun Jung, Maria Rioja, Richard Dodson, and Suk-Jin Yoon EAVN Workshop 2018, PyeongChang, September 4-7 3C 66A • Intermediate-frequency-peaked BL Lac object (IBL) (Schlegel et al. 1998; Perri et al. 2003; Abdo et al. 2010) • TeV object (Acciari et al. 2009; Aliu et al. 2009) • Redshift = 0.34 (Torres-Zafra et al. 2018; Uncertain) • Variable at various bands (e.g. Bottcher et al. 2005) • One-sided jet with P.A. of ~180 deg Zhao et al. 2015 1 3C 66A • 6-arcmin separated from 3C 66B (radio galaxy at z=0.0215; Matthews et al. 1964) -> Ideal source pair for relative astrometry (Sudou et al. 2003) • Note that both sources are not physically related 3C 66A • 3C 66A is used as reference source of 3C 66B in multi-epoch relative astrometry observations (Sudou et al. 2003) Sudou et al. 2003 1-yr core wandering 3C 66B 5 1 in 3C 66B 2 6 4 3 Binary SMBH in 3C 66B Red : radio / Blue : optical Image credit : NRAO/AUE 1999 2 3C 66B : binary SMBH ? Non-detection (Jenet et al. 2004) • Gravitational wave not detected -> another reason for the 1-yr motion ✓ Annual parallax Image Credit : R. Hurt/Caltech-JPL ✓ Episodic core-wandering (e.g. Mrk 421, Niinuma et al. 2015) ✓ Non-stationarity of reference point 3 3C 66B : binary SMBH ? Non-detection (Jenet et al.
    [Show full text]