Investigating the Effects of Organic Pollutants on Amphibian Populations in the UK

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Effects of Organic Pollutants on Amphibian Populations in the UK Investigating the effects of organic pollutants on amphibian populations in the UK A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Science and Technology, Lancaster University Alternative format thesis March 2016 Rebecca Jane Strong (MSc) Lancaster Environment Centre Abstract Amphibians are undergoing dramatic population declines, with environmental pollution reported as a significant factor in such declines. Technologies are required that are able to monitor populations at risk of deteriorating environmental quality in a rapid, high-throughput and low-cost manner. The application of biospectroscopy in environmental monitoring represents such a scenario. Biospectroscopy is based on the vibrations of functional groups within biological samples and may be used to signature effects induced by chemicals in cells and tissues. Here, attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy in conjunction with multivariate analysis was implemented in order to distinguish between embryos, whole tadpoles at an early stage of development and individual tissues of late-stage tadpoles of the common frog collected from ponds in the UK with varying levels of water quality, due to contamination from both urban and agricultural sources. In addition, a Xenopus laevis cell line was exposed to low-levels of fungicides used in agriculture and assessed with ATR-FTIR spectroscopy. Embryos, in general did not represent a sensitive life stage for discriminating between ponds based on their infrared spectra. In contrast, tadpoles exposed to agricultural and urban pollutants, both at early and late stages of development were readily distinguished on the basis of their infrared spectra. ATR-FTIR spectroscopy also readily detected fungicide- induced changes in X.laevis cells, both as single-agent and binary mixture effects. Data reported in this study confirm the use of ATR-FTIR spectroscopy as a sensitive technique capable of detecting small changes in cellular groups, and as such represents a valuable starting point for its use in the monitoring of amphibian populations. However further research is needed in order to overcome confounding factors existent in natural populations of complex organisms. II Acknowledgements This research would not have been possible without the assistance of many individuals. I would like to thank my supervisors: Professor Frank Martin, Dr Crispin Halsall, Professor Richard Shore and Professor Kevin Jones. Both Frank and Crispin offered me guidance and support throughout my PhD for which I am extremely grateful. Lab A20 welcomed me from the start, providing me with training and friendship. It has been a pleasure to work with you all and I would like to thank all of my laboratory colleagues and friends, past and present for making it so: Kelly Heys, Holly Butler, Lara Heppenstall, Liz Hill, Adil Ahmadzai, Junyi Li, Georgios Theophilou, Blessing Obinaju, Alana Mitchell, Simon Fogarty, Valon Llabjani and Julio Trevisan. Thanks also to Debra Hurst for providing technical support. I am also grateful to the farmers and Rangers at Crake Trees, Whinton Hill and Pennington Flash for allowing me to collect samples from their ponds and taking an interest in the research I was carrying out. Finally, I would like to thank my husband Jim for his endless support and patience, particularly when times have been tough, and to my family and friends outside of Lancaster for their encouragement, cups of tea and biscuits. Declaration I declare that this thesis is my work and has not been submitted for the award of a higher degree or qualification at this university or elsewhere. III Contents Title page I Abstract II Acknowledgements III Declaration III Contents IV List of tables and VI figures List of VII abbreviations Chapter 1. General Introduction 1 Chapter 2. Biospectroscopy as a tool to monitor subtle effects of environmental stress on the early life stages of the Common frog: a pilot study. 64 Rebecca J. Strong, Crispin J. Halsall, Martin Ferenčík, Kevin C. Jones, Richard F. Shore and Francis L. Martin Manuscript for submission Chapter 3. Using biospectroscopy to monitor amphibian health: a three year study. 107 Rebecca J. Strong, Crispin J. Halsall, Kevin C. Jones, Richard F. Shore and Francis L. Martin Manuscript for submission IV Chapter 4. Biospectroscopy reveals the effect of varying water quality on tadpole tissues of the common frog (Rana temporaria). 154 Rebecca J. Strong, Crispin J. Halsall, Martin Ferenčík, Kevin C. Jones, Richard F. Shore and Francis L. Martin Environmental Pollution 213 (2016): 322-337 Infrared spectroscopy detects changes in an amphibian Chapter 5. cell line induced by fungicides: comparison of single 205 and mixture effects. Rebecca J. Strong, Crispin J. Halsall, Kevin C. Jones, Richard F. Shore and Francis L. Martin Aquatic Toxicology 178 (2016): 8-18 Chapter 6. Discussion 236 Bibliography 245 Appendix List of publications from collaborative research 277 Conference abstracts V List of tables and figures Table1. Examples of endpoints in amphibians commonly measured following exposure to environmental contaminants.......................................................................5 Table 2. List of commonly used fungicides in the UK and their mechanism of action.............................................................................................................................11 Figure 1. Simplified life cycle of the common frog, Rana temporaria......................14 Figure 2. Rana temporaria spawn (A) and tadpoles (B)............................................20 Figure 3. Rana temporaria photographed breeding....................................................21 Figure 4. Schematic of a Michelson interferometer.....................................................25 Figure 5. Representative raw FTIR spectra.................................................................26 Figure 6. Vibrational modes in infrared spectroscopy.................................................27 Figure 7. Representative spectrum of the fingerprint region with chemical peaks tentatively assigned.......................................................................................................28 Figure 8. Sampling modes in FTIR spectroscopy........................................................30 Figure 9. Overview of commonly used pre-processing steps in IR spectroscopy.......32 Figure 10. Example outputs following PCA-LDA analysis.......................................37 Table 3. A list of commonly used methods for classification of datasets generated from IR spectroscopy....................................................................................................38 Figure 11. Overview of the aims and objectives of the thesis.....................................42 Figure 12. Approximate locations of the study sites on a map of the UK...................43 Figure 13. A workflow of the procedure used to obtain ATR-FTIR spectra of tissue samples of Rana temporaria tadpoles..........................................................................45 Figure 14. Flow diagram of conclusions, limitations and future research needs.......236 VI List of abbreviations Al: Aluminium AMPA: Aminomethylphosphonic acid ANN: Artificial neural networks ANOVA: Analysis of variance ATR: Attenuated total reflectance BCI: Body condition index Ca: Calcium Cl: Chloride CYP: Cytochrome P-450 CYP51: Sterol-14α-demethylase DCM: Dichloromethane DMSO: Dimethyl sulfoxide DNA: Deoxyribonucleic acid ESI+: Electrospray positive FBS: Fetal bovine serum Fe: Iron FFS: Forward feature selection FPA: Focal plane array FSH: Feature selection histogram FTIR: Fourier-transform infrared GC-MS: Gas chromatography–mass spectrometry HNO3: Nitric acid HSI: Hepatosomatic index HW: Head width ICP-OES: Inductively coupled plasma optical emission spectrometry VII IR: Infrared IRE: Internal reflection element K: Potassium kNN: k-nearest neighbours LC-MS: Liquid chromatography–mass spectrometry LDA: Linear discriminant analysis LDC: Linear discriminant classifier LoQ: Limits of quantification Low-E: Low-emissivity MeOH: Methanol Mg: Magnesium MRM: Multiple reaction monitoring MS-222: Tricaine methanesulfonate MSMA: Monosodium methyl arsenate Na: Sodium NO3-N: Nitrate OP: Organophosphorus OWC: Organic wastewater contaminant PAH: Polycyclic aromatic hydrocarbon PBDE: Polybrominated diphenyl ether PC: Principal component PCA: Principal component analysis PCB: Polychlorinated biphenyl PLS: Partial least squares PLS-DA: Partial least squares-discriminant analysis QCL: Quantum cascade lasers VIII QDA: Quadratic discriminant analysis QoI: Quinone outside inhibitor RNA: Ribonucleic acid SG: Savitzky-Golay SHE: Syrian Hamster Embryo SIMCA: Soft independent modelling of class analogies SO4-S: Sulphate SNR: Signal to noise ratio SVL: Snout to vent length SVM: Support vector machines TBP: Tributylphosphate TCEP: Tris(2-chloroethyl)phosphate TCPP: Tris(1-chloro-2-propyl)phosphate TEP: Triethylphosphate TON: Total organic nitrogen UPLC: Ultra performance liquid chromatograph UV: Ultraviolet IX Chapter 1. General Introduction Contents 1. Introduction ................................................................................................................ 3 2. Threats to amphibian health from pollution ............................................................... 4 2.1 Pollution from urban environments ...................................................................... 8 2.2. Pollution from agriculture ..................................................................................
Recommended publications
  • Predation on Pristimantis Ridens (Cope, 1866) by a Wandering Spider (Ctenidae Keyserling, 1877) in Mountain Cloud Forest of Costa Rica
    Herpetology Notes, volume 8: 1-3 (2015) (published online on 26 January 2015) Predation on Pristimantis ridens (Cope, 1866) by a wandering spider (Ctenidae Keyserling, 1877) in mountain cloud forest of Costa Rica Daniel Jablonski Numerous records of predation on amphibians and cloud forest (vicinity of Santa Ellena village, Puntarenas reptiles by different groups of invertebrates are known province, Cordillera de Tilarán Mts.: 10.31249° N, and well documented in several review articles (e.g. 84.82336° W, 1350 m a.s.l.). This period corresponds McCormick and Polis, 1982; Bauer, 1990; Toledo, to the peak activity of both species in mountain rocky 2005). Small species of herpetofauna represent suitable stream surroundings. The weather was cloudy, with air food source for invertebrates in different phases of their temperature around 18° C. development (several invertebrate species feed on small The spider was found sitting on a leaf with the captured reptiles and on amphibian’s eggs, tadpoles and post- frog on the margins of a stream and was located c.a. metamorphic individuals; Menin et al., 2005; Toledo, 50 cm above the water. During the predation event, 2005). According to Menin et al. (2005), predation the frog was fully paralyzed and spider was biting the by invertebrates is an important factor of mortality back of its body. Detailed photos in situ were taken and in amphibians. However, the impact of invertebrate voucher specimens were not collected; for this reason, predators on populations of their vertebrate prey is hard the precise determination of the spider species was not to access (McCormick and Polis, 1982).
    [Show full text]
  • Of the Scinax Ruber Clade from Cerrado of Central Brazil
    Amphibia-Reptilia 31 (2010): 411-418 A new species of small Scinax Wagler, 1830 (Amphibia, Anura, Hylidae) of the Scinax ruber clade from Cerrado of central Brazil Manoela Woitovicz Cardoso, José P. Pombal Jr. Abstract. A new species of the Scinax ruber clade from the Brazilian Cerrado Domain similar to Scinax fuscomarginatus, S. parkeri, S. trilineatus and S. wandae is described. It is characterized by small snout-vent lenght, body slender, head approximately as long as wide and slightly wider than body, subovoid snout in dorsal view, protruding snout in lateral view, a developed supratympanic fold, absence of flash colour on the posterior surfaces of thighs, hidden portions of shanks and groin, and large vocal sac. Scinax lutzorum sp. nov. differs from S. fuscomarginatus, S. parkeri and S. trilineatus by its slightly larger SVL; from Scinax fuscomarginatus and S. parkeri it differs by its more slender body; from Scinax fuscomarginatus and S. trilineatus the new species differs by its wider head and more protruding eyes; and it differs from Scinax parkeri and S. wandae by its shorter snout. Comments on the type specimens of S. fuscomarginatus are presented and a lectotype is designated for this species. Keywords: lectotype, new species, Scinax fuscomarginatus, Scinax lutzorum. Introduction 1862), S. cabralensis Drummond, Baêta and Pires, 2007, S. camposseabrai (Bokermann, The hylid frog genus Scinax Wagler, 1830 cur- 1968), Scinax castroviejoi De La Riva, 1993, rently comprises 97 recognized species distrib- S. curicica Pugliese, Pombal and Sazima, 2004, uted from eastern and southern Mexico to Ar- S. eurydice (Bokermann, 1968), S. fuscomar- gentina and Uruguay, Trinidad and Tobago, and ginatus (A.
    [Show full text]
  • I T a L I a N Ecological N E T W O
    I T A L I A N E C O L O G I C A L N E T W O R K THE ROLE OF THE PROTECTED AREAS IN THE CONSERVATION OF VERTEBRATES Ministry of Environment Nature Conservation Directorate University of Rome “La Sapienza” Animal and Human Biology Department In collaboration with: IE A Institute o f A p p lie d Ecolo g y Via L. Spallanzani, 32 - 00161 Rome - Italy Tel./fax: +39 06 4403315 - e-mail: [email protected] ISBN 88- 87736- 03- 0 Luigi B oit a ni ● A less a n d r a F a lcucci ● Luigi M a io r a n o ● A less a n d ro M o nte m a g gio ri I T A L I A N E C O L O G I C A L N E T W O R K THE ROLE OF THE PROTECTED AREAS IN THE CONSERVATION OF VERTEBRATES Luigi Boitani Animal and Human Biology Department, University of Rome “La Sapienza” Alessandra Falcucci College of N atural Resources, Department of Fish and W ildlife Resources University of Idaho, Moscow (USA) Animal and Human Biology Department, University of Rome “La Sapienza” Luigi Maiorano College of N atural Resources, Department of Fish and W ildlife Resources University of Idaho, Moscow (USA) Animal and Human Biology Department, University of Rome “La Sapienza” Alessandro Montemaggiori Animal and Human Biology Department, University of Rome “La Sapienza” Institute of Applied Ecology, Rome September 2003 Recommended citation: Boitani L., A. Falcucci, L. Maiorano & A. Montemaggiori.
    [Show full text]
  • The Amphibians of São Paulo State, Brazil Amphibians of São Paulo Biota Neotropica, Vol
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Santos Araújo, Olívia Gabriela dos; Toledo, Luís Felipe; Anchietta Garcia, Paulo Christiano; Baptista Haddad, Célio Fernando The amphibians of São Paulo State, Brazil amphibians of São Paulo Biota Neotropica, vol. 9, núm. 4, 2009, pp. 197-209 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199114284020 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotrop., vol. 9, no. 4 The amphibians of São Paulo State, Brazil amphibians of São Paulo Olívia Gabriela dos Santos Araújo1,4, Luís Felipe Toledo2, Paulo Christiano Anchietta Garcia3 & Célio Fernando Baptista Haddad1 1Departamento de Zoologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, CP 199, CEP 13506-970, Rio Claro, SP, Brazil 2Museu de Zoologia “Prof. Adão José Cardoso”, Universidade Estadual de Campinas – UNICAMP, Rua Albert Einstein, s/n, CEP 13083-863, Campinas, SP, Brazil, e-mail: [email protected] 3Departamento de Zoologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais – UFMG, Av. Antônio Carlos, 6627, Pampulha, CEP 31270-901, Belo Horizonte, MG, Brazil 4Corresponding author: Olívia Gabriela dos Santos Araújo, e-mail: [email protected] ARAÚJO, O.G.S., TOLEDO, L.F., GARCIA, P.C.A. & HADDAD, C.F.B. The amphibians of São Paulo State. Biota Neotrop. 9(4): http://www.biotaneotropica.org.br/v9n4/en/abstract?inventory+bn03109042009.
    [Show full text]
  • Maritime Southeast Asia and Oceania Regional Focus
    November 2011 Vol. 99 www.amphibians.orgFrogLogNews from the herpetological community Regional Focus Maritime Southeast Asia and Oceania INSIDE News from the ASG Regional Updates Global Focus Recent Publications General Announcements And More..... Spotted Treefrog Nyctixalus pictus. Photo: Leong Tzi Ming New The 2012 Sabin Members’ Award for Amphibian Conservation is now Bulletin open for nomination Board FrogLog Vol. 99 | November 2011 | 1 Follow the ASG on facebook www.facebook.com/amphibiansdotor2 | FrogLog Vol. 99| November 2011 g $PSKLELDQ$UN FDOHQGDUVDUHQRZDYDLODEOH 7KHWZHOYHVSHFWDFXODUZLQQLQJSKRWRVIURP $PSKLELDQ$UN¶VLQWHUQDWLRQDODPSKLELDQ SKRWRJUDSK\FRPSHWLWLRQKDYHEHHQLQFOXGHGLQ $PSKLELDQ$UN¶VEHDXWLIXOZDOOFDOHQGDU7KH FDOHQGDUVDUHQRZDYDLODEOHIRUVDOHDQGSURFHHGV DPSKLELDQDUN IURPVDOHVZLOOJRWRZDUGVVDYLQJWKUHDWHQHG :DOOFDOHQGDU DPSKLELDQVSHFLHV 3ULFLQJIRUFDOHQGDUVYDULHVGHSHQGLQJRQ WKHQXPEHURIFDOHQGDUVRUGHUHG±WKHPRUH \RXRUGHUWKHPRUH\RXVDYH2UGHUVRI FDOHQGDUVDUHSULFHGDW86HDFKRUGHUV RIEHWZHHQFDOHQGDUVGURSWKHSULFHWR 86HDFKDQGRUGHUVRIDUHSULFHGDW MXVW86HDFK 7KHVHSULFHVGRQRWLQFOXGH VKLSSLQJ $VZHOODVRUGHULQJFDOHQGDUVIRU\RXUVHOIIULHQGV DQGIDPLO\ZK\QRWSXUFKDVHVRPHFDOHQGDUV IRUUHVDOHWKURXJK\RXU UHWDLORXWOHWVRUIRUJLIWV IRUVWDIIVSRQVRUVRUIRU IXQGUDLVLQJHYHQWV" 2UGHU\RXUFDOHQGDUVIURPRXUZHEVLWH ZZZDPSKLELDQDUNRUJFDOHQGDURUGHUIRUP 5HPHPEHU±DVZHOODVKDYLQJDVSHFWDFXODUFDOHQGDU WRNHHSWUDFNRIDOO\RXULPSRUWDQWGDWHV\RX¶OODOVREH GLUHFWO\KHOSLQJWRVDYHDPSKLELDQVDVDOOSUR¿WVZLOOEH XVHGWRVXSSRUWDPSKLELDQFRQVHUYDWLRQSURMHFWV ZZZDPSKLELDQDUNRUJ FrogLog Vol. 99 | November
    [Show full text]
  • Linking Environmental Drivers with Amphibian Species Diversity in Ponds from Subtropical Grasslands
    Anais da Academia Brasileira de Ciências (2015) 87(3): 1751-1762 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520140471 www.scielo.br/aabc Linking environmental drivers with amphibian species diversity in ponds from subtropical grasslands DARLENE S. GONÇALVES1, LUCAS B. CRIVELLARI2 and CARLOS EDUARDO CONTE3*,4 1Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 2Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista, Rua Cristovão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, SP, Brasil 3Universidade Federal do Paraná. Departamento de Zoologia, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 4Instituto Neotropical: Pesquisa e Conservação. Rua Purus, 33, 82520-750 Curitiba, PR, Brasil Manuscript received on September 17, 2014; accepted for publication on March 2, 2015 ABSTRACT Amphibian distribution patterns are known to be influenced by habitat diversity at breeding sites. Thus, breeding sites variability and how such variability influences anuran diversity is important. Here, we examine which characteristics at breeding sites are most influential on anuran diversity in grasslands associated with Araucaria forest, southern Brazil, especially in places at risk due to anthropic activities. We evaluate the associations between habitat heterogeneity and anuran species diversity in nine body of water from September 2008 to March 2010, in 12 field campaigns in which 16 species of anurans were found. Of the seven habitat descriptors we examined, water depth, pond surface area and distance to the nearest forest fragment explained 81% of total species diversity.
    [Show full text]
  • Anuran Assemblage Changes Along Small-Scale Phytophysiognomies in Natural Brazilian Grasslands
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.229310; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Anuran assemblage changes along small-scale phytophysiognomies in natural Brazilian grasslands Diego Anderson Dalmolin1*, Volnei Mathies Filho2, Alexandro Marques Tozetti3 1 Laboratório de Metacomunidades, Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. 2 Fundação Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brasil 3Laboratório de Ecologia de Vertebrados Terrestres, Universidade do Vale do Rio dos Sinos, Avenida Unisinos 950, 93022-000 São Leopoldo, Rio Grande do Sul, Brazil. * Corresponding author: Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.229310; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 We studied the species composition of frogs in two phytophysiognomies (grassland and 3 forest) of a Ramsar site in southern Brazil. We aimed to assess the distribution of 4 species on a small spatial scale and dissimilarities in community composition between 5 grassland and forest habitats. The sampling of individuals was carried out through 6 pitfall traps and active search in the areas around the traps.
    [Show full text]
  • Ecological Functions of Neotropical Amphibians and Reptiles: a Review
    Univ. Sci. 2015, Vol. 20 (2): 229-245 doi: 10.11144/Javeriana.SC20-2.efna Freely available on line REVIEW ARTICLE Ecological functions of neotropical amphibians and reptiles: a review Cortés-Gomez AM1, Ruiz-Agudelo CA2 , Valencia-Aguilar A3, Ladle RJ4 Abstract Amphibians and reptiles (herps) are the most abundant and diverse vertebrate taxa in tropical ecosystems. Nevertheless, little is known about their role in maintaining and regulating ecosystem functions and, by extension, their potential value for supporting ecosystem services. Here, we review research on the ecological functions of Neotropical herps, in different sources (the bibliographic databases, book chapters, etc.). A total of 167 Neotropical herpetology studies published over the last four decades (1970 to 2014) were reviewed, providing information on more than 100 species that contribute to at least five categories of ecological functions: i) nutrient cycling; ii) bioturbation; iii) pollination; iv) seed dispersal, and; v) energy flow through ecosystems. We emphasize the need to expand the knowledge about ecological functions in Neotropical ecosystems and the mechanisms behind these, through the study of functional traits and analysis of ecological processes. Many of these functions provide key ecosystem services, such as biological pest control, seed dispersal and water quality. By knowing and understanding the functions that perform the herps in ecosystems, management plans for cultural landscapes, restoration or recovery projects of landscapes that involve aquatic and terrestrial systems, development of comprehensive plans and detailed conservation of species and ecosystems may be structured in a more appropriate way. Besides information gaps identified in this review, this contribution explores these issues in terms of better understanding of key questions in the study of ecosystem services and biodiversity and, also, of how these services are generated.
    [Show full text]
  • Advertisement Calls, Notes on Natural History, and Distribution of Leptodactylus Chaquensis (Amphibia: Anura: Leptodactylidae) in Brasil
    Advertisement calls, notes on natural history, and distribution of Leptodactylus chaquensis (Amphibia: Anura: Leptodactylidae) in Brasil W. Ronald Heyer* and Ariovaldo A. Giaretta (WRH) Amphibians and Reptiles, MRC 162, P.O. Box 37012, Smithsonian Institution, Washington, DC, 20013-7012, U.S.A., e-mail: [email protected]; (AAG) Universidade Federal Uberlaˆndia, 38400-902 Uberlaˆndia, Minas Gerais, Brasil, e-mail: [email protected] PROCEEDINGS OF THE BIOLOGICAL SOCIETY OF WASHINGTON 122(3):292–305. 2009. Advertisement calls, notes on natural history, and distribution of Leptodactylus chaquensis (Amphibia: Anura: Leptodactylidae) in Brasil W. Ronald Heyer* and Ariovaldo A. Giaretta (WRH) Amphibians and Reptiles, MRC 162, P.O. Box 37012, Smithsonian Institution, Washington, DC, 20013-7012, U.S.A., e-mail: [email protected]; (AAG) Universidade Federal Uberlaˆndia, 38400-902 Uberlaˆndia, Minas Gerais, Brasil, e-mail: [email protected] Abstract.—Three types of advertisement calls of Leptodactylus chaquensis from the Cerrado of Minas Gerais, Brasil are described – growls, grunts, and trills. Additional variation includes calls that start with growls andend with trills. The growl call has not been reported previously. Tadpoles are described and agree with previous descriptions. A female was found associated with tadpoles for at least 20 d. The female communicated with the tadpoles by pumping behavior and also exhibited aggressive behavior toward potential predators. The data reported herein are the first conclusive evidence that L. chaquensis occurs in the Cerrado of Minas Gerais. Other reported Brasilian records for L. chaquensis come from the southern portion of the Cerrado. Additional field work is necessary to determine whether L. chaquensis occurs in the northern Cerrado (in the states of Bahia, Distrito Federal, Maranha˜o, Para´, and Tocantins).
    [Show full text]
  • Diet of the Striped Snouted Treefrog Scinax Squalirostris (Anura: Hylidae) in Southern Brazil
    Herpetology Notes, volume 8: 157-160 (2015) (published online on 10 April 2015) Diet of the striped snouted treefrog Scinax squalirostris (Anura: Hylidae) in southern Brazil Rebecca N. Kittel1,* and Mirco Solé2 Abstract. The diet of 54 specimens of the striped snouted frog Scinax squalirostris (Lutz, 1925) from southern Brazil was examined by flushing of stomach contents. We found 35 prey items and recorded their frequency of occurrence and percent of diet. About half of the prey items in the diet consisted of insects (54%), and within Insecta, Diptera (32%) was the major order represented. In addition to insects, S. squalirostris fed on Arachnida (37%), Gastropoda (6%), and Clitellata (3%). Key Word. Brazil; stomach flushing; Scinax; stomach contents. Introduction of anurans will help to understand its feeding ecology (Duellman & Trueb 1994; Teixeira & Vrcibradic 2003), The diet of anurans is generally influenced by but also the life history of the anurans. It can help to morphological traits, such as body size or size of identify environmental conditions and therefore habitat mouth (Biavati et al. 2004), physiological factors, such alterations as well as conservation strategies (Batista et as energy demand (Grayson et al. 2005), and by the al. 2011). availability of food resources in the environment (Lopez Tree frogs (Hylidae) are widely distributed all over et al. 2009), but also by environmental changes (Solé the world, except for the Arctic and Antarctic regions. et al. 2009), seasonality (Maragno 2011), and hunting The subtropical northeast of Rio Grande do Sul, the strategy (Maneyro & da Rosa 2004). For example, it has Araucarian Plateau, has been considered an anuran been shown that larger individuals consume larger prey hotspot (Kwet 2001), and thus a perfect locality for in larger quantities (Biavati et al.
    [Show full text]
  • Diet Composition, Body Condition and Sexual Size Dimorphism of the Common African
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.25.428067; this version posted January 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Diet composition, body condition and sexual size dimorphism of the common African 2 toad (Amietophrynus regularis) in urban and agricultural landscape 3 Benjamin Yeboah Ofori*, John Bosu Mensah, Roger Sigismund Anderson and Daniel Korley 4 Attuquayefio 5 Department of Animal Biology and Conservation Science, University of Ghana, Legon 6 *Corresponding author; Email: [email protected] 7 8 9 Abstract 10 Land use and land cover change (LULCC) are major drivers of global biodiversity loss. The 11 conversion of natural habitats into human-modified landscapes poses novel and multifaceted 12 environmental stressors to organisms, influencing their ecology, physiology, life history and 13 fitness. Although the effects of LULCC have been studied extensively at the community level, 14 there is scant information about its effect on population and individual characteristics. We 15 assessed the diet composition, body condition, and sexual size dimorphism of the common 16 African toad (Amietophrynus regularis) in urban and agricultural landscape. Diet composition 17 was evaluated using gut content analysis, while body condition was measured using residual 18 mass index. Overall, 935 prey items comprising six classes, at least 18 orders and 31 families 19 were obtained from toads. This broad dietary niche suggested that Amietophrynus regularis is a 20 generalist predator.
    [Show full text]
  • Description of a New Reproductive Mode in Leptodactylus (Anura, Leptodactylidae), with a Review of the Reproductive Specialization Toward Terrestriality in the Genus
    U'/Jeia,2002(4), pp, 1128-1133 Description of a New Reproductive Mode in Leptodactylus (Anura, Leptodactylidae), with a Review of the Reproductive Specialization toward Terrestriality in the Genus CYNTHIA P. DE A. PRADO,MASAO UETANABARO,AND Ctuo F. B. HADDAD The genus Leptodactylusprovides an example among anurans in which there is an evident tendency toward terrestrial reproduction. Herein we describe a new repro- ductive mode for the frog Leptodactyluspodicipinus, a member of the "melanonotus" group. This new reproductive mode represents one of the intermediate steps from the most aquatic to the most terrestrial modes reported in the genus. Three repro- ductive modes were previously recognized for the genus Leptodactylus.However, based on our data, and on several studies on Leptodactylusspecies that have been published since the last reviews, we propose a new classification, with the addition of two modes for the genus. T HE concept of reproductive mode in am- demonstrated by species of the "fuscus" and phibians was defined by Salthe (1969) and "marmaratus" groups. Heyer (1974) placed the Sallie and Duellman (1973) as being a combi- "marmaratus" species group in the genus Aden- nation of traits that includes oviposition site, omera.Species in the "fuscus" group have foam ovum and clutch characteristics, rate and dura- nests that are placed on land in subterranean tion of development, stage and size of hatch- chambers constructed by males; exotrophic lar- ling, and type of parental care, if any. For an- vae in advanced stages are released through urans, Duellman (1985) and Duellman and floods or rain into lentic or lotic water bodies.
    [Show full text]