Subjective of Brain Stem

Total Page:16

File Type:pdf, Size:1020Kb

Subjective of Brain Stem Brain Disorders & Therapy Editorial Subjective of Brain Stem Samy McFarlane* Department of Medicine and Endocrinology, Osaka University, New York, USA EDOTRIAL NOTE ON BRAIN STEM METENCEPHALON The midbrain (mesencephalon) contains the atomic complex of The pons (metencephalon) comprises of two sections: the the oculomotor nerve just as the trochlear core; these cranial tegmentum, a phylogenetically more seasoned part that contains nerves innervate muscles that move the eye and control the state the reticular development, and the pontine cores, a bigger part of the focal point and the breadth of the student. Also, between made out of masses of neurons that lie among enormous heaps the midbrain reticular arrangement (referred to here as the of longitudinal and cross over nerve filaments. Filaments tegmentum) and the crus cerebri is a huge pigmented core called beginning from neurons in the cerebral cortex end upon the the substantia nigra. The substantia nigra comprises of two pontine cores, which thusly task to the contrary side of the sections, the standards reticulata and the standards compacta. equator of the cerebellum. These gigantic crossed strands, called Cells of the standards compacta contain the dim shade melanin; crus cerebri, structure the center cerebellar peduncle and fill in these cells integrate dopamine and undertaking to either the as the scaffold that associates each cerebral side of the equator caudate core or the putamen. By restraining the activity of huge with the contrary portion of the cerebellum. The filaments aspiny striatal neurons in the caudate core and the putamen beginning from the cerebral cortex establish the corticopontine (depicted above in the segment Basal ganglia), the dopaminergic lot. The reticular arrangement (an internal center of dark matter cells of the standards compacta impact the yield of the synapse found in the midbrain, pons, and medulla oblongata) of the GABA from prickly striatal neurons. The prickly neurons thus pontine tegmentum contains numerous cell bunches that impact task to the cells of the standards reticulata, which, by extending engine work. It additionally contains the cores of a few cranial strands to the thalamus, are important for the yield arrangement nerves. The facial nerve and the two segments of the of the corpus striatum. At the caudal midbrain, crossed vestibulocochlear nerve, for instance, rise up out of and enter filaments of the predominant cerebellar peduncle (the the brainstem at the intersection of the pons, medulla, and significant yield arrangement of the cerebellum) encompass and cerebellum. Likewise, engine cores of the trigeminal nerve lie in halfway end in a huge midway found construction known as the the upper pons. Long rising and plummeting lots that associate red core. Most crossed rising filaments of this pack undertaking the cerebrum to the spinal string are situated on the outskirts of to thalamic cores, which approach the essential engine cortex. the pons. Fewer filaments neural connection on huge cells in caudal The medulla oblongata (myelencephalon), the most caudal locales of the red core; these lead to the crossed strands of the portion of the brainstem, shows up as a tapered extension of the rubrospinal plot (see the part The spinal rope: Descending spinal rope. The rooftop plate of both the pons and the medulla spinal lots). The rooftop plate of the midbrain is shaped by two is shaped by the cerebellum and a film containing a phone layer combined adjusted swellings, the unrivaled and mediocre called the choroid plexus, situated in the four+98th ventricle. colliculi. The unrivaled colliculus gets contribution from the Cerebrospinal liquid entering the fourth ventricle from the retina and the visual cortex and takes part in an assortment of cerebral reservoir conduit passes into the cisterna magna, a visual reflexes, especially the following of items in the subarachnoid space encompassing the medulla and the contralateral visual field. The mediocre colliculus gets both cerebellum, through openings in the parallel breaks in the crossed and uncrossed hear-able filaments and undertakings midline of the ventricle. upon the average geniculate body, the hear-able hand-off core of the thalamus. Correspondence to: Samy McFarlane, Department of Medicine and Endocrinology, Osaka University, New York, USA, E-mail: [email protected] Received: May 03, 2021; Accepted: May 17, 2021; Published: May 25, 2021 Citation: Samy McFarlane (2021) Subjective of brain stem. Brain Disord The 10:e138 Copyright: © 2021 Samy McFarlane. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Brain Disord Ther, Vol.10 Iss.4 No:1000e138 1.
Recommended publications
  • Basal Ganglia & Cerebellum
    1/2/2019 This power point is made available as an educational resource or study aid for your use only. This presentation may not be duplicated for others and should not be redistributed or posted anywhere on the internet or on any personal websites. Your use of this resource is with the acknowledgment and acceptance of those restrictions. Basal Ganglia & Cerebellum – a quick overview MHD-Neuroanatomy – Neuroscience Block Gregory Gruener, MD, MBA, MHPE Vice Dean for Education, SSOM Professor, Department of Neurology LUHS a member of Trinity Health Outcomes you want to accomplish Basal ganglia review Define and identify the major divisions of the basal ganglia List the major basal ganglia functional loops and roles List the components of the basal ganglia functional “circuitry” and associated neurotransmitters Describe the direct and indirect motor pathways and relevance/role of the substantia nigra compacta 1 1/2/2019 Basal Ganglia Terminology Striatum Caudate nucleus Nucleus accumbens Putamen Globus pallidus (pallidum) internal segment (GPi) external segment (GPe) Subthalamic nucleus Substantia nigra compact part (SNc) reticular part (SNr) Basal ganglia “circuitry” • BG have no major outputs to LMNs – Influence LMNs via the cerebral cortex • Input to striatum from cortex is excitatory – Glutamate is the neurotransmitter • Principal output from BG is via GPi + SNr – Output to thalamus, GABA is the neurotransmitter • Thalamocortical projections are excitatory – Concerned with motor “intention” • Balance of excitatory & inhibitory inputs to striatum, determine whether thalamus is suppressed BG circuits are parallel loops • Motor loop – Concerned with learned movements • Cognitive loop – Concerned with motor “intention” • Limbic loop – Emotional aspects of movements • Oculomotor loop – Concerned with voluntary saccades (fast eye-movements) 2 1/2/2019 Basal ganglia “circuitry” Cortex Striatum Thalamus GPi + SNr Nolte.
    [Show full text]
  • Bilateral Cerebellar Dysfunctions in a Unilateral Meso-Diencephalic Lesion
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.44.4.361 on 1 April 1981. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry, 1981, 44, 361-363 Short report Bilateral cerebellar dysfunctions in a unilateral meso-diencephalic lesion D VON CRAMON From the Max-Planck-Institute for Psychiatry, Munich, Germany SUMMARY The clinical syndrome of a 65-year-old patient with a slit-shaped right-sided meso- diencephalic lesion was analysed. A cerebellar syndrome with limb-kinetic ataxia, intention tremor and hypotonicity in all extremities as well as ataxic dysarthria was found. The disruption of the two cerebello-(rubro)-thalamic pathways probably explained the signs of bilateral cere- bellar dysfunction. The uncrossed ascending limb of the right, and the crossed one of the left brachium conjunctivum may have been damaged by the unilateral lesion extending between caudal midbrain and dorsal thalamus. Protected by copyright. Most of the fibres which constitute the superior general hospital where neurological examination cerebellar peduncle leave the cerebellum and showed bilateral miosis, convergent strabism, vertical originate in cells of the dentate nucleus but also gaze paresis on upward gaze with gaze-paretic nystag- arise from neurons of the globose and emboli- mus, flaccid sensori-motor hemiparesis with increased stretch reflexes and Babinski sign on the left side, forme nuclei. The crossed ascending fibres of the and dysmetric movements of the right upper extremity. brachia conjunctiva constitute the major outflow The CT scan showed an acute haemorrhage in the from the cerebellum, they form the cerebello- right mesodiencephalic area. On 19 February 1979 (rubro)-thalamic and dentato-thalamic tracts.' the patient was admitted to our department.
    [Show full text]
  • A Small Dorsal Pontine Infarction Presenting with Total Gaze Palsy Including Vertical Saccades and Pursuit
    Journal of Clinical Neurology / Volume 3 / December, 2007 Case Report A Small Dorsal Pontine Infarction Presenting with Total Gaze Palsy Including Vertical Saccades and Pursuit Eugene Lee, M.D., Ji Soo Kim, M.D.a, Jong Sung Kim, M.D., Ph.D., Ha Seob Song, M.D., Seung Min Kim, M.D., Sun Uk Kwon, M.D. Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine aDepartment of Neurology, Seoul National University, Bundang Hospital A small localized infarction in the dorsal pontine area can cause various eye-movement disturbances, such as abducens palsy, horizontal conjugate gaze palsy, internuclear ophthalmoplegia, and one-and-a-half syndrome. However, complete loss of vertical saccades and pursuit with horizontal gaze palsy has not been reported previously in a patient with a small pontine lesion. We report a 67-year-old man with a small dorsal caudal pontine infarct who exhibited total horizontal gaze palsy as well as loss of vertical saccades and pursuit. J Clin Neurol 3(4):208-211, 2007 Key Words : Ophthalmoplegia, Pontine infarction, Omnipause neurons A small localized dorsal pontine infarction can to admission he had experienced sudden general produce abducens palsy, horizontal conjugate gaze weakness for approximately 20 minutes without loss palsy, internuclear ophthalmoplegia (INO), and one- of consciousness while working on his farm. The and-a-half syndrome by damaging the abducens nucleus following day, the patient experienced dysarthric and its fascicle, the paramedian pontine reticular speech and visual obscuration, and his family members formation (PPRF), or the medial longitudinal fasciculus noticed that his eyes were deviated to one side.
    [Show full text]
  • Micturitional Disturbance in Herpetic Brainstem Encephalitis; Contribution of the Pontine Micturition Centre
    J Neurol Neurosurg Psychiatry 1998;64:269–272 269 SHORT REPORT Micturitional disturbance in herpetic brainstem encephalitis; contribution of the pontine micturition centre Ryuji Sakakibara, Takamichi Hattori, Toshio Fukutake, Masahiro Mori, Tomonori Yamanishi, Kosaku Yasuda Abstract coeruleus14 and lateral dorsal tegmental Micturitional disturbance is rarely men- nucleus.5 A pontine storage centre also exists tioned in human herpetic brainstem en- just ventromedial or lateral to the pontine mic- cephalitis although the pontine turition centre. Recently, we found micturi- tegmentum, called the pontine micturi- tional disturbance in patients with brainstem tion centre, seems to regulate the lower stroke.6 Their MRI showed that the responsible urinary tract in experimental animals. sites are comparable with those reported in The case of a 45 year old man, who devel- experimental studies.1–3 Herpes simplex virus oped subacute coma and hiccup-like dys- type 1 (HSV-1) infection also causes brainstem rhythmic breathing, and needed assisted lesions78characterised by acute onset of multi- ventilation is reported. Examination of ple cranial nerve palsies, ataxia, and pyramidal CSF showed mononuclear pleocytosis and tract involvement. Disturbances of conscious- antibody against herpes simplex virus ness and respiration are not uncommon. type 1, but the opening pressure was 90 cm Micturitional disturbance is rarely reported in this disease. We here describe the micturitional H2O. Brain CT showed brain swelling, predominantly in the posterior fossa, and disturbance of a patient with herpetic brain- bilateral subdural eVusion. Herpetic stem encephalitis who showed bilateral pontine brainstem encephalitis was diagnosed, tegmental lesions on MRI. and he received 900 mg/day vidarabine. On regaining consciousness, he had left Case report trochlear nerve palsy, left corectopia, A 45 year old, previously healthy man devel- ageusia, and urinary retention.
    [Show full text]
  • Localization and Network of Coma- Causing Brainstem Lesions: Evidence for a Human Consciousness Network
    Localization and Network of Coma- Causing Brainstem Lesions: Evidence for a Human Consciousness Network The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Fischer, David B. 2016. Localization and Network of Coma-Causing Brainstem Lesions: Evidence for a Human Consciousness Network. Doctoral dissertation, Harvard Medical School. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:27007725 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Abstract Focal brainstem lesions can disrupt arousal and cause coma, yet the exact location of the brainstem region critical to arousal and its associated network are unknown. First, we compare brainstem lesions between 12 patients with coma and 24 patients without coma to identify a region specific to coma-causing lesions. Second, we determine the network connectivity of this brainstem region and each individual coma- causing lesion using resting state functional connectivity MRI data acquired from 98 healthy subjects. Third, we evaluate the functional connectivity of this network in patients with disorders of consciousness (51 patients versus 21 controls). These analyses reveal a small, coma-specific region in the left pontine tegmentum, near the medial parabrachial nucleus. This brainstem region, and each individual coma-causing lesion, is functionally connected to the left agranular, anterior insula (AI), and pregenual anterior cingulate cortex (pACC). These cortical sites align poorly with previously defined functional networks but match the distribution of von Economo neurons (VENs).
    [Show full text]
  • Clinicoradiological Aspects of Pontine
    Published online: 2021-07-26 NEURORADIOLOGY & HEAD AND NECK IMAGING Clinicoradiological aspects of pontine tegmental cap dysplasia: Case report of a rare hindbrain malformation Aanchal Bhayana, Sunil K Bajaj, Ritu N Misra, S Senthil Kumaran1 Department of Radiodiagnosis, Safdarjung Hospital and VM Medical College, 1Department of Nuclear Medical Resonance, All India Institute of Medical Sciences, New Delhi, India Correspondence: Dr. Aanchal Bhayana, Department of Radiodiagnosis, Safdarjung Hospital and VM Medical College, New Delhi - 110 029, India. E-mail: [email protected] Abstract Malformations involving the brainstem are very rare and present with a varied spectrum of clinical symptoms due to multiple cranial nerve palsies and pyramidal tract involvement. Of these, pontine tegmental cap dysplasia is a very unusual malformation, characterized by ventral pons hypoplasia and an ectopic dorsal band of tissue, projecting into the fourth ventricle, from dorsal pontine tegmentum. A 4‑year‑old male child, presenting with left facial nerve palsy, revealed hypoplastic ventral pons and an ectopic structure on magnetic resonance imaging (MRI). The ectopic structure was isointense to pons, arose from the left side of dorsal pontine tegmentum, at pontomedullary junction and protruded into the fourth ventricle, impinging upon the left seventh and eighth cranial nerves. Diffusion tensor imaging (DTI) depicted abnormal white matter tracts in ectopic tissue with absent transverse pontine fibres and abnormal middle and superior cerebellar peduncles.
    [Show full text]
  • Acoustic Neuromas)
    Neurosurg Focus 5 (3):Article 1, 1998 Microanatomical variations in the cerebellopontine angle associated with vestibular schwannomas (acoustic neuromas) Prakash Sampath, M.D., David Rini, M.F.A., and Donlin M. Long, M.D., Ph.D. Departments of Neurological Surgery and Art as Applied to Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland Great advances in neuroimaging, intraoperative cranial nerve monitoring, and microsurgical technique have shifted the focus of acoustic neuroma surgery from prolonging life to preserving cranial nerve function in patients. An appreciation of the vascular and cranial nerve microanatomy and the intimate relationship between neurovascular structures and the tumor is essential to achieve optimum results. In this paper the authors analyze the microanatomical variations in location of the facial and cochlear nerves in the cerebellopontine angle (CPA) associated with acoustic neuromas and, additionally, describe the frequency of involvement of surrounding neural and vascular structures with acoustic tumors of varying size. The authors base their findings on their experience treating 1006 consecutive patients who underwent surgery via a retrosigmoid or translabyrinthine approach. Between July 1969 and January 1998, the senior author (D.M.L.) performed surgery in 1022 patients for acoustic neuroma: 705 (69%) via the retrosigmoid (suboccipital); 301 (29%) via translabyrinthine; and 16 (2%) via middle fossa approach. Patients undergoing the middle fossa approach were excluded from the study. Patients were subdivided into three groups based on tumor size: Group 1 tumors (609 patients [61%]) were smaller than 2.5 cm; Group 2 tumors (244 patients [24%]) were between 2.5 and 4 cm; and Group 3 tumors (153 patients [15%]) were larger than 4 cm.
    [Show full text]
  • Computed Tomography of the Brain Stem with Intrathecal Metrizamide. Part I: the Normal Brain Stem
    Computed Tomography of the Brain Stem with Intrathecal Metrizamide. Part I: The Normal Brain Stem Michel E. Mawad 1 Detailed anatomy of the brain stem and cervicomedullary junction can be accurately A. John Silver demonstrated with metrizamide computed tomographic cisternography. Specifically. Sadek K. Hilal surface anatomy is unusually well outlined. Nine distinct and easily recognizable levels S. Ramaiah Ganti of section are described: four levels in the medulla, three in the pons, and two in the mesencephalon. Surface features of the brain stem, fine details in the floor of the fourth ventricle, cranial nerves, and vascular structures are shown and discussed. Reliably accurate imaging of the brain stem and cervicomedullary junction has now become available using high-resolution computed tomographic (CT) scan­ ning following intrathecal admini stration of metrizamide [1 -6]. The demonstration of surface features of the brain stem such as the ventral fissure, ventrolateral su lcus, pyramids, and olivary protuberance has become commonplace; suc h details have not been routinely demonstrable in the past. Many authors [1, 2] have already emphasized the value of metrizamide CT cisternography and its superiority to both angiography and pneumoencephalog­ raphy. These latter procedures rely on subtle displacement of vessels or distor­ tion of the air-filled fourth ventricle and posterior fossa cisterns. Compared with air, metrizamide spreads much more readily in th e entire subarachnoid space without the problem of meniscus formation or " air lock. " CT permits the sepa­ ration of the various collections of contrast agent and avoids th e superimposition of features encountered in nontomographic contrast studies. Improved visualization of the details of the brain stem by metrizamide CT has allowed the detection of subtle morphologic changes in the brain stem and subarachnoid space not previously appreciated.
    [Show full text]
  • Endoscopic–Assisted Surgery for Cerebello Pontine Angle Pathology: Technical Note and Surgical Results in a Series of Patients
    Archives of Neurosurgery Volume 1 Issue 1 Article 5 2020 Endoscopic–assisted surgery for cerebello pontine angle pathology: Technical note and surgical results in a series of patients Jaime Jesus Martinez Anda Neurosurgery Department, Toluca Medical Center of Social Security Institute of the State of Mexico and Provinces, State of Mexico, Mexico, [email protected] Pablo David Guerrero Suarez Neurosurgery Department, Toluca Medical Center of Social Security Institute of the State of Mexico, [email protected] See next page for additional authors Follow this and additional works at: https://www.ansjournal.org/home Part of the Neurology Commons, Neuroscience and Neurobiology Commons, Neurosurgery Commons, and the Surgery Commons Recommended Citation Martinez Anda, Jaime Jesus; Guerrero Suarez, Pablo David; Pineda Martínez, Diego; Avendaño Pradel, Rafael; Jurado Delgado, Ernesto Javier; Villlagrana Sánchez, Ricardo Santiago; Cisneros Lesser, Juan Carlos; De la Llata Segura, Carolina; and Revuelta Gutiérrez, Rogelio (2020) "Endoscopic–assisted surgery for cerebello pontine angle pathology: Technical note and surgical results in a series of patients," Archives of Neurosurgery: Vol. 1 : Iss. 1 , Article 5. Available at: https://www.ansjournal.org/home/vol1/iss1/5 This Original Research - Endoscopy is brought to you for free and open access by Archives of Neurosurgery. It has been accepted for inclusion in Archives of Neurosurgery by an authorized editor of Archives of Neurosurgery. For more information, please contact [email protected]. Endoscopic–assisted surgery for cerebello pontine angle pathology: Technical note and surgical results in a series of patients Abstract Objectives: Endoscopic–assisted surgery combined with the operating microscope has been described for several surgical techniques and pathologies of the cerebellopontine angle (CPA).
    [Show full text]
  • Superior Medullary Velum
    O riginal Investigation riginal Received: 06.07.2013 / Accepted: 22.09.2013 Doı: 10.5137/1019-5149.JTN.8850-13.1 Superior Medullary Velum: Anatomical-Histological Study in the Sheep Brain and a Preliminary Tractographic Study in the Human Brain Süperior Meduller Velum: Koyun Beyninde Anatomik-Histolojik Çalışma ve İnsan Beyninde Ön Traktografik Çalışma Nuriye Guzin OZDemIR1, Merih ıs2, Süheyla Uyar BOZKURT3, Kaya KılıC1, Askin SekeR4 1Istanbul Training and Research Hospital, Neurosurgery Clinic, Istanbul, Turkey 2Fatih Sultan Mehmet Training and Research Hospital, Neurosurgery Clinic, Istanbul, Turkey 3Marmara University Training and Research Hospital, Department of Pathology, Istanbul, Turkey 4Training and Research Hospital, Department of Neurosurgery, Istanbul, Turkey Corresponding Author: Nuriye Guzin OZDEMıR / E-mail: [email protected] ABSTRACT AIM: To study the anatomy, histology and fiber relations of the superior medullary velum. MaterIAL and MetHODS: Ten previously frozen and formalin-fixed sheep brains were used. The fiber dissection was done using the operating microscope at the Rhoton Anatomy Laboratory of Marmara Faculty of Medicine. A tractographic study was conducted on five volunteer patients to see the fiber anatomy of the superior medullary velum. RESULTS: The average thickness and length was found to be 0.296 mm (range 0.09-1 mm) and 4.25 mm (range 3.25-4.5 mm) respectively. Histologically, the superior medullary velum consisted of cuboidal layer of ependymal cells on the anterior surface related to fourth ventricle. The subependymal layer contained hypocellular fibrillary zone with few glial cells, and the outer layer consisted of thin layer of fibroblasts. Under the hypocellular fibrillary zone, abundant axons and organized structures were observed.
    [Show full text]
  • White Matter Anatomy: What the Radiologist Needs to Know
    White Matter Anatomy What the Radiologist Needs to Know Victor Wycoco, MBBS, FRANZCRa, Manohar Shroff, MD, DABR, FRCPCa,*, Sniya Sudhakar, MBBS, DNB, MDb, Wayne Lee, MSca KEYWORDS Diffusion tensor imaging (DTI) White matter tracts Projection fibers Association Fibers Commissural fibers KEY POINTS Diffusion tensor imaging (DTI) has emerged as an excellent tool for in vivo demonstration of white matter microstructure and has revolutionized our understanding of the same. Information on normal connectivity and relations of different white matter networks and their role in different disease conditions is still evolving. Evidence is mounting on causal relations of abnormal white matter microstructure and connectivity in a wide range of pediatric neurocognitive and white matter diseases. Hence there is a pressing need for every neuroradiologist to acquire a strong basic knowledge of white matter anatomy and to make an effort to apply this knowledge in routine reporting. INTRODUCTION (Fig. 1). However, the use of specific DTI sequences provides far more detailed and clini- DTI has allowed in vivo demonstration of axonal cally useful information. architecture and connectivity. This technique has set the stage for numerous studies on normal and abnormal connectivity and their role in devel- DIFFUSION TENSOR IMAGING: THE BASICS opmental and acquired disorders. Referencing established white matter anatomy, DTI atlases, Using appropriate magnetic field gradients, and neuroanatomical descriptions, this article diffusion-weighted sequences can be used to summarizes the major white matter anatomy and detect the motion of the water molecules to and related structures relevant to the clinical neurora- from cells. This free movement of the water mole- diologist in daily practice.
    [Show full text]
  • Microvascular Anatomy of the Cerebellar Parafloccular Perforating Space
    LABORATORY INVESTIGATION J Neurosurg 124:440–449, 2016 Microvascular anatomy of the cerebellar parafloccular perforating space Pablo Sosa, MD,1 Manuel Dujovny, MD,2 Ibe Onyekachi, BS,2 Noressia Sockwell, BS,2 Fabián Cremaschi, MD,1 and Luis E. Savastano, MD3 1Department of Neuroscience, Clinical and Surgical Neurology, School of Medicine, National University of Cuyo, Mendoza, Argentina; 2Departments of Neurosurgery and Electrical Engineering, Wayne State University, Detroit; and 3Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan OBJECTIVE The cerebellopontine angle is a common site for tumor growth and vascular pathologies requiring surgical manipulations that jeopardize cranial nerve integrity and cerebellar and brainstem perfusion. To date, a detailed study of vessels perforating the cisternal surface of the middle cerebellar peduncle—namely, the paraflocculus or parafloccular perforating space—has yet to be published. In this report, the perforating vessels of the anterior inferior cerebellar artery (AICA) in the parafloccular space, or on the cisternal surface of the middle cerebellar peduncle, are described to eluci- date their relevance pertaining to microsurgery and the different pathologies that occur at the cerebellopontine angle. METHODS Fourteen cadaveric cerebellopontine cisterns (CPCs) were studied. Anatomical dissections and analysis of the perforating arteries of the AICA and posterior inferior cerebellar artery at the parafloccular space were recorded using direct visualization by surgical microscope, optical histology, and scanning electron microscope. A comprehensive review of the English-language and Spanish-language literature was also performed, and findings related to anatomy, histology, physiology, neurology, neuroradiology, microsurgery, and endovascular surgery pertaining to the cerebellar flocculus or parafloccular spaces are summarized. RESULTS A total of 298 perforating arteries were found in the dissected specimens, with a minimum of 15 to a maxi- mum of 26 vessels per parafloccular perforating space.
    [Show full text]