Ammonium Persulfate

Total Page:16

File Type:pdf, Size:1020Kb

Ammonium Persulfate Right to Know Hazardous Substance Fact Sheet Common Name: AMMONIUM PERSULFATE Synonyms: Ammonium Peroxydisulfuric Acid; Diammonium Persulfate CAS Number: 7727-54-0 Chemical Name: Peroxydisulfuric Acid, Diammonium Salt RTK Substance Number: 0111 Date: June 2009 Revision: September 2016 DOT Number: UN 1444 Description and Use EMERGENCY RESPONDERS >>>> SEE LAST PAGE Ammonium Persulfate is a colorless, white or straw-colored, Hazard Summary crystalline (sand-like) powder with a mild, unpleasant odor. It Hazard Rating NJDHSS NFPA is used as a bleaching agent, food preservative, and HEALTH 2 - polymerization inhibitor. FLAMMABILITY 0 - REACTIVITY 1 - OXIDIZER POISONOUS GASES ARE PRODUCED IN FIRE CONTAINERS MAY EXPLODE IN FIRE Reasons for Citation Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Ammonium Persulfate is on the Right to Know Hazardous 4=severe Substance List because it is cited by ACGIH and DOT. Ammonium Persulfate can affect you when inhaled. Contact can irritate the skin and eyes. Exposure can irritate the nose and throat. Inhaling Ammonium Persulfate can irritate the lungs. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency. Ammonium Persulfate may cause a skin allergy. SEE GLOSSARY ON PAGE 5. Ammonium Persulfate is not combustible, but it is a STRONG OXIDIZER that enhances the combustion of other FIRST AID substances. Eye Contact Immediately flush with large amounts of water for at least 15 minutes, lifting upper and lower lids. Remove contact lenses, if worn, while rinsing. Workplace Exposure Limits ACGIH: The threshold limit value (TLV) is 0.1 mg/m3 (as Skin Contact Persulfate) averaged over an 8-hour workshift. Quickly remove contaminated clothing. Immediately wash contaminated skin with large amounts of water. Inhalation Remove the person from exposure. Begin rescue breathing (using universal precautions) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. Medical observation is recommended for 24 to 48 hours after overexposure, as pulmonary edema may be delayed. EMERGENCY NUMBERS Poison Control: 1-800-222-1222 CHEMTREC: 1-800-424-9300 NJDEP Hotline: 1-877-927-6337 National Response Center: 1-800-424-8802 AMMONIUM PERSULFATE Page 2 of 6 Determining Your Exposure Reproductive Hazard According to the information presently available to the New Read the product manufacturer’s Material Safety Data Jersey Department of Health and Senior Services, Sheet (MSDS) and the label to determine product Ammonium Persulfate has not been tested for its ability to ingredients and important safety and health information affect reproduction. about the product mixture. Other Effects For each individual hazardous ingredient, read the New Ammonium Persulfate can irritate the lungs. Repeated Jersey Department of Health and Senior Services exposure may cause bronchitis to develop with coughing, Hazardous Substance Fact Sheet, available on the RTK phlegm, and/or shortness of breath. Program website Ammonium Persulfate may cause a skin allergy. If allergy (http://www.state.nj.us/health/workplacehealthandsafety/ri develops, very low future exposure can cause itching and a ght-to-know/) or in your facility’s RTK Central File or skin rash. Hazard Communication Standard file. You have a right to this information under the New Jersey Worker and Community Right to Know Act, the Public Medical Employees Occupational Safety and Health (PEOSH) Act Medical Testing if you are a public worker in New Jersey, and under the If symptoms develop or overexposure is suspected, the federal Occupational Safety and Health Act (OSHA) if you following are recommended: are a private worker. Consider chest x-ray after acute overexposure The New Jersey Right to Know Act requires most Evaluation by a qualified allergist can help diagnose skin employers to label chemicals in the workplace and allergy. requires public employers to provide their employees with information concerning chemical hazards and controls. Any evaluation should include a careful history of past and present symptoms with an exam. Medical tests that look for The federal OSHA Hazard Communication Standard (29 damage already done are not a substitute for controlling CFR 1910.1200) and the PEOSH Hazard Communication exposure. Standard (N.J.A.C. 12:100-7) require employers to provide similar information and training to their employees. Request copies of your medical testing. You have a legal right to this information under the OSHA Access to Employee This Fact Sheet is a summary of available information Exposure and Medical Records Standard (29 CFR 1910.1020). regarding the health hazards that may result from exposure. Duration of exposure, concentration of the substance and other Mixed Exposures factors will affect your susceptibility to any of the potential Smoking can cause heart disease, lung cancer, effects described below. emphysema, and other respiratory problems. It may worsen respiratory conditions caused by chemical exposure. Even if you have smoked for a long time, stopping now will reduce Health Hazard Information your risk of developing health problems. Acute Health Effects The following acute (short-term) health effects may occur immediately or shortly after exposure to Ammonium Persulfate: Contact can irritate the skin and eyes. Exposure can irritate the nose and throat. Inhaling Ammonium Persulfate can irritate the lungs causing coughing and/or shortness of breath. Higher exposures may cause a build-up of fluid in the lungs (pulmonary edema), a medical emergency, with severe shortness of breath. Chronic Health Effects The following chronic (long-term) health effects can occur at some time after exposure to Ammonium Persulfate and can last for months or years: Cancer Hazard According to the information presently available to the New Jersey Department of Health and Senior Services, Ammonium Persulfate has not been tested for its ability to cause cancer in animals. AMMONIUM PERSULFATE Page 3 of 6 Workplace Controls and Practices Eye Protection Very toxic chemicals, or those that are reproductive hazards or Wear eye protection with side shields or goggles. sensitizers, require expert advice on control measures if a less If additional protection is needed for the entire face, use in toxic chemical cannot be substituted. Control measures combination with a face shield. A face shield should not be include: (1) enclosing chemical processes for severely used without another type of eye protection. irritating and corrosive chemicals, (2) using local exhaust ventilation for chemicals that may be harmful with a single Respiratory Protection exposure, and (3) using general ventilation to control Improper use of respirators is dangerous. Respirators exposures to skin and eye irritants. For further information on should only be used if the employer has implemented a written workplace controls, consult the NIOSH document on Control program that takes into account workplace conditions, Banding at www.cdc.gov/niosh/topics/ctrlbanding/. requirements for worker training, respirator fit testing, and The following work practices are also recommended: medical exams, as described in the OSHA Respiratory Protection Standard (29 CFR 1910.134). Label process containers. Provide employees with hazard information and training. Where the potential exists for exposure over 0.1 mg/m3 (as Monitor airborne chemical concentrations. Persulfate), use a NIOSH approved negative pressure, air- Use engineering controls if concentrations exceed purifying, particulate filter respirator with an N, R or P95 recommended exposure levels. filter. More protection is provided by a full facepiece Provide eye wash fountains and emergency showers. respirator than by a half-mask respirator, and even greater Wash or shower if skin comes in contact with a hazardous protection is provided by a powered-air purifying respirator. material. Leave the area immediately if (1) while wearing a filter or Always wash at the end of the workshift. cartridge respirator you can smell, taste, or otherwise detect Change into clean clothing if clothing becomes Ammonium Persulfate, (2) while wearing particulate filters contaminated. abnormal resistance to breathing is experienced, or (3) eye Do not take contaminated clothing home. irritation occurs while wearing a full facepiece respirator. Get special training to wash contaminated clothing. Check to make sure the respirator-to-face seal is still good. Do not eat, smoke, or drink in areas where chemicals are If it is, replace the filter or cartridge. If the seal is no longer being handled, processed or stored. good, you may need a new respirator. Wash hands carefully before eating, smoking, drinking, Consider all potential sources of exposure in your workplace. applying cosmetics or using the toilet. You may need a combination of filters, prefilters or cartridges to protect against different forms of a chemical (such as In addition, the following may be useful or required: vapor and mist) or against a mixture of chemicals. 3 Where the potential exists for exposure over 1 mg/m (as Use a vacuum to reduce dust during clean-up. DO NOT Persulfate), use a NIOSH approved supplied-air respirator DRY SWEEP. with a full facepiece operated in a pressure-demand or other positive-pressure mode. For increased protection use in combination with an auxiliary self-contained breathing apparatus or an emergency escape air cylinder. Personal Protective Equipment The
Recommended publications
  • Chemicals Used for Chemical Manufacturing Page 1 of 2
    Chemicals used for Chemical Manufacturing Page 1 of 2 Acetic Acid (Glacial, 56%) Glycol Ether PMA Acetone Glycol Ether PNB Acrylic Acid Glycol Ether PNP Activated Carbon Glycol Ether TPM Adipic Acid Glycols Aloe Vera Grease Aluminum Stearate Gum Arabic Aluminum Sulfate Heat Transfer Fluids Amino Acid Heptane Ammonium Acetate Hexane Ammonium Bicarbonate Hydrazine Hydrate Ammonium Bifluoride Hydrochloric Acid (Muriatic) Ammonium Chloride Hydrogen Peroxide Ammonium Citrate Hydroquinone Ammonium Hydroxide Hydroxylamine Sulfate Ammonium Laureth Sulfate Ice Melter Ammonium Lauryl Sulfate Imidazole Ammonium Nitrate Isobutyl Acetate Ammonium Persulfate Isobutyl Alcohol Ammonium Silicofluoride Calcium Stearate Dipropylene Glycol Isopropanolamine Ammonium Sulfate Carboxymethylcellulose Disodium Phosphate Isopropyl Acetate Antifoams Caustic Potash D'Limonene Isopropyl Alcohol Antifreeze Caustic Soda (All Grades) Dodecylbenzene Sulfonic Acid Isopropyl Myristate Antimicrobials Caustic Soda (Beads, Prills) (DDBSA) Isopropyl Palmitate Antimony Oxide Cetyl Alcohol Dowfrost Itaconic Acid Aqua Ammonia Cetyl Palmitate Dowfrost HD Jojoba Oil Ascorbic Acid Chlorine, Granular Dowtherm SR-1 Keratin Barium Carbonate Chloroform Dowtherm 4000 Lactic Acid Barium Chloride Chromic Acid EDTA Lanolin Beeswax Citric Acid (Dry and Liquid) EDTA Plus Lauric Acid Bentonite Coal Epsom Salt Lauryl Alcohol Benzaldehyde Cocamide DEA Ethyl Acetate Lecithin Benzoic Acid Copper Nitrate Ethyl Alcohol (Denatured) Lime Benzyl Alcohol Copper Sulfate Ethylene Glycol Linoleic Acid Bicarbonate
    [Show full text]
  • Ammonium Persulfate
    SAFETY DATA SHEET Ammonium Persulfate Section 1. Identification GHS product identifier : Ammonium Persulfate Code : 76322 Other means of : ammonium persulphate; Peroxydisulfuric acid, diammonium salt; diammonium identification peroxodisulfate; Diammonium persulfate Supplier/Manufacturer : 3420 Central Expressway, Santa Clara CA 95051 In case of emergency : Chemtrec: 1 800 424 9300 Outside USA & Canada: +1 703 527 3887 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : OXIDIZING SOLIDS - Category 3 substance or mixture ACUTE TOXICITY (oral) - Category 4 SKIN CORROSION/IRRITATION - Category 2 SERIOUS EYE DAMAGE/ EYE IRRITATION - Category 2 RESPIRATORY SENSITIZATION - Category 1 SKIN SENSITIZATION - Category 1 SPECIFIC TARGET ORGAN TOXICITY (SINGLE EXPOSURE) (Respiratory tract irritation) - Category 3 GHS label elements Hazard pictograms : Signal word : Danger Hazard statements : May intensify fire; oxidizer. Harmful if swallowed. Causes serious eye irritation. Causes skin irritation. May cause allergy or asthma symptoms or breathing difficulties if inhaled. May cause an allergic skin reaction. May cause respiratory irritation. Precautionary statements Prevention : Wear protective gloves. Wear eye or face protection. In case of inadequate ventilation wear respiratory protection. Keep away from heat. - No smoking. Keep away from clothing, incompatible materials and combustible materials. Take any precaution to avoid mixing with combustibles and other incompatible materials. Use only outdoors or in a well-ventilated area. Avoid breathing dust. Do not eat, drink or smoke when using this product. Wash hands thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Response : IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
    [Show full text]
  • Acrylamide Polymerization — a Practical Approach
    electrophoresis tech note 1156 Acrylamide Polymerization — A Practical Approach Paul Menter, Bio-Rad Laboratories, 2000 Alfred Nobel Drive, Polyacrylamide Gel Polymerization Hercules, CA 94547 USA AcrylamideBis Polyacrylamide Introduction The unparalleled resolution and flexibility possible with CH2 CH + CH2 CH CH2 CH CH2 CH CH2 CH polyacrylamide gel electrophoresis (PAGE) has led to its CO CO CO CO CO widespread use for the separation of proteins and nucleic NH2 NH NH2 NH2 NH acids. Gel porosity can be varied over a wide range to meet CH2 CH2 specific separation requirements. Electrophoresis gels and NH NH NH NH buffers can be chosen to provide separation on the basis of CO 2 2 CO CO C O charge, size, or a combination of charge and size. CH2 CH CH2 CH CH2 CH CH2 CH The key to mastering this powerful technique lies in the polymerization process itself. By understanding the important Purity of Gel-Forming Reagents parameters, and following a few simple guidelines, the novice Acrylamide can become proficient and the experienced user can optimize Gel-forming reagents include the monomers, acrylamide and bis, separations even further. as well as the initiators, usually ammonium persulfate and TEMED or, occasionally, riboflavin and TEMED. On a molar This bulletin takes a practical approach to the preparation of basis, acrylamide is by far the most abundant component in the polyacrylamide gels. Its purpose is to provide the information monomer solution. As a result, acrylamide may be the primary required to achieve reproducible, controllable polymerization. source of interfering contaminants (Dirksen and Chrambach For those users interested only in the “bare essentials,” the 1972).
    [Show full text]
  • Ac. H' UY1 : T 'I 7 April23,2004
    F'll'J 'J.'t/032.770 i!,P,P, it> 0~ -'II-~ I ;J..¾,5 Aece; 11(:c/. WDNR., O'f/?.1 I01i Ac. h' UY1 : t 'I 7 April23,2004 Ms. Pam Mylotta Wisconsin Department of Natural Resources 2300 North Martin Luther King Jr. Street P.O. Box 12436 Milwaukee, Wisconsin 53212-0436 Re: Request for Source Area Chemical Injection Permit C & D Technologies, Inc. 900 Keefe A venue Milwaukee, Wisconsin 53212-1709 Dear Ms. Mylotta: On behalf of the Johnson Controls Battery Group, Inc. (JCBGI) and C & D Technologies, Inc. (C&D), MWH Americas, Inc. (MWH) has prepared this request for an injection permit for groundwater treatment in the acid unloading area at the above referenced site. The purpose of the permit request is to provide information to the Wisconsin Department of Natural Resources (WDNR) for approval to conduct a pilot study and full-scale injection of sodium persulfate into the acid unloading area for treatment of volatile organic compounds (VOCs) in groundwater. BACKGROUND INFORMATION Soil and groundwater contamination were found to exist on the Facility property exceeding State environmental standards, based on the August 1999 Phase II Environmental Site Assessment (ESA) of the Facility. In May and June 2001, remedial action was completed for the on-site lead, PCB, and VOC impacted soils. A summary of the remedial activities is contained in the February 2002 On­ Site Remedial Actions Construction Completion Report. Approximately 400 tons of VOC­ impacted soil was removed during this investigation. Temporary wells were installed in July 2001 and November 2001 as part of the groundwater VOC characterization investigations documented in the June 2001 and October 2001 Work Plans, respectively.
    [Show full text]
  • Chemical Analyses for Selected Minor Elements in Pierre Shale
    Chemical Analyses for Selected Minor Elements in Pierre Shale GEOLOGICAL SURVEY PROFESSIONAL PAPER 391-A Chemical Analyses for Selected Minor Elements in Pierre Shale By L. F. RADER and F. S. GRIMALDI ANALYTICAL METHODS IN GEOCHEMICAL INVESTIGATIONS OF THE PIERRE SHALE GEOLOGICAL SURVEY PROFESSIONAL PAPER 391-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Page Abstract--_________________________________________ A-l Methods for the determination of individual Introduction ___-----_-_--_________________-__--__-_ 1 constituents Continued General remarks._________________________ ______ 1 Copper lead, and zinc Continued Laboratories. -._---____-_-______________________ 2 Zinc, dithizone method._____^_______________ A-20 Acknowledgments. ___-_-_-_--______--_-_________ 2 Lead, dithizone method______------_-____-__- 22 Division of work________________________________ 2 Arsenic.___________,__________-_-_--___-__---_- 23 Methods selected and treatment of data ___________ 3 Acid digestion, heteropoly blue method________ 23 Sample preparation _________________________________ 4 Alternative fusion-heteropoly blue method_____ 24 Methods for the determination of individual constituents. 4 Titanium. _____________________________________ 4 Selenium, distillation, visual-estimation method.____ 25 Peroxide method._--_--_-____._____________ 4 Molybdenum and tungsten______-____------_---_- 27 Alternative tiron method, ___________________ 5 Isolation by method 1, alpha-benzoinoxime pre­ Vanadium. _--.---_____-_-___.__________________ 7 cipitation. ___----_-_-_-__--_----_-----_-- 27 Fusion-leach separation method. _____________ 7 Isolation by alternative method 2, alpha-ben­ Alternative cupferron separation method......
    [Show full text]
  • Chemical Compatibility Storage Group
    CHEMICAL SEGREGATION Chemicals are to be segregated into 11 different categories depending on the compatibility of that chemical with other chemicals The Storage Groups are as follows: Group A – Compatible Organic Acids Group B – Compatible Pyrophoric & Water Reactive Materials Group C – Compatible Inorganic Bases Group D – Compatible Organic Acids Group E – Compatible Oxidizers including Peroxides Group F– Compatible Inorganic Acids not including Oxidizers or Combustible Group G – Not Intrinsically Reactive or Flammable or Combustible Group J* – Poison Compressed Gases Group K* – Compatible Explosive or other highly Unstable Material Group L – Non-Reactive Flammable and Combustible, including solvents Group X* – Incompatible with ALL other storage groups The following is a list of chemicals and their compatibility storage codes. This is not a complete list of chemicals, but is provided to give examples of each storage group: Storage Group A 94‐75‐7 2,4‐D (2,4‐Dichlorophenoxyacetic acid) 94‐82‐6 2,4‐DB 609-99-4 3,5-Dinitrosalicylic acid 64‐19‐7 Acetic acid (Flammable liquid @ 102°F avoid alcohols, Amines, ox agents see SDS) 631-61-8 Acetic acid, Ammonium salt (Ammonium acetate) 108-24-7 Acetic anhydride (Flammable liquid @102°F avoid alcohols see SDS) 79‐10‐7 Acrylic acid Peroxide Former 65‐85‐0 Benzoic acid 98‐07‐7 Benzotrichloride 98‐88‐4 Benzoyl chloride 107-92-6 Butyric Acid 115‐28‐6 Chlorendic acid 79‐11‐8 Chloroacetic acid 627‐11‐2 Chloroethyl chloroformate 77‐92‐9 Citric acid 5949-29-1 Citric acid monohydrate 57-00-1 Creatine 20624-25-3
    [Show full text]
  • Material Safety Data Sheet All-Nutrient Blue Powder
    MATERIAL SAFETY DATA SHEET Manufactured for: Information#: (800) 221-3496 Chuckles, Inc. Emergency#: (603) 669-4228 P.O. Box 5126 Date prepared: Manchester, NH 03108-5126 ALL-NUTRIENT BLUE POWDER BLEACH SECTION 1 PRODUCT IDENTIFICATION Product Name: Blue Powder Bleach Trade Name or Chemical Name: Chuckles, All-Nutrient Blue Powder Bleach Synonyms: Formula: Chemical Family: Molecular Weight: NFPA: HMIS Rating: Health = Flammability = Reactivity = SECTION 2 HAZARDOUS INGREDIENTS / HAZARD DATA Chemical Name (s) CAS Number % Wt TLV-TWA PEL Sec. 313 Potassium Persulfate Sodium Persulfate Ammonium Persulfate Sodium Silicate Sodium Lauryl Sulfate Silica Hydroxyethylcellulose Information for mixtures is based on constituent MSDS which are available upon request. (Minus Proprietary Trade Names) SECTION 3 PHYSICAL DATA Boiling/Melting Point @760 mm Hg: None pH: Vapor Pressure mm Hg @20°C: Vapor Density (Air=1) None Percent Volatile by Weight (%): Specific Gravity or Bulk Density: 0.4 – 0.6 Solubility in Water: Insoluble, partly dispersable Evaporation Rate (BuAc = 1): Appearance: Blue powder Odor: Sharp odor Intensity: SECTION 4 FIRE AND EXPLOSION HAZARD DATA Flash Point °F (Test Method): Not applicable Autoignition Temperature: Flammability Limits in Air (%V): LEL: UEL: Extinguishing Media: ABC all purpose extinguisher or C02 extinguisher, foam Special Fire Fighting Procedures: Water, fog, excess of water fog should be used until it stops smoking, The type of fire extignguiser used should be in conformance with local fire regulatios Unusual Fire and Explosion Hazards: Oxidezer: explosive hazard when mixed with finely powdered organic matter, may decompose to oxygen, may intensify fire SECTION 5 HEALTH HAZARD DATA * EFFECTS OF OVEREXPOSURE Skin Contact: May cause irritation and skin sensitivity, may aggravate dermatitis.
    [Show full text]
  • I ...Oi@O the Use of Cupferron
    2358 JAMES BROWN. Wt. of com- Theory for KzO on No. of mercial RCN KzO 92% RCN and 8% experiment. taken, g. found. g. KICOSbasis, g. Error in g. Error in %. I. ........ O.I@O 0.I075 0.1073 +o. 0002 +o. I9 z ......... 0.1128 0.0808 0.0812 --o ,0004 -0.49 3. ........ 0.1389 0.0995 0.0998 +o. 0003 f0.3 4 ......... 0.2198 0.I574 0.1572 +o ,0002 f0.I3 5 ......... 0.2708 0.1942 0.1936 +o. 0006 +0.31 Carbonates, nitrates and iodides lose their acid radicals on gentle heat- ing with this flux. Cyanides, as seen from the above table, do the same in the presence of an oxidizing agent. Other halogens, when suspected of being present in commercial cyanides, will leave a definite and weighable oxide on the application of a small blowpipe flame.' This flux may therefore be applied with advantage for the estimation of residual basic oxides in cyanides which are weighed with the flux. AMBS, IOWA. [CONTRIBUTIONFROM THE CHEMICALLABORATORY OF BUTLERUNIVERSITY. ] THE USE OF CUPFERRON (PHENYLNITROSO-HYDROXYL- AMINE AMMONIUM) IN: I. THE QUANTITATIVE SEPARA- TION OF ZIRCONIUM, TITANIUM, IRON, MANGANESE AND ALUMINUM. 11. THE ANALYSIS OF ZIRCON AND BADDELEYITE. BY JAMB^ BROWN. Received July 2, 1917. The work described in this paper was undertaken with the purpose of ascertaining the applicability of the cupferron reagent to the analysis of zirconium minerals. The miperals investigated thus far have been samples of zircon and baddeleyite purchased in powdered form from a mineral dealer. A preliminary analysis showed the zircon to consist of silica, zirconium, titanium, iron and aluminum.
    [Show full text]
  • Click Here (PDF)
    Chemical Products Caustic Soda, Liquid (Gluconated) Fumaric Acid Monoaluminum Phosphate Cetyl Alcohol Monoammonium Phosphate Acetic Acid Chromic Acid Monocalcium Phosphate Acetic Anhydride CIP Cleaner Monoethanolamine (MEA) Acetone Citric Acid (Dry or Liquid) Gluconate Liquid Monopotassium Phosphate Activated Carbon Cocamide DEA Gluconic Acid Monosodium Glutamate (MSG) Alcohol Ethoxylates (91-6, 91-8, etc) Cocamide MEA Glycerine (Crude, Tech, or USP) Monosodium Phosphate Alkanolamides Cocamidopropyl Betaine Glycol Ether, “E” Series Muriate of Potash (KCL) Alkyl Ether Sulfates Copper Cyanide Glycol Ether, “P” Series Muriatic Acid (HCL) Alkyl Sulfates Copper Nitrate Glycol Stearate Aloe Vera Copper Sulfate Glycolic Acid Alpha Methyl Styrene (AMS) Cosmetic Oils Aluminum Chloride Cyclohexane Nickel Chloride Aluminum Stearate Cyclohexanone Nickel Sulfate Aluminum Sulfate (Dry or Liquid) Cyclohexylamine Heptane Nitric Acid Amido-Amines Hexane N-Methyl Pyrrolidone Amine Oxides Hexylene Glycol NPE Surfactant (NP-4, NP-6, NP-9) Ammonia, Aqua Hydrazine N-Propyl Acetate Ammonium Bifluoride Dequest® Hydrochloric Acid N-Propyl Alcohol Ammonium Chloride Diacetone Alcohol (Inhibited Available) NTA Ammonium Lauryl Sulfate Diammonium Phosphate Hydrofluoric Acid Ammonium Persulfate Diatomaceous Earth Hydrofluosilicic Acid Ammonium Sulfate Dibasic Esters Hydrogen Peroxide Ammonium Thioglycolate Dicalcium Phosphate Hydroxyacetic Acid Oxalic Acid Ammonium Thiosulfate Dicalite® Hydroxylamine Sulfate Amphoterics Diethanolamine (DEA) Hypophosphorous Acid Amyl
    [Show full text]
  • Product Catalog
    For a regularly updated list of pricing and availalble sizes, visit us at www.reagents.com. call: 800-732-8484 fax: 888-843-4384 email: [email protected] 2021 Cover.indd 1 4/26/21 7:55 PM Reagents is your One-Stop Shop Reagents has been a leading manufacturer and distributor of specialty chemicals, reagents, and analytical testing solutions for over 50 years. As Reagents continues to grow, we are constantly adding new brands to our selection. We’ve added a wide selection of lab supply and glassware brands with products that are tested to ASMT guidelines. These Reagents Specialty Reagents Provides: diverse additions allow us to provide a broad portfolio of world class brands manufactured utilizing the highest quality raw Chemicals and Solutions • ISO 17025 Accreditation / ISO 9001 Certified Manufacturing Facility materials meeting or exceeding specifications established by the American Chemical Society. In the laboratory or on the has been a leading • Meets or exceeds stringent manufacturing guidelines production floor, our diverse product portfolio allows consolidation of all of your scientific product needs. manufacturer and • Over 50,000 products available distributor of specialty • Full portfolio of world class brands chemicals, reagents and • High order fill rate within 48 hours on key items analytical testing solutions • Technical and applications support • Degreed and experienced chemical staff since 1969. • Competitive offering and pricing We utilize the highest • Tenured sales specialists with 20+ years of consultative experience quality raw materials to • GHS label compliance meet or exceed the • Many solutions certified traceable to NIST standard reference material specifications established by the American Chemical Custom Solutions: Society.
    [Show full text]
  • Chemical Capabilities Listing Laboratory, R&D, Industrial and Manufacturing Applications
    Page 1 of 3 Chemical Capabilities Listing Laboratory, R&D, Industrial and Manufacturing Applications Acacia, Gum Arabic Barium Oxide Chromium Trioxide Acetaldehyde Bentonite, White Citric Acid, Anhydrous Acetamide Benzaldehyde Citric Acid, Monohydrate Acetanilide Benzoic Acid Cobalt Oxide Acetic Acid Benzoyl Chloride Cobaltous Acetate Acetic Anhydride Benzyl Alcohol Cobaltous Carbonate Acetone Bismuth Chloride Cobaltous Chloride Acetonitrile Bismuth Nitrate Cobaltous Nitrate Acetyl Chloride Bismuth Trioxide Cobaltous Sulfate Aluminium Ammonium Sulfate Boric Acid Cottonseed Oil Aluminon Boric Anhydride Cupferron Aluminum Chloride, Anhydrous Brucine Sulfate Cupric Acetate Aluminum Chloride, Hexahydrate n-Butyl Acetate Cupric Bromide Aluminum Fluoride n-Butyl Alcohol Cupric Carbonate, Basic Aluminum Hydroxide tert-Butyl Alcohol Cupric Chloride Aluminum Nitrate Butyric Acid Cupric Nitrate Aluminum Oxide Cadmium Acetate Cupric Oxide Aluminum Potassium Sulfate Cadmium Carbonate Cupric Sulfate, Anhydrous Aluminum Sulfate Cadmium Chloride, Anhydrous Cupric Sulfate, Pentahydrate 1-Amino-2-Naphthol-4-Sulfonic Acid Cadmium Chloride, Hemipentahydrate Cuprous Chloride Ammonium Acetate Cadmium Iodide Cuprous Oxide, Red Ammonium Bicarbonate Cadmium Nitrate Cyclohexane Ammonium Bifluoride Cadmium Oxide Cyclohexanol Ammonium Bisulfate Cadmium Sulfate, Anhydrous Cyclohexanone Ammonium Bromide Cadmium Sulfate, Hydrate Devarda's Alloy Ammonium Carbonate Calcium Acetate Dextrose, Anhydrous Ammonium Chloride Calcium Carbide Diacetone Alcohol Ammonium Citrate
    [Show full text]
  • Ammonium Persulfate Solution, 2M MSDS # 56.10
    Material Safety Data Sheet Page 1 of 2 Ammonium Persulfate Solution, 2M MSDS # 56.10 Section 1: Product and Company Identification Ammonium Persulfate Solution, 2M Synonyms/General Names: Ammonium Peroxydisulfate Product Use: For educational use only Manufacturer: Columbus Chemical Industries, Inc., Columbus, WI 53925. 24 Hour Emergency Information Telephone Numbers CHEMTREC (USA): 800-424-9300 CANUTEC (Canada): 613-424-6666 ScholAR Chemistry; 5100 W. Henrietta Rd, Rochester, NY 14586; (866) 260-0501; www.Scholarchemistry.com Section 2: Hazards Identification Clear. Colorless liquid; no odor. HMIS (0 to 4) Health 2 WARNING! Moderately toxic by ingestion and body tissue irritant. Fire Hazard 0 Target organs: Central Nervous System. Reactivity 2 This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Section 3: Composition / Information on Ingredients Ammonium Persulfate, (7727-54-0), 37%. Water (7732-18-5), 63%. Section 4: First Aid Measures Always seek professional medical attention after first aid measures are provided. Eyes: Immediately flush eyes with excess water for 15 minutes, lifting lower and upper eyelids occasionally. Skin: Immediately flush skin with excess water for 15 minutes while removing contaminated clothing. Ingestion: Call Poison Control immediately. Rinse mouth with cold water. Give victim 1-2 cups of water or milk to drink. Induce vomiting immediately. Inhalation: Remove to fresh air. If not breathing, give artificial respiration. Section 5: Fire Fighting Measures When heated to decomposition, emits acrid fumes of oxygen, sulfur and NOx. Decomposes 0 in water to make oxygen. 2 2 Protective equipment and precautions for firefighters: Use foam or dry chemical to extinguish fire.
    [Show full text]