Update for Chapter 9 of the Exposure Factors Handbook: Intake of Fruits

Total Page:16

File Type:pdf, Size:1020Kb

Update for Chapter 9 of the Exposure Factors Handbook: Intake of Fruits EPA/600/R-18/098F August 2018 Update for Chapter 9 of the Exposure Factors Handbook Intake of Fruits and Vegetables National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC 20460 Update for Chapter 9 of the Exposure Factors Handbook Chapter 9—Intake of Fruits and Vegetables DISCLAIMER This document has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. August 2018 Page 9-ii Update for Chapter 9 of the Exposure Factors Handbook Chapter 9—Intake of Fruits and Vegetables TABLE OF CONTENTS LIST OF TABLES......................................................................................................................................................9-v 9. INTAKE OF FRUITS AND VEGETABLES ..............................................................................................9-1 9.1. INTRODUCTION .........................................................................................................................9-1 9.2. RECOMMENDATIONS ...............................................................................................................9-2 9.3. INTAKE STUDIES .......................................................................................................................9-7 9.3.1 Key Fruit and Vegetable Intake Study .............................................................................9-7 9.3.1.1 U.S. EPA Analysis of Consumption Data from 2003−2006 National Health and Nutrition Examination Survey (NHANES) .....................................9-7 9.3.2 Relevant Fruit and Vegetable Intake Studies ...................................................................9-9 9.3.2.1 U.S. Department of Agriculture (USDA) (1980, 1992, 1996a, b)—Food and Nutrient Intakes of Individuals in 1 Day in the United States ....................9-9 9.3.2.2 U.S. Department of Agriculture (USDA) (1999a)—Food Consumption, Prices, and Expenditures, 1970−1997 ...............................................................9-9 9.3.2.3 U.S. Department of Agriculture (USDA) (1999b)—Food and Nutrient Intakes by Children 1994−1996, 1998, Table Set 17 ........................................9-9 9.3.2.4 U.S. EPA Analysis of Continuing Survey of Food Intake among Individuals (CSFII) 1994−1996, 1998 Based on U.S. Department of Agriculture (USDA) (2000) and U.S. EPA (2000) ..........................................9-10 9.3.2.5 Smiciklas-Wright et al. (2002)—Foods Commonly Eaten in the United States: Quantities Consumed per Eating Occasion and in a Day, 1994−1996 .......................................................................................................9-11 9.3.2.6 Vitolins et al. (2002)—Quality of Diets Consumed by Older Rural Adults ..............................................................................................................9-11 9.3.2.7 Fox et al. (2004)—Feeding Infants and Toddlers Study: What Foods Are Infants and Toddlers Eating .............................................................................9-12 9.3.2.8 Ponza et al. (2004)—Nutrient Food Intakes and Food Choices of Infants and Toddlers Participating in Women, Infants, and Children (WIC) ..............9-13 9.3.2.9 Fox et al. (2006)—Average Portion of Foods Commonly Eaten by Infants and Toddlers in the United States ........................................................9-13 9.3.2.10 Mennella et al. (2006)—Feeding Infants and Toddlers Study: The Types of Foods Fed to Hispanic Infants and Toddlers ...............................................9-13 9.3.2.11 Colon-Ramos et al. (2009)—Differences in Fruit and Vegetable Intake among Hispanic Subgroups in California: Results from the 2005 California Health Interview Survey .................................................................9-13 9.3.2.12 Locke et al. (2009)—Seasonal Variation in Fruit and Vegetable Consumption in a Rural Agricultural Community ..........................................9-14 9.3.2.13 Fox et al. (2010)—Food Consumption Patterns of Young Preschoolers: Are They Starting off on the Right Path?; Siega-Riz et al. (2010)—Food Consumption Patterns of Infants and Toddlers: Where Are We Now?; Deming et al. (2014)—Infant Feeding Practices and Consumption Patterns of Children Participating in Women, Infants, and Children (WIC) ..............................................................................................................9-14 9.3.2.14 Briefel et al. (2010)—The Feeding Infants and Toddlers Study 2008; Study Design and Methods ..............................................................................9-15 9.3.2.15 U.S. Department of Agriculture (USDA) (2010)—Canned Fruit and Vegetable Consumption in the United States ..................................................9-15 9.3.2.16 Demydas (2011)—Consumer Segmentation Based on the Level and Structure of Fruit and Vegetable Intake: An Empirical Evidence for U.S. Adults from the National Health and Nutrition Examination Survey (NHANES) 2005−2006 ...................................................................................9-15 August 2018 Page 9-iii Update for Chapter 9 of the Exposure Factors Handbook Chapter 9—Intake of Fruits and Vegetables TABLE OF CONTENTS (CONTINUED) 9.3.2.17 Arcan et al. (2014)—Dietary and Weight-Related Behaviors and Body Mass Index among Hispanic, Hmong, Somali, and White Adolescents. J of the Academy of Nutrition and Dietetics. 113(3): 375−383 .........................9-16 9.3.2.18 Wolfson and Bleich (2015)—Fruit and Vegetable Consumption and Food Values: National Patterns in the United States by Supplemental Nutrition Assistance Program Eligibility and Cooking Frequency .................9-16 9.3.2.19 Guerrero et al. (2016)—Racial and Ethnic Disparities in Dietary Intake among California Children ..............................................................................9-17 9.3.3 Pregnant and Lactating Women .....................................................................................9-17 9.4. CONVERSION BETWEEN WET- AND DRY-WEIGHT INTAKE RATES ............................9-18 9.5. REFERENCES FOR CHAPTER 9 ..............................................................................................9-18 APPENDIX A ........................................................................................................................................................... A-1 APPENDIX B ............................................................................................................................................................ B-1 APPENDIX C ............................................................................................................................................................ C-1 August 2018 Page 9-iv Update for Chapter 9 of the Exposure Factors Handbook Chapter 9—Intake of Fruits and Vegetables LIST OF TABLES Table 9-1. Recommended Values for 2-Day Average Intake of Fruits and Vegetables .........................................9-3 Table 9-2. Confidence in Recommendations for Intake of Fruits and Vegetables .................................................9-5 Table 9-3. Per Capita 2-Day Average Intake of Total Fruits and Total Vegetables Based on 2005−2010 National Health and Nutrition Examination Survey............................................................................9-21 Table 9-4. Consumer-Only 2-Day Average Intake of Total Fruits and Total Vegetables Based on 2005−2010 National Health and Nutrition Examination Survey ........................................................9-24 Table 9-5. Per Capita 2-Day Average Intake of Individual Fruits and Vegetables Based on the 2005−2010 National Health and Nutrition Examination Survey............................................................................9-27 Table 9-6. Consumer-Only 2-Day Average Intake of Individual Fruits and Vegetables Based on the 2005−2010 National Health and Nutrition Examination Survey ........................................................9-37 Table 9-7. Per Capita 2-Day Average Intake of Exposed and Protected Fruits and Vegetables Based on the 2005−2010 National Health and Nutrition Examination Survey ........................................................9-47 Table 9-8. Consumer-Only 2-Day Average Intake of Exposed and Protected Fruits and Vegetables Based on the 2005−2010 National Health and Nutrition Examination Survey ..............................................9-49 Table 9-9. Mean Total Fruit and Total Vegetable Intake (as-consumed) in a Day by Sex and Age ....................9-51 Table 9-10. Mean Total Fruit and Total Vegetable Intake (as-consumed) in a Day by Sex and Age ....................9-53 Table 9-11. Per Capita Consumption of Fresh Fruits and Vegetables in 1997 .......................................................9-54 Table 9-12. Mean Quantities of Vegetables Consumed Daily by Sex and Age, for Children, Per Capita .............9-55 Table 9-13. Percentage of Individuals Consuming Vegetables, by Sex and Age, for Children .............................9-56 Table 9-14. Mean Quantities of Fruits Consumed Daily by Sex and Age, for Children, Per Capita .....................9-57 Table 9-15. Percentage of Individuals Consuming, Fruits by Sex and Age, for Children ......................................9-58 Table 9-16. Per Capita 2-Day Average Intake of Fruits and Vegetables Based on 1994−1996, 1998 Continuing Survey
Recommended publications
  • Minimum Dietary Diversity for Women a Guide to Measurement
    FANTA III FOOD AND NUTRITION TECHNICAL A SSISTANCE Minimum Dietary Diversity for Women A Guide to Measurement Minimum Dietary Diversity for Women A Guide to Measurement Published by the Food and Agriculture Organization of the United Nations and USAID’s Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360 Rome, 2016 Recommended citation: FAO and FHI 360. 2016. Minimum Dietary Diversity for Women: A Guide for Measurement. Rome: FAO. The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO), or of FANTA/FHI 360 concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO, or FHI 360 in preference to others of a similar nature that are not mentioned. Additional funding for this publication was made possible by the generous support of the American people through the support of the Office of Health, Infectious Diseases, and Nutrition, Bureau for Global Health, U.S. Agency for International Development (USAID), under terms of Cooperative Agreement AID-OAA-A-12-00005 through the Food and Nutrition Technical Assistance III Project (FANTA), managed by FHI 360. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO, FHI 360, UC Davis, USAID or the U.S.
    [Show full text]
  • Loquat (Eriobotrya Japonica) Is a New Natural Host of Apple Stem Pitting Virus
    plants Brief Report Loquat (Eriobotrya japonica) Is a New Natural Host of Apple Stem Pitting Virus Félix Morán , Celia Canales, Antonio Olmos and Ana Belén Ruiz-García * Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, Moncada, 46113 Valencia, Spain; [email protected] (F.M.); [email protected] (C.C.); [email protected] (A.O.) * Correspondence: [email protected] Received: 29 September 2020; Accepted: 11 November 2020; Published: 13 November 2020 Abstract: Loquat (Eriobotrya japonica) is a minor but important woody crop cultivated in Asia and Europe. High-throughput sequencing (HTS) analysis of an asymptomatic loquat plant using RNAseq Illumina technology has allowed the detection for the first time of apple stem pitting virus (ASPV), the type species of the genus Foveavirus in the family Betaflexiviridae, infecting this crop. A nearly complete genome of 9303 nts (ASPV-SL61) reconstructed bioinformatically shows the typical genomic structure of this viral species and a highest nucleotide identity (85.9%) with the Chinese ASPV isolate YLX from pear. A close phylogenetic relationship between ASPV-SL61 and ASPV-YLX has been confirmed by the sequence analysis of full-length ASPV genomic sequences available in the databases. In fact, a phylogenetic study based on a partial CP N-terminal sequence previously proposed to be involved in host adaptation has shown that ASPV-SL61 loquat isolate is more closely related to ASPV pear isolates. The presence of ASPV in loquat has been further confirmed by RT-PCR and Sanger sequencing and DAS-ELISA. An incidence of 15% was determined in one of the loquat Spanish growing areas.
    [Show full text]
  • Relatives of Temperate Fruits) of the Book Series, "Wild Crop Relatives: Genetic, Genomic and Breeding Resources Ed C
    Volume 6 (Relatives of Temperate Fruits) of the book series, "Wild Crop Relatives: Genetic, Genomic and Breeding Resources ed C. Kole 2011 p179-197 9 Rubus J. Graham* and M. Woodhead Scottish Crop Research Institute, Dundee, DD2 5DA, UK *Corresponding author: [email protected] Abstract The Rosaceae family consists of around 3, 000 species of which 500 belong to the genus Rubus. Ploidy levels range from diploid to dodecaploid with a genomic number of 7, and members can be difficult to classify into distinct species due to hybridization and apomixes. Species are distributed widely across Asia, Europe, North and South America with the center of diversity now considered to be in China, where there are 250-700 species of Rubus depending on the taxonomists. Rubus species are an important horticultural source of income and labor being produced for the fresh and processing markets for their health benefits. Blackberries and raspberries have a relatively short history of less than a century as cultivated crops that have been enhanced through plant breeding and they are only a few generations removed from their wild progenitor species. Rubus sp. are typically found as early colonizers of disturbed sites such as pastures, along forest edges, in forest clearings and along roadsides. Blackberries are typically much more tolerant of drought, flooding and high temperatures, while red raspberries are more tolerant of cold winters. Additionally, they exhibit vigorous vegetative reproduction by either tip layering or root suckering, permitting Rubus genotypes to cover large areas. The attractiveness of the fruits to frugivores, especially birds, means that seed dispersal can be widespread with the result that Rubus genotypes can very easily be spread to new sites and are very effective, high-speed invaders.
    [Show full text]
  • Mineral Composition, Nutritional Properties, Total Phenolics and Flavonoids Compounds of the Atemoya Fruit (Annona Squamosa L
    Anais da Academia Brasileira de Ciências (2016) (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201620150537 www.scielo.br/aabc Mineral composition, nutritional properties, total phenolics and flavonoids compounds of the atemoya fruit (Annona squamosa L. x Annona cherimola Mill.) and evaluation using multivariate analysis techniques WALTER N.L. DOS SANTOS1,2,4, MARIA CELESTE S. SAUTHIER1, DANNUZA D. CAVALCANTE2, CLÍCIA M.J. BENEVIDES1, FÁBIO S. DIAS3 and DANIELE C.M.B. SANTOS1 1Universidade do Estado da Bahia/UNEB, Departamento de Ciências Exatas e da Terra, Rua Silveira Martins, 2555, Cabula, 41195-001 Salvador, BA, Brasil 2Universidade Federal da Bahia/UFBA, Departamento de Química Analítica, Campus de Ondina, Av. Adhemar de Barros, s/n, Ondina, 40170-290 Salvador, BA, Brasil 3Universidade Federal do Recôncavo Baiano/UFRB, Departamento de Química, Rua Rui Barbosa, s/n, Centro, 44380-000 Cruz das Almas, BA, Brasil 4Instituto Nacional de Ciência e Tecnologia/INCT, de Energia e Ambiente, Campus de Ondina, Av. Adhemar de Barros, s/n, Ondina, 40170-290 Salvador, BA, Brasil Manuscript received on July 17, 2015; accepted for publication on May 27, 2016 ABSTRACT The atemoya is a hybrid fruit obtained by crossing of cherimoya (Annona cherimola Mill.) with sweet sop (Annona squamosa L.). The information about chemical composition of atemoya is scarce. The mineral composition was evaluated employing Inductively Coupled Plasma Optical Emission Spectrometry (ICP OES) and the centesimal composition and the physico-chemical parameters were assessed employing procedures described in the AOAC methods. The total phenolic compounds (TPC) and total flavonoids (TF) were determined using spectroanalytical methods.
    [Show full text]
  • Cherimoya and Guanabana in the Archaeological Record of Peru
    Journal of Ethnobiology 17(2):235-248 Winter 1997 CHERIMOYA AND GUANABANA IN THE ARCHAEOLOGICAL RECORD OF PERU THOMAS POZORSKI AND SHELIA POZORSKI Department of Psychology and Anthropology University of Texas-Pan American Edinburg, TX 78539 ABSTRACT.-Most researchers commonly assume that both cherimoya (Annona cherimolia) and guanabana (Annona muricata) have long been a part of the prehistoric record of ancient Peru. However, archaeological and ethnohistoric research in the past 25years strongly indicates that cherimoya was not introduced into Peru until ca. A.D. 1630 and that guanabana is only present after ca. A.D. 1000and is mainly associated with sites of the Chimu culture. RESUMEN.-La mayorfa de los investigadores suponen que tanto la chirimoya (Annona cherimola)como la guanabana (Annona muricata) han sido parte del registro prehist6rico del antiguo Peru por largo tiempo . Sin embargo, las in vestigaciones arqueol6gicas y etnohist6ricas de los ultimos veinticinco afios indican fuertemente que la chirimoya no fue introducida al Peru sino hasta 1630 D.C., Y que la guanabana esta presente s610 despues de aproximadamente 1000 D.C., Y esta asociada principalmente con sitios de la cultura chirmi. RESUME.- La plupart des chercheurs supposent couramment qu'une espece de pomme cannelle (Annonacherimolia)et le corossol (Annona muricata) ont faitpartie, pendant une longue periode, de l'inventaire prehistorique du Perou. Toutefois, les recherches archeologiques et ethnohistoriques des vingt-cinq dern ieres annees indiquent fortement que la pomme cannelle A. cherimolia ne fut introduite au Perou qu'aux environs de 1630 apr. J.-c. et la presence du corossol n'est attestee qu'en 1000apr.
    [Show full text]
  • PROPAGATION and CULTIVATION TECHNIQUES of BENTARA DURIAN (Durio Zibethinus Murr)
    ITTO PD 477/07 Rev. 4 (F) Improving Forest Functions in Bengkulu Province Through Community Participation in Rehabilitation of Degraded Forest by Using Local Prospective Commodities JAKARTA, DECEMBER 2018 Improving Forest Functions in Bengkulu Province Through Community Participation in Rehabilitation of Degraded Forest by Using Local Prospective Commodities By: Herry Gusmara, Gunggung Senoaji, Yansen, Rustama Saepudin, Kamboya THE DIRECTORATE OF FOREST TREE SEED JAKARTA, DECEMBER 2018 ITTO PD 477/07 Rev. 4 (F) Improving Forest Functions in Bengkulu Province Through Community Participation in Rehabilitation of Degraded Forest by Using Local Prospective Commodities. PROPAGATION AND CULTIVATION TECHNIQUES OF BENTARA DURIAN (Durio zibethinus Murr) By: Herry Gusmara, Gunggung Senoaji, Yansen, Rustama Saepudin, Kamboya Translated by: Herry Gusmara Proofreading by : Diah Rany, P.S Collaboration between: The Directorate of Forest Tree Seed, Ministry of Environment and Forestry, Government of Indonesia. Manggala Wanabakti Building, Jl. Gatot Subroto, Block I Floor 13rd, Central Jakarta. Telp. : 021-5730332 Facs. : 021-5730175 e-mail : [email protected] The Environment and Forestry Service of Bengkulu Province Jl. Pembangunan, Padang Harapan, Kota Bengkulu Telp : (0736) 20091, 22856 Facs : (0736) 22856 Second Edition, December 2018 Published by: The Directorate of Forest Tree Seed ITTO Project of PD 477/07 Rev. 4 (F) Manggala Wanabakti Building, Jl. Gatot Subroto, Block I Floor 13rd, Central Jakarta. Telp. : 021-5730332 Facs. : 021-5730175 e-mail : [email protected] ii | P a g e PREFACE The involvement of the community and the types of species that are used, usually determine the success of forest and land rehabilitation activities. In Bengkulu Province, one of the popular local prospectives species is Bentara Durian.
    [Show full text]
  • Cardoon, Cynara Cardunculus There Are Many Plants That Are Used As Annuals in Northern Climates, Either for Their fl Owers Or Foliage
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 27 June 2014 Cardoon, Cynara cardunculus There are many plants that are used as annuals in northern climates, either for their fl owers or foliage. Cardoon (Cynara cardunculus), a close relative of artichoke (Cynara scolymus, although some taxonomists have considered them just varieties of the species cardunculus and they will form hybrids), is a great addition to the garden for making a dramatic statement with its large, spiny, silvery foliage and sometimes for the globe- like, violet-topped fl owers. This sculptural plant received the Royal Horticultural Society’s Award of Garden Merit. It could be considered an ornamental edible as the blanched stems can be eaten, although doing so would ruin the appearance of the plant. Cardoon, with an artichoke-like fl avor, was popular in ancient Greek, The spiny, silvery foliage of cardoon Roman, and Persian makes a dramatic statement in the garden. cuisine, and through the medieval and early modern periods in Europe, as well as in colonial America. Cardoon is still cultivated for food in southern Europe and northwestern Africa. This fast-growing herbaceous perennial in the aster family (Asteraceae) is native to the western and central Mediterranean where it was domesticated in ancient times. It is hardy only in zones 7-10, so is treated as an annual in colder climates. In some mild climates, including Argentina, Chile, Australia and California, it has become naturalized and is considered Cardoon has received the Royal Horticultural a weed. Society’s Award of Garden Merit. The fi rst year the plant produces an enormous single urn-shaped rosette.
    [Show full text]
  • Well-Known Plants in Each Angiosperm Order
    Well-known plants in each angiosperm order This list is generally from least evolved (most ancient) to most evolved (most modern). (I’m not sure if this applies for Eudicots; I’m listing them in the same order as APG II.) The first few plants are mostly primitive pond and aquarium plants. Next is Illicium (anise tree) from Austrobaileyales, then the magnoliids (Canellales thru Piperales), then monocots (Acorales through Zingiberales), and finally eudicots (Buxales through Dipsacales). The plants before the eudicots in this list are considered basal angiosperms. This list focuses only on angiosperms and does not look at earlier plants such as mosses, ferns, and conifers. Basal angiosperms – mostly aquatic plants Unplaced in order, placed in Amborellaceae family • Amborella trichopoda – one of the most ancient flowering plants Unplaced in order, placed in Nymphaeaceae family • Water lily • Cabomba (fanwort) • Brasenia (watershield) Ceratophyllales • Hornwort Austrobaileyales • Illicium (anise tree, star anise) Basal angiosperms - magnoliids Canellales • Drimys (winter's bark) • Tasmanian pepper Laurales • Bay laurel • Cinnamon • Avocado • Sassafras • Camphor tree • Calycanthus (sweetshrub, spicebush) • Lindera (spicebush, Benjamin bush) Magnoliales • Custard-apple • Pawpaw • guanábana (soursop) • Sugar-apple or sweetsop • Cherimoya • Magnolia • Tuliptree • Michelia • Nutmeg • Clove Piperales • Black pepper • Kava • Lizard’s tail • Aristolochia (birthwort, pipevine, Dutchman's pipe) • Asarum (wild ginger) Basal angiosperms - monocots Acorales
    [Show full text]
  • Brassica Rapa)Ssp
    Li et al. Horticulture Research (2020) 7:212 Horticulture Research https://doi.org/10.1038/s41438-020-00449-z www.nature.com/hortres ARTICLE Open Access A chromosome-level reference genome of non- heading Chinese cabbage [Brassica campestris (syn. Brassica rapa)ssp. chinensis] Ying Li 1,Gao-FengLiu1,Li-MingMa2,Tong-KunLiu 1, Chang-Wei Zhang 1, Dong Xiao1, Hong-Kun Zheng2, Fei Chen1 and Xi-Lin Hou 1 Abstract Non-heading Chinese cabbage (NHCC) is an important leafy vegetable cultivated worldwide. Here, we report the first high-quality, chromosome-level genome of NHCC001 based on PacBio, Hi-C, and Illumina sequencing data. The assembled NHCC001 genome is 405.33 Mb in size with a contig N50 of 2.83 Mb and a scaffold N50 of 38.13 Mb. Approximately 53% of the assembled genome is composed of repetitive sequences, among which long terminal repeats (LTRs, 20.42% of the genome) are the most abundant. Using Hi-C data, 97.9% (396.83 Mb) of the sequences were assigned to 10 pseudochromosomes. Genome assessment showed that this B. rapa NHCC001 genome assembly is of better quality than other currently available B. rapa assemblies and that it contains 48,158 protein-coding genes, 99.56% of which are annotated in at least one functional database. Comparative genomic analysis confirmed that B. rapa NHCC001 underwent a whole-genome triplication (WGT) event shared with other Brassica species that occurred after the WGD events shared with Arabidopsis. Genes related to ascorbic acid metabolism showed little variation among the three B. rapa subspecies. The numbers of genes involved in glucosinolate biosynthesis and catabolism 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; were higher in NHCC001 than in Chiifu and Z1, due primarily to tandem duplication.
    [Show full text]
  • Cardoon—Cynara Cardunculus L.1 James M
    HS574 Cardoon—Cynara cardunculus L.1 James M. Stephens2 Cardoon is similar to the globe artichoke. With cardoon the young tender leaves and undeveloped tender flower stalks are eaten rather than the flower bud. The thistle-like cardoon plant grows to a height of 3–5 feet and spreads over an area 6 feet in diameter. Culture Florida summers are rather warm for cardoon to grow properly; therefore, it should be started in the fall or winter so that it develops in the cooler months. Freezing temperatures below 28°F may kill the aboveground parts of tender nonacclimatized cardoon. It has withstood 18°F at Gainesville. Figure 1. Cardoon plant Credits: James M. Stephens Propagation is by seeds, suckers, or root division. In addition to a proper climate, cardoon requires a rich soil or abundant fertilizer and plenty of water. Blanching of the stalks before harvest is desired. This is accomplished by tying up the outer branches a foot or so from the top of the plant and piling soil up around the plant as it grows. Use There are several uses for cardoon. The most popular way to prepare it is to cook the leaves and tender stalks together. Cardoon may also be eaten fresh and uncooked in salads. Some say it has gentle laxative properties. 1. This document is HS574, one of a series of the Horticultural Sciences Department, UF/IFAS Extension. Original publication date May 1994. Revised September 2015. Reviewed October 2018. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. James M. Stephens, professor emeritus, Horticultural Sciences Department,; UF/IFAS Extension, Gainesville, FL 32611.
    [Show full text]
  • D3.2 PANACEA Roadmap
    PANACEA. Non Food Crops For a EU Bioeconomy New strategies for the development and promotion of NFC in Europe D3.2 PANACEA Roadmap 1 PANACEA. Non Food Crops For a EU Bioeconomy New strategies for the development and promotion of NFC in Europe Deliverable Title: D3.2: PANACEA Roadmap Deliverable Lead: Imperial College London (ICL) Related Work package: WP3 Author(s): Calliope Panoutsou (ICL), Efthymia Alexopoulou (CRES) Contributor(s): Association de Coordination Technique Agricole,ARKEMA FRANCE; University of Bologna, CREA, LIETUVOS AGRARINIU IR MISKU MOKSLUCENTRAS; Michal Krzyzaniak; FCT-UNL; ACTA, INTIA, Spanish Co-ops; Wageningen University Communication level: PU Public Grant Agreement Number: 773501 Programme: Horizon 2020 Start date of Project: November 2017 Duration: 40 months Project coordinator: CRES 2 PANACEA. Non Food Crops For a EU Bioeconomy New strategies for the development and promotion of NFC in Europe Contents 1. PANACEA Roadmap ................................................................................................................................................. 6 1.1 Aim ............................................................................................................................................................................................. 6 1.2 Approach ..................................................................................................................................................................................... 6 Participatory approach ..............................................................................................................................................
    [Show full text]
  • Chapter 1 Definitions and Classifications for Fruit and Vegetables
    Chapter 1 Definitions and classifications for fruit and vegetables In the broadest sense, the botani- Botanical and culinary cal term vegetable refers to any plant, definitions edible or not, including trees, bushes, vines and vascular plants, and Botanical definitions distinguishes plant material from ani- Broadly, the botanical term fruit refers mal material and from inorganic to the mature ovary of a plant, matter. There are two slightly different including its seeds, covering and botanical definitions for the term any closely connected tissue, without vegetable as it relates to food. any consideration of whether these According to one, a vegetable is a are edible. As related to food, the plant cultivated for its edible part(s); IT botanical term fruit refers to the edible M according to the other, a vegetable is part of a plant that consists of the the edible part(s) of a plant, such as seeds and surrounding tissues. This the stems and stalk (celery), root includes fleshy fruits (such as blue- (carrot), tuber (potato), bulb (onion), berries, cantaloupe, poach, pumpkin, leaves (spinach, lettuce), flower (globe tomato) and dry fruits, where the artichoke), fruit (apple, cucumber, ripened ovary wall becomes papery, pumpkin, strawberries, tomato) or leathery, or woody as with cereal seeds (beans, peas). The latter grains, pulses (mature beans and definition includes fruits as a subset of peas) and nuts. vegetables. Definition of fruit and vegetables applicable in epidemiological studies, Fruit and vegetables Edible plant foods excluding
    [Show full text]