Solutions (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Solutions (PDF) Session #2: Homework Solutions Problem #1 In all likelihood, the Soviet Union and the United States together in the past exploded about ten hydrogen devices underground per year. (a) If each explosion converted about 10 g of matter into an equivalent amount of energy (a conservative estimate), how many kJ of energy were released per device? (b) If the energy of these ten devices had been used for propulsion to substitute for gasoline combustion, how many gallons of gasoline would not have had to be burned per year? (One gallon of gasoline releases about 1.5 x 105 kJ during combustion.) Solution Required: ΔΔE = mc2 1 kg (a) ΔΔE = mc28 = 10 g x x (3 x 10 ms-1 )2 1000 g = 9 x 1014 kg m 2 s− 2 = 9 x 1014 J = 9 x 1011 kJ/bomb 11 12 (b) Etotal = 10 x 9 x 10 = 9 x 10 kJ/year 1 gal No. gallons of gasoline saved = x 9 x 1012 kJ/year 1.5 x 105 kJ = 6 x 107 gallons/year Problem #2 How much oxygen (in kg) is required to completely convert 1 mole of C2H6 into CO2 and H2O? Solution To get the requested answer, let us formulate a “stoichiometric” equation (molar quantities) for the reaction: C26 H + 70 → 2CO2 + 3H 2 O. Each C2H6 (ethane) molecule requires 7 oxygen atoms for complete combustion. In molar quantities: 1 mole of C2H6 = 2 x 12.01 + 6 x 1.008 = 30.07 g requires 7 x 15.9984 g = 1.12 x 102 oxygen = 0.112 kg oxygen We recognize the oxygen forms molecules, O2, and therefore a more appropriate formulation would be: C26 H + 7/2 O2 → 2CO2 + 3H 2 O. The result would be the same. Problem # 3 A nucleus of mass number 56 contains 30 neutrons. An “ion” of this element has 23 electrons. Write the symbol of this ion and give the ionic charge as a superscript on the right. Solution 56 +++ 56 +++ 26 A = 26Fe Problem # 4 Magnesium (Mg) has the following isotopic distribution: 24Mg 23.985 amu at 0.7870 fractional abundance 25Mg 24.986 amu at 0.1013 fractional abundance 26Mg 25.983 amu at 0.1117 fractional abundance What is the atomic weight of magnesium (Mg) according to these data? Solution The atomic weight is the arithmetic average of the atomic weights of the isotopes, taking into account the fractional abundance of each isotope. 23.985 x 0.7870 + 24.986 x 0.1013 + 25.983 x 0.1117 At.Wt. = = 24.310 0.7870 + 0.1013 +0.1117 Problem # 5 (a) Balance the equation for the reaction between CO and O2 to form CO2. (b) If 32.0 g of oxygen react with CO to form carbon dioxide (CO2), how much CO was consumed in this reaction? Solution (a) CO + 1/2 O22 → CO (b) [Information only at 1 digit!] Molecular Weight (M.W.) of O2: 32.0 (M.W.) of CO: 28.0 available oxygen: 32.0g = 1 mole, correspondingly the reaction involves 2 moles of CO [see (a)]: O22 + 2 CO → 2 CO mass of CO reacted = 2 moles x 28 g /mole= 56.0 g Problem # 6 One mole of electromagnetic radiation (light, consisting of energy packages called photons) has an energy of 171 kJ/mole photons. (a) Determine the wavelength of this light and its position in the visible spectrum. (b) Determine the frequency of this radiation (in SI units). Solution (We know: Ephoton = hν = hc/λ to determine the wavelength associated with a photon we need to know its energy). 171kJ 1.71 x 105 J 1 mole (a) E = = x mole mole 6.02 x 1023 photons 2.84 x 10-19 J hc = ; E = 2.84 x 10-19 J = hν = photon photon λ m 6.63 x 10-34 Js x 3 x 108 hc λ = = s = 7.00 x 10-7 m -19 Ephoton 2.84 x 10 J = 700 nm (red light) (b) (IS or SI units are in m, k, s) λν = c m 3 x 108 c ν = = s = 4.29 x 1014 s− 1 = 4.29 x 1014 Hz λ 7.00 x 10-7 m Problem # 7 Determine the velocity of an electron (in m/s) that has been subjected to an accelerating potential V of 150 Volt. (The energy imparted to an electron by an accelerating potential of one Volt is 1.6 x 10–19 Joules; dimensional analysis shows that the dimensions of charge x potential correspond to those of energy; thus: 1 electron Volt (1eV) = 1.6 x 10–19 Coulomb x 1 Volt = 1.6 x 10–19 Joules.) Solution 2 We know: Ekin = mv / 2 = e x V (charge applied potential) -31 me = 9.1 x 10 kg 2 Ekin = e x V = mv/2 2eV 2 x 1.6 x 10-19 x 150 v == = 7.26 x 106 m/s m 9.1 x 10-31 Problem # 8 Determine in units of eV the energy of a photon (hν ) with the wavelength of 800 nm. Solution m 6.63 x 10-34 [Js] x 3 x 108 [ ] hc l eV s l eV E(eV) = x = x λ 1.6 x 10-19 J 8.00 x 10-7 m 1.6 x 10-19 J = 1.55 MIT OpenCourseWare http://ocw.mit.edu 3.091SC Introduction to Solid State Chemistry Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. .
Recommended publications
  • 2 Amount and Concentration: Making and Diluting Solutions 2 Amount and Concentration; Making and Diluting Solutions
    Essential Maths for Medics and Vets Reference Materials Module 2. Amount and Concentration. 2 Amount and concentration: making and diluting solutions 2 Amount and concentration; making and diluting solutions.........................................................1 2A Rationale.............................................................................................................................1 2B Distinguishing between amount and concentration, g and %w/v..........................................1 2C Distinguishing between amount and concentration, moles and molar...................................2 2D Practice converting g/L to M and vice versa........................................................................3 2E Diluting Solutions ...............................................................................................................5 2F Practice calculating dilutions ...............................................................................................6 Summary of learning objectives................................................................................................7 2A Rationale Biological and biochemical investigations rely completely upon being able to detect the concentration of a variety of substances. For example, in diabetics it is important to know the concentration of glucose in the blood and you may also need to be able to calculate how much insulin would need to be dissolved in a certain volume of saline so as to give the right amount in a 1ml injection volume. It is also vitally
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • A General Introduction on Metrology and Traceability
    A general introduction on metrology and traceability Paul Brewer LNG metrology workshop 15th June 2016 National Physical Laboratory • Develop and disseminate UK’s measurement standards, ensure international acceptance • Knowledge transfer and advice between industry, government and academia • Support Industry, trade, regulation, legislation, quality of life, science and innovation industrial environment energy Gas and Particle particles Metrology The Fundamentals of Metrology • What is metrology and what is it for? • What is an NMI and what is it for? • What is the mole and what is it for? What is ‘Metrology’? . Metrology is “the science of measurement, embracing both experimental and theoretical determinations at any level of uncertainty in any field of science and technology.” . Almost all of science and industry involves making and interpreting measurement – why is metrology special? The Proclamation Regarding Weights and Measures, 1556 by Ford Madox Brown (1889) The electrochemical characteristics of platinum phthalocyanine . Quantitative conclusions inferred; but what was the accuracy, repeatability, reproducibility and uncertainty of these measurements? . Would this have affected the conclusions? Metrology’s main activities . The definition of internationally accepted units of measurement, e.g. the kilogram . The realisation of units of measurement by scientific methods . The establishment of (metrological) traceability chains by disseminating and documenting the value and accuracy of a measurement . Traceability implies the calculation of an associated measurement uncertainty . These activities may be fundamental (scientific) or applied (practical, industrial, legal) International vocabulary of metrology The Results of Metrology . Generates systems and frameworks for quantification and through these underpins consistency and assurance in all measurement . Gives a quantified level of confidence in the measurement through an uncertainty statement .
    [Show full text]
  • Conversion Factors
    Conversion Factors Conversion factors are ratios of one object to another object. A ratio is a way of comparing two quantities. The quantities can be compared in three different ways: a to b, a:b, or a/b. At the local grocery store, a case of soda contains 24 cans. We can express the ratio in three forms: (a to b) 24 cans of soda to each case of soda (a:b) 24 cans of soda: 1 case of soda (a/b) 24 cans of soda/1 case of soda This chapter uses conversion factors frequently to solve problems. Conversion factors are ratios written in the fraction form (a/b). In this chapter, there are three major conversion factors we will learn to use: A universal conversion factor: 1 mole of chemical contains 6.02 x 1023 molecules (or atoms) A molar mass conversion factor: 1 mole of chemical weighs the molar mass of the chemical A chemical formula conversion factor: 1 mole of chemical contains some number of moles of atoms If the chemical in the three conversion factors was CuCl2, then the three conversion factors would be: 23 1 mole of CuCl2 contains 6.02 x 10 molecules of CuCl2 1 mole of CuCl2 weighs 134.6 grams CuCl2 (the molar mass) 1 mole of CuCl2 contains 2 moles of chlorine atoms 1 The most common way that chemists represent ratios is in a fraction form. The three conversion factors would look like this in the fraction form: 1 mole CuCl2 1 mole CuCl2 1 mole CuCl2 23 6.02 x 10 molecule CuCl2 134.6 g CuCl2 2 mole Cl atoms Each of these conversion factors can be written in the inverse form.
    [Show full text]
  • Mc2 " Mc2 , E = K + Mc2 = ! Mc2 for Particle of Charge Q and Mass M Moving in B Field : P = ! Mu = Qbr E2 = ( Pc)2 + (Mc2 )2
    Department of Physics Modern Physics (2D) University of California Prof. V. Sharma San Diego Quiz # 3 (Jan 28, 2005) Some Relevant Formulae, Constants and Identities p = ! mu, K = ! mc2 " mc2 , E = K + mc2 = ! mc2 For particle of charge q and mass m moving in B field : p = ! mu = qBR E2 = ( pc)2 + (mc2 )2 In Photoelectric Effect E= hf = Kmax + # 23 Avagadro's Number NA = 6.022 $ 10 particles/mole Planck's Constant h=6.626 $ 10-34J.s=4.136 $ 10-15eV.s 1 eV = 1.602 $ 10-19 J -14 2 Electron rest mass = 8.2 $ 10 J = 0.511 MeV/c Proton rest mass = 1.673$ 10-27Kg = 938.3MeV/c2 Speed of Light in vaccum c = 2.998 $ 108m/s Electron charge = 1.602 $ 10-19 C Atomic mass unit u = 1.6605 $ 10-27kg = 931.49 MeV/c2 Please write your scratch work in pencil and write your answer in indelible ink in your Blue book. Please write your code number clearly on each page. Please plug in numbers only at the very end of your calculations. Department of Physics Modern Physics (2D) University of California Prof. V. Sharma San Diego Quiz # 3 (Jan 28, 2005) Problem 1: Weapons of Mass Destruction [10 pts] (a) How much energy is released in the explosion of a fission bomb containing 3.0kg of fissionable material? Assume that 0.10% of the rest mass is converted to released energy? (b) What mass of TNT would have to explode to provide the same energy release? Assume that each mole of TNT liberates 3.4MJ of energy on exploding.
    [Show full text]
  • Supplementary Description.Pdf
    MEASURING HYDROPEROXIDE CHAIN-BRANCHING AGENTS DURING N-PENTANE LOW-TEMPERATURE OXIDATION 1 1 2 2 3 Anne Rodriguez, Olivier Herbinet, Zhandong Wang , Fei Qi , Christa Fittschen , Phillip R. Westmoreland4,Frédérique Battin-Leclerc,1* 1 Laboratoire Réactions et Génie des Procédés, CNRS, Université de Lorraine, ENSIC, 1, rue Grandville, BP 20451, 54001 Nancy Cedex, France 2 National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China 3PhysicoChimie des Processus de Combustion et de l’Atmosphère, CNRS, Université de Lille 1, 59650 Villeneuve d’Ascq, France 4Department of Chemical & Biomolecular Engineering - NC State University, USA SUPPLEMENTARY DESCRIPTION * To whom correspondence should be addressed. E-mail : [email protected] 1/ Additional details about the used experimental devices and methods 1a/ Schemes of the apparatuses coupling JSR to time-of-flight mass spectrometers combined with synchrotron and laser photoionization I: the differential pumped chamber with molecular-beam sampling system and II the photoionization chamber with the mass spectrometer: 1, VUV light; 2, to turbo molecular pumps; 3, molecular beam; 4, RTOF mass spectrometer; 5, ion trajectory; 6, microchannel plate detector; 7, quartz cone-like nozzle; 8, heated quartz jet-stirred reactor Schematic diagram of the instruments including the jet-stirred reactor and in (a) the synchrotron VUV photoionization mass spectrometer and in (b) the laser photoionization mass spectrometer. 1b/
    [Show full text]
  • Light Quantity and Quality in Controlled Environment Agriculture Krishna Nemali, Ph.D
    Light Quantity and Quality in Controlled Environment Agriculture Krishna Nemali, Ph.D. Light : Quantity Light is • An electromagnetic wave • Exists in both wave (with certain frequency) and particle (photons) forms Photosynthesis & Light Light units: µmol/m2/s 1 mole contains 6.022 x 1023 entities of a substance 1 micro mole is 1/1000000th of a mole 1 µmol/m2/s = 6.022 x 1017 light particles (photons) hitting a m2 area in one second Full sun is 2000 µmol/m2/s, supplemental lighting provides ~ 150 µmol/m2/s Light units: µmol/m2/s versus Watts/m2 Daily light integral (DLI) DLI (mol/m2/day) = [[µmol/m2/s]/1000000] x 60 s/min x 60 min/h x photoperiod in h 100 µmol/m2/s of light for 8 hours give 2.88 mol/m2/day Daily light integral (DLI) 8 Field 7 Growth chamber 6 /hr) 2 5 4 3 2 Integrated light light (mol/m Integrated 1 0 Growth chamber maintained at 800 µmol/m2/s PAR vs PPFD • PAR is photosynthetically active radiation (400- 700 nm) • PPFD is photosynthetic photon flux density (µmol/m2/s) Common mistake in literature: plants were grown at 200 µmol/m2/s of PAR Quantum sensors Measure PAR Supplemental lighting • Provide additional light for photosynthesis during cloudy days or winter months • Extend photoperiod • Improve crop quality • Indirect benefit of heating in winter • Can provide 100 to 400 µmol/m2/s Many options, what to choose? HPS CFL MH LED HPS MH LED CFL Comparison of different supplemental lights Lamp Light intensity Photon Cost per fixture (µmol/m2/s) at efficiency ($) 0.7 m below (µmol/joule) fixtures SE 1000W HPS 1090 1.02 275 DE 1000 W HPS 1767 1.7 600 MH (315 W) 491 1.46 640 LED (380 W) 653 1.7 1200 From Nelson and Bugbee, 2014 Light Quality • Light quantity or intensity refers to total number of photons received per unit area in a given time • Light quality refers to the relative proportion of photons received at each wave length per unit area Courtesy: Erik Runkle, Michigan State Univ.
    [Show full text]
  • Mole Conversions 2017.Notebook December 08, 2017
    Mole Conversions 2017.notebook December 08, 2017 What is a mole anyway? Mole Conversions Aim: To define the mole and convert between the units of grams, particles and liters using factor­label. Jan 27­10:43 AM Jan 27­10:43 AM What is a mole anyway? What is a mole in Chemistry? Avogadro's Hypothesis Mole: a unit that measures a specific quantity of atoms or molecules (both considered particles). 1 mole = 6.02 x 1023 particles (atoms or molecules) 602,000,000,000,000,000,000,000 Jan 27­10:43 AM Jan 27­10:43 AM 1 Mole Conversions 2017.notebook December 08, 2017 • In Chemistry we can use the mole to count atoms How much is a mole really? BECAUSE... 1 mole = G.F.M in grams = 22.4 L of a = 6.02 x 1023 particles O H H of a substance gas at STP of a substance Gram‐formula mass (GFM): the mass in grams of 1 If we distributed 6.02 x 1023 mole of any substance's chemical formula. Also called dollars among the entire "molar mass", "molecular mass", or "formula mass". population of the planet each Example: How many molecules are in a beaker with 35.09 grams of water? Go from grams‐‐> moles ‐‐> molecules person would still have GFM H2O approximately 89 trillion H: 1.0 35.09 g x 1 mol x 6.02 x 1023 molecules = 1.174 x 1024 dollars to spend O: 16.0 x 2 18.0 g 18.0 g 1 mol molecules H2O 1 mole= 18.0 g H O 2 35.09 g of water contains 1.174 x 1024 molecules 1 mole= 6.02 x 1023 molecules H2O Jan 27­10:43 AM Jan 27­10:43 AM DO NOW YOU are working during your career as a lab technician for a major Chemical company.
    [Show full text]
  • Chemical Engineering Vocabulary
    Chemical Engineering Vocabulary Maximilian Lackner Download free books at MAXIMILIAN LACKNER CHEMICAL ENGINEERING VOCABULARY Download free eBooks at bookboon.com 2 Chemical Engineering Vocabulary 1st edition © 2016 Maximilian Lackner & bookboon.com ISBN 978-87-403-1427-4 Download free eBooks at bookboon.com 3 CHEMICAL ENGINEERING VOCABULARY a.u. (sci.) Acronym/Abbreviation referral: see arbitrary units A/P (econ.) Acronym/Abbreviation referral: see accounts payable A/R (econ.) Acronym/Abbreviation referral: see accounts receivable abrasive (eng.) Calcium carbonate can be used as abrasive, for example as “polishing agent” in toothpaste. absorbance (chem.) In contrast to absorption, the absorbance A is directly proportional to the concentration of the absorbing species. A is calculated as ln (l0/l) with l0 being the initial and l the transmitted light intensity, respectively. absorption (chem.) The absorption of light is often called attenuation and must not be mixed up with adsorption, an effect at the surface of a solid or liquid. Absorption of liquids and gases means that they diffuse into a liquid or solid. abstract (sci.) An abstract is a summary of a scientific piece of work. AC (eng.) Acronym/Abbreviation referral: see alternating current academic (sci.) The Royal Society, which was founded in 1660, was the first academic society. acceleration (eng.) In SI units, acceleration is measured in meters/second Download free eBooks at bookboon.com 4 CHEMICAL ENGINEERING VOCABULARY accompanying element (chem.) After precipitation, the thallium had to be separated from the accompanying elements. TI (atomic number 81) is highly toxic and can be found in rat poisons and insecticides. accounting (econ.) Working in accounting requires paying attention to details.
    [Show full text]
  • Mole & Molar Mass
    Mole & Molar Mass Mole (mol): the amount of material counting 6.02214 × 1023 particles The value of the mole is equal to the number of atoms in exactly 12 grams of pure carbon-12. 12.00 g C-12 = 1 mol C-12 atoms = 6.022 × 1023 atoms The number of particles in 1 mole is called Avogadro’s Number (6.0221421 x 1023). 6.022 ×1023 atoms 1 mol or 1 mol 6.022 ×1023 atoms Converting between Number of Moles and Number of Atoms A silver ring contains 1.1 x 1022 silver Calculate the number of atoms in 2.45 atoms. How many moles of silver are in mol of copper. the ring? Atoms Ag mol Ag mol Cu Atoms 23 1 mol 6.022 ×10 atoms 1.1 ×1022 atoms Ag × 2.45 mol Cu × 6.022 ×1023 atoms 1 mol -2 24 = 1.8 × 10 mol Ag = 1.48 × 10 atoms Cu Molar Mass: the mass of 1 mol of atoms of an element An element’s molar mass in g/mol is numerically equal to the element’s atomic mass in amu. 1 mol C 12.01 g C or 12.01 g C 1 mol C Converting between Mass and Number of Moles Converting between Mass and Number of Atoms Calculate the moles of carbon in 0.0265 g of How many aluminum atoms are in a can pencil lead. weighing 16.2 g? g C mol C g Al mol Al atoms Al 1 mol C 0.0265 g C × 1 mol Al 6.022 ×1023 atoms 12.01 g C 16.2 g Al × × 26.98 g Al 1 mol -3 = 2.21 × 10 mol C = 3.62 × 1023 atoms Al Avogadro’s molar mass number Moles Formula units Gram (atoms, molecules, ions) Practice Problems 1.
    [Show full text]
  • 8-1 SECTION 8 AMOUNT of SUBSTANCE and ITS UNIT, the MOLE Amount of Substance: Symbol N, a Quantity Fundamental to Chemistry
    8-1 SECTION 8 AMOUNT OF SUBSTANCE AND ITS UNIT, THE MOLE Suppose a chemist wishes to carry out the chemical reaction of adding bromine to hexene to give dibromohexane, C6H12 + Br2 → C6H12Br2, starting with a known amount of hexene. How does the chemist know how much bromine is needed? The chemical equation tells you that one molecule of dibromine is needed for each molecule of hexene. But the very large numbers of molecules required for reactions on a practicable scale cannot be counted. If the mass of hexene is known how could the mass of bromine required be calculated? This section tells how this type of question is answered. It requires the introduction of a new quantity specific to chemistry , amount of substance, and it it th l Amount of substance: symbol n, a quantity fundamental to chemistry. Atoms and molecules are much too small or light to be counted or weighed individually in the laboratory. The chemist therefore needs a unit to specify the quantity amount of substance of an appropriate magnitude (size) for laboratory or industrial scale work. The chosen unit is the mole. Mole: symbol mol, the unit of the quantity amount of substance. The mole is defined as the amount of substance of a system which contains as many elementary entities as there are atoms in 12 grams of carbon-12 (i.e. carbon consisting only of the isotope 12C). 12 g is an easily measurable mass. When the mole is used, the elementary entities must be specified and may be atoms, molecules, ions, electrons, other particles or specified groups of such particles.
    [Show full text]