Marketing Strategy for Software As a Service Companies Within

Total Page:16

File Type:pdf, Size:1020Kb

Marketing Strategy for Software As a Service Companies Within MBA Thesis Marketing Strategy for Software as a Service Companies within the Logistics Vertical Software Niche A multiple case study Fredrik Einarsson & Ardy Daniel Kusnadi Supervisor Johanna Börrefors Karlskrona, Sweden June 2020 www.bth.se/mba DEPARTMENT OF INDUSTRIAL ECONOMICS This thesis is submitted to the Department of Industrial Economics at Blekinge Institute of Technology in partial fulfilment of the requirements for the Degree of Master of Science in Industrial Economics and Management. The thesis is awarded 15 ECTS credits. The author(s) declare(s) that they have completed the thesis work independently. All external sources are cited and listed under the References section. The thesis work has not been submitted in the same or similar form to any other institution(s) as part of another examination or degree. Author information: Fredrik Einarsson [email protected] Ardy Daniel Kusnadi [email protected] Department of Industrial Economics Blekinge Institute of Technology SE-371 79 Karlskrona, Sweden Website: www.bth.se Telephone: +46 455 38 50 00 Fax: +46 455 38 50 57 Abstract Background Utilizing the Software as a Service (SaaS) business model is a distinct trend for marketing software via the Internet. It allows software suppliers to expand their market globally and to extend their offering to customers by simplifying their software procurements and ownerships. The trend has been ongoing for some time concerning horizontal software niches and now intensifies for vertical niches. Logistics is such an examples of a vertical software niche. Objectives This thesis aims to investigate the utilized marketing strategies for companies using a Software as a Service business model within the logistics niche. The purpose of this thesis is to deepen the knowledge about how to market a vertical Software as a Service solution within the logistics domain. Methodology An explorative research method in the form of a multiple case study is used. Three companies are sampled using a theoretical sampling approach. SaaS ideally requires less people contact and the marketing materials are integrated in the published SaaS on the respective companies’ web pages. Data publicly available on the Internet is collected and used to investigate the utilized marketing strategies. Findings The identified marketing strategies are categorized according to an eight-element model utilized in earlier studies. The eight elements are product, price, place, promotion, people, process, productivity & quality, and physical environment. The categorization does help to guide during data collections and data analysis. The last element physical environment is confirmed to be not relevant since the required physical material are chosen and decided by customers themselves. Conclusions The marketing strategies within this niche is at large consistent with earlier findings. One of the newly findings is that the sample companies choose one of SaaS strong points that is most suitable to their offering solution and emphasize it in their marketing strategies. Here are easiness, scalability and flexibility. Some main deviations however exist. The sample companies do not provide easily available trial accounts. They instead offer manned online demonstrations. The market is also not found to be as global as the business model enables. The reason of being that is the fact that the products/services are too dependent on the integrations to local-market software solutions. Recommendations for future research A similar study with a larger sample may strengthen the findings. Performing interviews in addition to online data collection may extend more information about post customer contact marketing strategies as well as reasons behind the selected strategies. Keywords: Marketing strategy, SaaS, Vertical Software, Cloud Computing i Acknowledgements The authors would like to thank the supervisors, Johanna Börrefors, Martin Svensson and Anders Wrenne for pointing into the right directions. We would also like to thank our friends and family for their support during the nights and weekends which was required to complete this thesis besides our full-time employments. Gothenburg, June 2020 Fredrik Einarsson Ardy Daniel Kusnadi ii Table of contents 1. Introduction ___________________________________________ 8 1.1. Problem discussion_____________________________________________________ 8 1.2. Problem formulation and purpose __________________________________________ 9 1.2.1. Research Question __________________________________________________ 10 1.3. Delimitations ________________________________________________________ 10 1.4. Thesis structure ______________________________________________________ 10 2. Theoretical framework __________________________________ 12 2.1. Cloud computing _____________________________________________________ 12 2.2. Software as a Service (SaaS) _____________________________________________ 13 2.3. Vertical Software _____________________________________________________ 14 2.4. Selling and Marketing Strategies ___________________________________________ 16 2.5. Factors affecting SaaS marketing __________________________________________ 19 3. Methodology __________________________________________ 21 3.1. Case study – an inductive qualitative research approach _________________________ 21 3.2. Case Selection and units of study _________________________________________ 21 3.2.1. Case 1 ___________________________________________________________ 22 3.2.2. Case 2 ___________________________________________________________ 22 3.2.3. Case 3 ___________________________________________________________ 23 3.3. Ethical aspects and consideration __________________________________________ 23 3.4. Procedure __________________________________________________________ 23 3.5. Validity and Reliability __________________________________________________ 25 4. Results ______________________________________________ 26 4.1. Case1 _____________________________________________________________ 27 4.1.1. General __________________________________________________________ 27 4.1.2. Selling and marketing strategies _________________________________________ 27 4.2. Case 2 _____________________________________________________________ 30 4.2.1. General __________________________________________________________ 30 4.2.2. Selling and marketing strategies _________________________________________ 31 4.3. Case 3 _____________________________________________________________ 33 4.3.1. General __________________________________________________________ 33 4.3.2. Selling and marketing strategies _________________________________________ 33 iii 5. Analysis _____________________________________________ 36 5.1.1. General __________________________________________________________ 36 5.1.2. Selling and marketing strategies _________________________________________ 36 6. Conclusions __________________________________________ 40 6.1. Future research ______________________________________________________ 41 6.2. Limitations of the study ________________________________________________ 41 7. Bibliography __________________________________________ 42 iv List of Tables Table 1 - The 15 largest Internet capitalizing firms in 1995 compared to 2017 (OECD, 2017) ____ 12 Table 2 - List of characteristics of the selected cases in the sample _______________________ 22 Table 3 - Eisenhardt's eight steps for building theory from case study research. ______________ 24 Table 4 - Result summary ____________________________________________________ 27 v List of Figures Figure 1 - An illustration of the 5 layers of computational resources and its components (Youseff, Butrico, & Silva, 2008) _______________________________________________________ 13 Figure 2 - SaaS interaction flow (Rudolf, 2015) _____________________________________ 14 Figure 3 - Overview over the sizes of companies within the different service domains (OECD, 2017) _______________________________________________________________________ 15 Figure 4 - Cost of buying outsourced application versus developing in-house (Tyrväinen, Frank, & Mazhelis, 2013) ____________________________________________________________ 17 Figure 5 - Selecting business target (Lerouge, 2016) __________________________________ 18 Figure 6 - The Clover Model for selling and marketing SaaS (Tyrväinen & Selin, 2011) _________ 19 Figure 7 - SaaS Customer Lifecycle ______________________________________________ 38 vi List of abbreviations API Application Programming Interface CaaS Containers as a Service CAC Customer Acquisition Cost CMRR Committed Monthly Recurring Revenue CRM Customer Relationship Management DaaS Data as a Service DiD Defense in Depth ERP Enterprise Resource Planning HaaS Hardware as a Service IaaS Infrastructure as a Service ICT Information and Communication Technology IT Information Technology LTV Lifetime Value OECD Organization for Economic Co-operation and Development PaaS Product as a Service SaaS Software as a Service SLA Service Level Agreement SMB Small and Mid-sized Business TA Transport Administration TiVA Trade in Value-Added TMS Transport Management System vii 1. Introduction Business transactions can be decomposed into a series of activities along a vertical chain (Custom, 2017, ss. 90-127). Firms may decide to perform the activities by themselves or outsource them to a more specialized firm. Vertical integration is the action of increasing the number of activities along the vertical chain that the firms handles. Vertical integration is desirable
Recommended publications
  • Service Power Warranty Claims Management
    A Special SFGSM Analyst’s Take Ensuring Quality Customer Service Performance in the Global Insurance Segment Written by Bill Pollock ServicePower.com Enabling InsurTech Organizations to Enhance your Customer’s Experience and Boost their Bottom Line August 2018 Bill Pollock Putting Things Forward from the Perspective President & Principal of the Global Insurance Industry Consulting Analyst Strategies For GrowthSM / The results from research analyst firm, Strategies for PollockOnService Growth’s 2018 Warranty Chain Management Benchmark Survey clearly reveal that insurance organizations that have either implemented a new warranty management solution or, at the very least, upgraded their existing solution, are now experiencing an average of up to 10% improvement in warranty claims processing times, as well as commensurate upticks in customer satisfaction and the overall customer Westtown, Pennsylvania USA experience. +1 610-399-9717 As many of these implementations are now supported by [email protected] state-of-the-art Artificial Intelligence (AI) technology, those www.PollockOnService.com organizations that have taken this path benefit twice – from both the improved functionality of their “new” warranty management systems, as well as the introduction of AI technology into their business operations. A SPECIAL SFGSM ANALYST’S TAKE 1 “The insurance segment will continue to be highly dependent on the introduction of new technology into their business operations and, as a result, will be searching for vendors and solutions that will ease their
    [Show full text]
  • لینک دانلود کتاب ERP for Textiles and Apparel Industry.Pdf
    ERP for Textiles and Apparel Industry © 2016 by Woodhead Publishing India Pvt. Ltd. © 2016 by Woodhead Publishing India Pvt. Ltd. ERP for Textiles and Apparel Industry R. Surjit, R. Rathinamoorthy and K. J. Vishnu Vardhini WOODHEAD PUBLISHING INDIA PVT LTD New Delhi © 2016 by Woodhead Publishing India Pvt. Ltd. CRC Press Woodhead Publishing India Pvt. Ltd. Taylor & Francis Group 303, Vardaan House, 7/28, Ansari Road 6000 Broken Sound Parkway NW, Suite 300 Daryaganj, New Delhi – 110002, India Boca Raton, FL 33487-2742 © 2016 by Woodhead Publishing India Pvt. Ltd. Exclusive worldwide distribution by CRC Press an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Version Date: 20160217 International Standard Book Number-13: 978-93-85059-59-9 (eBook - PDF) This book contains information obtained from authentic and highly regarded sources. Reason- able efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.
    [Show full text]
  • Technology in Apparel Design – What Is Being Used? Melanie Carrico University of North Carolina at Greensboro, [email protected]
    International Textile and Apparel Association 2013: Regeneration, Building a Forward Vision (ITAA) Annual Conference Proceedings Jan 1st, 12:00 AM Technology in apparel design – what is being used? Melanie Carrico University of North Carolina at Greensboro, [email protected] Sojin Jung Universtiy of North Carolina Thomas Turner University of North Carolina at Greensboro Linda Ohrn-McDaniel Kent State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/itaa_proceedings Part of the Fashion Business Commons, and the Fashion Design Commons Carrico, Melanie; Jung, Sojin; Turner, Thomas; and Ohrn-McDaniel, Linda, "Technology in apparel design – what is being used?" (2013). International Textile and Apparel Association (ITAA) Annual Conference Proceedings. 207. https://lib.dr.iastate.edu/itaa_proceedings/2013/presentations/207 This Event is brought to you for free and open access by the Conferences and Symposia at Iowa State University Digital Repository. It has been accepted for inclusion in International Textile and Apparel Association (ITAA) Annual Conference Proceedings by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. New Orleans, Louisiana 2013 Proceedings Technology in apparel design – what is being used? Melanie Carrico, Sojin Jung, Thomas Turner, University of North Carolina at Greensboro, USA Linda Ohrn-McDaniel, Kent State University, USA Keywords: software, industry, design, technology Undergraduate fashion and apparel programs strive to keep up with the changing needs of fashion industry employers, especially with respect to technology. Experience using design software is one necessary skill for fashion designers, but which software program or programs to teach is a question fashion faculty must grapple with as they strive to keep curricula current and relevant.
    [Show full text]
  • Study on the Economic Contribution of the Software Industry in Lebanon
    Study on the Economic Contribution of the Software Industry in Lebanon 2 Study on the Economic Contribution of the Software Industry in Lebanon Study on the Economic Contribution of the Software Industry in Lebanon 3 TABLE OF CONTENTS ABBREVIATIONS 7 EXECUTIVE SUMMARY 8 1. INTRODUCTION 11 1.1 Scope of Work 11 1.2 Methodology 11 1.3 Structure of the Report 12 1.4 The Scope of Software Activities 14 2. LEGal AND REGUlaTORY FRAMEWORK 15 2.1 Copyright Protection of the Software Industry 15 2.2 Enforcement Context 16 3. THE ICT DEVELOPMENT LEVEL 18 3.1 Access 18 3.2 Affordability 20 3.3 Capacity 21 3.4 Networked Readiness Index 22 4. THE SOFTWARE SECTOR 25 4.1 Evolution and Main Trends 25 4.2 Market Size 26 4.3 Market Structure 27 4.4 Supportive Institutions 29 5. SOFTWARE MaRKET ORIENTATION 35 5.1 Local Demand for Software 35 5.2 Foreign Demand for Lebanese Software (Exports and Subcontracting) 36 6. ASSESSING THE BUSINESS ENVIRONMENT: SWOT ANalYSIS 38 6.1 Strengths 38 6.2 Weaknesses 40 6.3 Opportunities 43 6.4 Threats 44 4 Study on the Economic Contribution of the Software Industry in Lebanon 7. ECONOMIC CONTRIBUTION OF THE SOFTWARE INDUSTRY IN LEBANON 45 7.1 Main Characteristics of Software Industry 45 7.2 The Direct Economic Effects of the Lebanese Software Industry 47 7.2.1 Economic Contribution of Software Activities to GDP 47 7.2.2 Employment Generation 51 7.2.3 Benchmarking Software Activities with Other Sectors 53 7.2.4 Export-orientated Software Industries 54 7.3 Secondary Economic Impact 55 7.3.1 Mapping the Value Chain of the Major Activities of the Software Industries 55 7.3.2 Technical Impacts on the Value Chain 56 7.3.3 Backward and Forward Linkages Generated by Software Industries 57 7.3.4 Multiplier Effect 58 7.3.5 Spin-off Effects on Business Culture 59 8.
    [Show full text]
  • Beyond Hacker Idiocy the Changing Nature of Software Community and Identity
    Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 198 20.11.2005 12:34am 5 Beyond Hacker Idiocy The Changing Nature of Software Community and Identity Paul S. Adler Introduction Professions are often taken as prototypical of a more collegial form of community, one that can be contrasted with both traditional Gemeinschaft and modern Gesellschaft. Indeed, the collegiality of professionals doing intrinsically meaningful work stands as a prefigurative model of the com- munist utopia of a ‘free association of producers.’1 The key features of professions giving them this status are their common professional social- ization and their autonomy in economic status and in technical decision making. In reality however, professionals’ autonomy is increasingly restricted. First, a substantial and growing proportion of professionals work under heteronomous conditions, as employees of capitalist firms: engineers are the largest category of these ‘organizational professionals.’ Even without economic autonomy, professionals traditionally enjoyed considerable technical autonomy; but this technical autonomy too has been under- mined by recent trends towards the bureaucratization of professional work.2 Many observers interpret the loss of economic and technical autonomy as a sign of abject proletarianization.3 If such is indeed the future of profes- sional work, the plausibility of the central thesis of this volume would be seriously undermined. After all, professions are the occupational category most directly implicated in the trends towards knowledge-intensive and Heckscher & Adler / The Corporation as a Collaborative Community 05-Heckscher-chap05 Revise Proof page 199 20.11.2005 12:34am Beyond Hacker Idiocy solutions-oriented production that we have interpreted as driving the movement towards collaborative community.
    [Show full text]
  • An Iterative Approach to Insurance Software Testing
    SHIFT LEFT AN ITERATIVE APPROACH TO INSURANCE SOFTWARE TESTING THE NEED TO IMPLEMENT LARGE MISSION-CRITICAL SYSTEMS IN AN ENVIRONMENT DRIVEN BY SHORT TIMELINES AND TIGHT BUDGETS HAS LED TO TESTING AND DEVELOPMENT METHODS THAT DELIVER BUSINESS VALUE QUICKLY. These methods apply speed and incremental Shift Left testing avoids cost overruns and learning with comprehensive up-front planning project delays. It uses an iterative approach to deliver smaller, fully-tested functional units that breaks down development and test of work in significantly less time than through a activities into smaller functional units of work, classic waterfall approach. uncovering and addressing issues earlier in the timeline rather than at the end of the According to an IBM System Science Institute project. Shift Left testing also compresses report, it is 15 times costlier to fix defects in project timelines by enabling smaller hyper- the test phase of a waterfall project because focused teams to work in parallel. testing occurs later in the project development lifecycle1. $100 $15 $6.5 $1 Design Implementation Testing Maintenance FIGURE 1: IBM SYSTEM SCIENCE INSTITUTE RELATIVE COST OF FIXING DATA DEFECTS FOUND IN TESTING WERE 15 TIMES MORE COSTLY THAN IF THEY WERE FOUND DURING THE DESIGN PHASE AND TWO TIMES MORE THAN IF FOUND DURING IMPLEMENTATION. 1 ITERATIVE APPROACH Iterative development and testing methods break down the development of large applications into smaller pieces; designing, developing, and testing in repeated cycles to deliver predictable value
    [Show full text]
  • The Creative Sector in Georgia: Situation, Potential and Policy Issues
    German Economic Team Georgia in cooperation with ISET Policy Institute Policy Paper Series [PP/02/2017] The creative sector in Georgia: Situation, potential and policy issues David Saha, André Störr Berlin/Tbilisi, June 2017 About the German Economic Team Georgia The German Economic Team Georgia (GET Georgia) advises the Georgian government and other Georgian state authorities such as the National Bank on a wide range of economic policy issues. Our analytical work is presented and discussed during regular meetings with high-level decision makers. GET Georgia is financed by the German Federal Ministry for Economic Affairs and Energy. Our publications are publicly available at our website (www.get-georgia.de). German Economic Team Georgia c/o Berlin Economics Schillerstraße 59 D-10627 Berlin Tel: +49 30 / 20 61 34 64 0 Fax: +49 30 / 20 61 34 64 9 E-Mail: [email protected] www.get-georgia.de © 2017 German Economic Team Georgia All rights reserved. ii The creative sector in Georgia: Situation, potential and policy issues Executive Summary Georgia has a rich cultural tradition as well as an affinity for unique designs. Can this creativity be an economic asset? This can in principle be assessed by using the standard “creative industries” approach, which measures several industries in the creative sector. Due to data limitations, we develop and use a slightly simplified method based on the international approach for Georgia. At present, the measurable creative industries – 7 out of 11 industries – together make up 1.5% of gross value added (GVA) of the Georgian economy and 1.1% of employment.
    [Show full text]
  • 2007 Essential Facts About the Computer and Video Game Industry in June, 2007
    2007 SALES, DEMOGRAPHIC AND USAGE DATA ESSENTIAL FACTS ABOUT THE COMPUTER AND VIDEO GAME INDUSTRY © 2007 Entertainment Software Association WHAT’S INSIDE? Who Plays What? Who Plays Computer and Video Games? . 2 Who Buys Computer and Video Games? . 3 How Long Have Gamers Been Playing? . 3 2006 Computer and Video Game Sales by Rating . 4 What Were the Top-Selling Game Genres in 2006? . 5 What Were the Top-Selling Games of 2006? . 6 Parents and Games . 7 Parents Play Games. 8 Who Plays What? Online and Wireless Games How Many Gamers Play Games Online?. 9 Who Plays Games Online? . 9 What is the One Type of Online Game Played Most Often?. 9 How Many Americans Play Games on Wireless Devices? . 9 What’s the Bottom Line? Sales Data Recent Sales Information (2005 and 2006). 10 Historical Sales Information (1996 – 2006) . 11 How Many Americans Plan to Buy Games in 2007?. 11 Who Are We? About the ESA . 12 ESA Members. 12 Other Resources . 13 ALL DATA IN THIS DOCUMENT IS FROM THE ESA’S 2007 CONSUMER SURVEY UNLESS OTHERWISE NOTED. The Entertainment Software Association (ESA) released its 2007 Essential Facts About the Computer and Video Game Industry in June, 2007. The data included in 2007 Essential Facts was gathered in an annual study conducted by Ipsos-Insight for the ESA. The study is the most in-depth and target- ed survey of its kind, gathering data from over 1,200 nationally representative households that have been identified as owning either or both a video game console or a personal computer used to run entertainment software.
    [Show full text]
  • A 2014 Study by the Entertainment Software Association (ESA)
    SALE2014S, DEMOGRAPHIC, AND USAGE DATA ESSENTIAL FACTS ABOUT THE COMPUTER AND VIDEO GAME INDUSTRY [ i ] “Our industry has a remarkable upward trajectory. Computer and video games are a form of entertainment enjoyed by a diverse, worldwide consumer base that demonstrates immense energy and enthusiasm for games. With an exciting new generation of hardware, outstanding software, and unmatched creativity, technology, and content, our industry will continue to thrive in the years ahead.” —Michael D. Gallagher, president and CEO, Entertainment Software Association [ ii ] WHAT’S INSIDE WHO IS PLAYING 2 Who Plays Computer and Video Games? 4 Who Buys Computer and Video Games? AT PLAY 5 What Type of Online and Mobile Games are Played Most Often? 5 How Many Gamers Play on a Phone or Wireless Device? 6 How Many Gamers Play Games With Others? 7 Parents and Games 7 Parents Control What Their Kids Play 9 Top Reasons Parents Play With Their Kids THE BOTTOM LINE 10 What Were the Top-Selling Game Genres in 2013? 11 What Were the Top-Selling Games of 2013? 12 Sales Information: 2003–2013 13 Total Consumer Spend on Video Game Industry in 2013 WHO WE ARE 14 About ESA 14 ESA Members OTHER RESOURCES 16 ESA Partners The 2014 Essential Facts About the Computer and Video Game Industry was released by the Entertainment Software Association (ESA) in April 2014. The annual research was conducted by Ipsos MediaCT for ESA. The study is the most in-depth and targeted survey of its kind, gathering data from more than 2,200 nationally representative households. Heads of households, and the most frequent gamers within each household, were surveyed about their game play habits and attitudes.
    [Show full text]
  • Introduction to E-Commerce Combining Business and Information Technology
    MARTIN KÜTZ INTRODUCTION TO E-COMMERCE COMBINING BUSINESS AND INFORMATION TECHNOLOGY 2 Introduction to E-Commerce: Combining Business and Information Technology 1st edition © 2016 Martin Kütz & bookboon.com ISBN 978-87-403-1520-2 Peer review by Prof. Dr. Michael Brusch, Fachbereich 6, Hochschule Anhalt and Prof. Dr. Corinna V. Lang, Fachbereich 2, Hochschule Anhalt 3 INTRODUCTION TO E-COMMERCE CONTENTS CONTENTS Table of abbreviations 7 1 Basics and definitions 15 1.1 The term “E-Commerce” 16 1.2 Business models related to E-Commerce 24 1.3 Technical and economic challenges 34 1.4 Exercises 35 2 Frameworks and architectures 37 2.1 Actors and stakeholders 37 360° 2.2 Fundamental sales process 39 2.3 Technological elements 44 2.4 Exercises 360° 61 thinking. thinking. 360° thinking . 360° thinking. Discover the truth at www.deloitte.ca/careers Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers © Deloitte & Touche LLP and affiliated entities. © Deloitte & Touche LLP and affiliated entities. Discover the truth at www.deloitte.ca/careers 4 © Deloitte & Touche LLP and affiliated entities. INTRODUCTION TO E-COMMERCE CONTENTS 3 B2C business 62 3.1 The process model and its variants 62 3.2 The pricing challenge 77 3.3 The fulfilment challenge 79 3.4 The payment challenge 80 3.5 B2C-business and CRM 80 3.6 B2C software systems 81 3.7 Exercises 85 4 B2B business 86 4.1 The process model and its variants 86 4.2 B2B software systems 98 4.3 Exercises 106 5 Impact
    [Show full text]
  • Changing Dynamics of Global Computer Software and Services Industry: Implications for Developing Countries
    UNCTAD/ITE/TEB/12 United Nations Conference on Trade and Development Technology for Development Series Changing Dynamics of Global Computer Software and Services Industry: Implications for Developing Countries United Nations New York and Geneva, 2002 Technology for Development Series NOTE The UNCTAD Division on Investment, Technology and Enterprise Development serves as a focal point within the United Nations Secretariat for all matters related to foreign direct investment, transnational corporations, enterprise development, and science and technology for development. The current work programme of the Division is based on the mandates set at UNCTAD X, held in 2000 in Bangkok, as well as on the decisions by the United Nations Commission on Science and Technology for Development, which is served by the UNCTAD secretariat. In its work in the area of science and technology, the Division aims at furthering the understanding of the relationship between science, technology and development; contributing to the elucidation of global issues raised by advances in science and technology; promoting international cooperation on science and technology among Governments, enterprises and academia, particularly between those of developed and developing countries and transitional economies; and promoting technological capacity-building and enhancing entrepreneurship and competitiveness in developing countries, particularly the least developing among them. This series of publications seeks to contribute to exploring current science and technology issues, with particular emphasis on their impact on developing countries. The term “country” as used in this study also refers, as appropriate, to territories or areas; the designations employed and the presentation of the material do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • 2019 Essential Facts About the Computer and Video Game Industry
    2019 ESSENTIAL FACTS About the Computer and Video Game Industry Foreword Table of Contents 2018 was a record-breaking year for our industry, with total video game sales exceeding $43.4 billion. Over 164 million adults in the United States play video games, and three-quarters of all Americans have at least one gamer in their Foreword 3 household. It’s now more important than ever to understand who America’s video At-A-Glance 5 game players really are and what’s driving them. Average Gamer 6 That’s why I’m thrilled to share the 2019 Essential Facts About the Computer and Video Game Industry. For the first time, we at the Entertainment Software Social & Lifestyle 9 Association have taken a comprehensive look at the individual Americans who enjoy video games and their lifestyles in order to better understand their profiles Parents of Gamers 10 and interests. Households with Children 13 The resulting data speaks for itself. Video game players represent a diverse cross- Who Plays 15 section of the American population spanning every age, gender, and ethnicity. They live healthy lives, are civically engaged, and are socially active. More than Purchasing 20 three-quarters report that video games provide them with mental stimulation (79%) as well as relaxation and stress relief (78%). The role of video games in the ESA Partners 22 American family is also changing: nearly three-quarters (74%) of parents believe video games can be educational for their children, and more than half (57%) enjoy ESA Members 23 playing games with their child at least weekly.
    [Show full text]