Dopamine Receptors

Total Page:16

File Type:pdf, Size:1020Kb

Dopamine Receptors Tocris ScientificDopamine Review Receptors Series Tocri-lu-2945 Dopamine Receptors Philip G. Strange1 and Kim Neve2 History 1School of Pharmacy, University of Reading, Whiteknights, It was not until the late 1950s that dopamine was recognized Reading, RG6 6AJ, UK, Email: [email protected] as a neurotransmitter in its own right, but the demonstration of its non-uniform distribution in the brain, distinct from the 2 VA Medical Center and Department of Behavioral Neuroscience, distribution of noradrenaline, suggested a specific functional Oregon Health & Science University, Portland, OR 97239, USA, role for dopamine.1 Interest in dopamine was intensified by Email: [email protected] the realization that dopamine had an important role in the Professor Philip Strange has worked on the structure and pathogenesis or drug treatment of certain neurological disorders, function of G protein-coupled receptors for many years. A major e.g. Parkinson’s disease and schizophrenia.2,3 This led to much focus of his work has been the receptors for the neurotransmitter research on the sites of action of dopamine and the dopamine dopamine, with particular emphasis on their role as targets receptors (Box 1). One milestone was the suggestion by Cools for drugs and understanding the mechanisms of agonism and and van Rossum, based on anatomical, electrophysiological inverse agonism at these receptors. and pharmacological studies, that there might be more than one kind of receptor for dopamine in the brain.4 Biochemical Professor Kim Neve has studied dopamine receptors for most studies on dopamine receptors in the 1970s based on second of his scientific career, with an emphasis on relating structural messenger assays (e.g. stimulation of cAMP production and features of the receptors to specific functions and assessing how ligand binding assays) supported the idea, and it was given a firm receptor responsiveness is altered by denervation or prolonged foundation by Kebabian and Calne in their 1979 review.5 They treatment with agonists. extended an earlier suggestion by Spano et al,6 and proposed that there were two classes of dopamine receptor, D1 and D2, with different biochemical and pharmacological properties, mediating different physiological functions. The properties of these two subtypes are summarized in Table 1. Selective agonists and antagonists exist to define the two subtypes in functional assays and some of these are shown in Table 1. Both the D1 and D2 subtypes are G protein-coupled receptors (GPCRs), yet different G proteins and effectors are involved in their signaling pathways (Figure 1, Table 1). Although there were some indications of further heterogeneity of these dopamine receptor subtypes in biochemical studies, it was not until the late 1980s that the true extent of this was revealed with the application of gene cloning techniques. These studies have shown that there are at least five dopamine receptors (D1– D5) that may be divided into two subfamilies whose properties 7,8 resemble the original D1 and D2 receptors. The D1-like receptor family, which comprises D1 and D5, corresponds to the original D1 receptors whilst the D2-like receptor family (D2, D3 and D4 Contents receptors) corresponds to the original D2 receptors. A selection History ...................................................................................................... 1 of the key properties of the receptor subtypes are summarized in Tables 2 and 3. Properties of the Dopamine Receptor Subtypes ................................. 2 Future Directions .................................................................................... 6 In subsequent discussion we refer to receptor subtypes defined from cloned genes as D , D , D , D , D , and where only the References .............................................................................................. 8 1 2 3 4 5 subfamily of receptor has been defined pharmacologically we Dopamine Compounds .......................................................................... 9 use the D1-like and D2-like nomenclature. tocris.com | 1 Tocris Scientific Review Series Properties of the Dopamine Receptor the membrane to form the ligand binding site (Figure 2); some information is available on the residues that make contact with Subtypes ligands.11,12 There is an intracellular carboxyl terminus, probably bearing a palmitoyl group, which may form a further link to the Common receptor properties membrane. The D1-like receptors have short third intracellular loops and long carboxyl terminal tails, whereas the D -like Analysis of the amino acid sequences of the dopamine receptor 2 subtypes has shown that significant homologies exist among receptors have long third intracellular loops and short carboxyl the subtypes, with the greatest being found between members terminal tails. This provides a structural basis for the division of either subfamily.7,8 Each receptor has been shown to contain of the receptors into two subfamilies but is also likely to have seven stretches of amino acids that are hydrophobic and long a functional significance, possibly related to the specificity of enough to span the membrane. It seems therefore that each of receptor/G protein interaction. the dopamine receptors conforms to the general structural model The third intracellular loop, termed ‘I3’, is important for the for a GPCR,9–11 with an extracellular amino terminus and seven interaction of the receptor and G protein. For the D2-like putative membrane spanning α-helices linked by intracellular receptors, variants of the subtypes exist based on this loop. For and extracellular protein loops (Figure 2). One or more potential example, there are short and long splice variants of the D2 and D3 sites for glycosylation are found on the amino terminus and receptors with the long forms having an insertion (29 amino acids second extracellular loop. The helices are bundled together in 13,14 for the long D2, D2L) in this loop. Polymorphic variants of the D2 receptor have been described with single amino acid changes 15 in I3. The D4 receptor is highly polymorphic in the human Figure 1 | Regulation of adenylyl cyclase by D and D dopamine 1 2 population with variants containing different length insertions receptors 16,17 in I3. In some cases, these D2-like receptor variants may Dopamine Dopamine Figure 2 | Schematic representation of a G protein-coupled D1-like receptor D2-like receptor dopamine receptor AC Extracellular space H N βγ + – βγ 2 Gαs Gαi/o Disulfide bond ATP E1 cAMP E2 E3 3 4 2 1 The diagram shows the effects of dopamine to stimulate or inhibit 5 α 6 7 adenylyl cyclase (AC) via the D1-like receptor and G protein G s or the D2-like receptor and G protein Gai/o, respectively. BoxBox 1: Dopamine 1: Dopamine receptor receptor products products Box 1: BoxDopamine 1: Dopamine receptor receptor products products Box 1 | Dopamine synthesis and metabolism I1 Palmitoyl NO O NO2 2 O P I2 group NO2 NO2O O O N O N H P O N O H N HO NH H H I3 HO NH2 2 HO HO NH2 NH2 OH HO OH HO OH OH HOOC HO HO OH OH Cytoplasm OH OH P P DopamineDopamine (3548) (3548) NPEC-caged-dopamineNPEC-caged-dopamine (3992) (3992) DopamineEndogenousDopamineEndogenous (3548)Dopamine dopamine (3548) dopamine (3548) NPEC-caged-dopamineNPEC-caged-dopamineCagedNPEC-caged-dopamineCaged version version of dopamine (3992)of (3992)dopamine (3992) EndogenousreceptorEndogenousEndogenousreceptor dopamine agonist agonist dopamine dopamine CagedCaged versionCaged version of version dopamine of dopamine of dopamine receptor agonistreceptorreceptor agonist agonist The diagram shows the seven helices bundled together in the membrane and the intra- (I1, I2, I3) and extracellular (E1, E2, E3) SO Me SO2Me 2 loops. The ligand binding site is contained in the cavity formed SO2Me SO2Me between the helices. There may be an eighth helix formed in the HO CO H H HO CO2H 2 H carboxyl terminus parallel to the membrane (not shown). There is HO HO CO2H CO2H H H N N also a disulfide bond between E2 and the top of helix 3. The NH NH2 HO 2 N N HO NH2 NH2 helices have been drawn parallel to one another for clarity but in HO HO fact there are kinks in the helices and they are not fully parallel. L-DOPAL-DOPA (3788)L-DOPA (3788) (3788) OSUOSU OSU6162 6162 6162(2599) (2599) (2599) I3 and the carboxyl terminus contain multiple sites for L-DOPADopamine (3788)L-DOPADopamineDopamine precursor (3788) precursor precursor OSU Dopamine6162DopamineOSU Dopamine(2599) 6162 stabilizer stabilizer (2599) stabilizer phosphorylation that are involved in regulation of receptor DopamineDopamine precursor precursor DopamineDopamine stabilizer stabilizer responsiveness and interactions with adapter proteins. 2 | tocris.com Dopamine Receptors 18,19 have differential abilities to couple to or activate G proteins, D1-like antagonist that is useful because it is structurally distinct and may also exhibit slightly different pharmacological from the benzazepines. Thioxanthines such as flupentixol and properties.16,20,21 Lines of mice have been developed in which the phenothiazines such as fluphenazine also show high affinity I3 insertion that produces the long D2 receptor variant (D2L) is but are not selective for D1-like over D2-like receptors. The deleted, resulting in the expression of only the short variant (D2S). development of the first 1D -like receptor agonist, SKF 38393, was Characterization of these mice suggests that the splice variants important for differentiating between activation of D1-like and are not fully interchangeable; some
Recommended publications
  • Sustained Release Tablet Comprising Pramipexole
    (19) & (11) EP 2 172 199 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.: 07.04.2010 Bulletin 2010/14 A61K 31/428 (2006.01) A61K 9/20 (2006.01) A61K 9/28 (2006.01) (21) Application number: 09178277.1 (22) Date of filing: 25.07.2003 (84) Designated Contracting States: • Lee, Ernest, J. AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Kalamazoo, MI 49009 (US) HU IE IT LI LU MC NL PT RO SE SI SK TR • Martino, Alice, C. Kalamazoo, MI 49009 (US) (30) Priority: 25.07.2002 US 398427 P • Noack, Robert, M. 25.07.2002 US 398447 P Grand Rapids, MI 49506 (US) 28.08.2002 US 406609 P • Reo, Joseph, P. 18.06.2003 US 479387 P Kalamazoo, MI 49009 (US) • Skoug, Connie, J. (62) Document number(s) of the earlier application(s) in Portage, MI 49024 (US) accordance with Art. 76 EPC: 03771898.8 / 1 536 791 (74) Representative: Summers, Victoria Clare Pfizer Limited (71) Applicant: Pharmacia Corporation European Patent Department Peapack, NJ 07977 (US) Ramsgate Road Sandwich, Kent CT13 9NJ (GB) (72) Inventors: • Amidon, Gregory, E. Remarks: Portage, MI 49024 (US) This application was filed on 08-12-2009 as a • Ganorkar, Loksidh, D. divisional application to the application mentioned Kalamazoo, MI 49009 (US) under INID code 62. • Heimlich, John, M. Portage, MI 49002 (US) (54) Sustained release tablet comprising pramipexole (57) A sustained - release pharmaceutical composi- hydrophilic polymer and astarch having a tensile strength tion in a form of an orally deliverable tablet comprising of at least about 0.15kNcm -2 at a solid fraction represent- an active pharmaceutical agent having solubility not less ative of the tablet.
    [Show full text]
  • Inhibition of 50-Khz Ultrasonic Vocalizations by Dopamine Receptor Subtype-Selective Agonists and Antagonists in Adult Rats
    Psychopharmacology (2013) 226:589–600 DOI 10.1007/s00213-012-2931-6 ORIGINAL INVESTIGATION Inhibition of 50-kHz ultrasonic vocalizations by dopamine receptor subtype-selective agonists and antagonists in adult rats Tina Scardochio & Paul B. S. Clarke Received: 6 September 2012 /Accepted: 13 November 2012 /Published online: 29 November 2012 # Springer-Verlag Berlin Heidelberg 2012 Abstract calling. The D4 agonist and antagonist did not significantly Rationale Adult rats emit ultrasonic calls at around 22 and affect 50-kHz call rates. Twenty-two-kilohertz calls oc- 50 kHz, which are often elicited by aversive and rewarding curred infrequently under all drug conditions. stimuli, respectively. Dopamine (DA) plays a role in aspects Conclusion Following systemic drug administration, tonic of both reward and aversion. pharmacological activation of D1-like or D2-like DA recep- Objective The purpose of this study is to investigate the tors, either alone or in combination, does not appear suffi- effects of DA receptor subtype-selective agonists on 22- cient to induce 50-kHz calls. Dopaminergic transmission and 50-kHz call rates. through D1, D2, and D3 receptors appears necessary for Methods Ultrasonic calls were recorded in adult male rats spontaneous calling. that were initially screened with amphetamine to eliminate low 50-kHz callers. The remaining subjects were tested after Keywords Vocalization . Dopamine receptor . Reward . acute intraperitoneal or subcutaneous injection of the fol- Aversion . Agonist . Antagonist . Reinforcement . lowing DA receptor-selective agonists and antagonists: Behavior . D1 [D-1] . D2 [D-2] A68930 (D1-like agonist), quinpirole (D2-like agonist), PD 128907 (D3 agonist), PD 168077 (D4 agonist), SCH 39166 (D1-like antagonist), L-741,626 (D2 antagonist), Introduction NGB 2904 (D3 antagonist), and L-745,870 (D4 antagonist).
    [Show full text]
  • Strategies for Managing Sexual Dysfunction Induced by Antidepressant Medication
    King’s Research Portal DOI: 10.1002/14651858.CD003382.pub3 Document Version Publisher's PDF, also known as Version of record Link to publication record in King's Research Portal Citation for published version (APA): Taylor, M. J., Rudkin, L., Bullemor-Day, P., Lubin, J., Chukwujekwu, C., & Hawton, K. (2013). Strategies for managing sexual dysfunction induced by antidepressant medication. Cochrane Database of Systematic Reviews, (5). https://doi.org/10.1002/14651858.CD003382.pub3 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Sex Differences in Nicotine-Conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes
    East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2008 Sex Differences in Nicotine-Conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes. Ashley Brianna Sheppard East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Hormones, Hormone Substitutes, and Hormone Antagonists Commons Recommended Citation Sheppard, Ashley Brianna, "Sex Differences in Nicotine-Conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes." (2008). Electronic Theses and Dissertations. Paper 1978. https://dc.etsu.edu/etd/ 1978 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. Sex Differences in Nicotine-conditioned Hyperactivity in a Model of Dopamine D2 Receptor Priming: Roles of Dopamine D2 and D3 Receptor Subtypes A thesis presented to the faculty of the Department of Psychology East Tennessee State University In partial fulfillment of the requirements for the degree of Master of Arts in Psychology by Ashley Brianna Sheppard August 2008 Russell Brown, PhD., Chair Michael Woodruff, PhD., Committee member Otto Zinser,
    [Show full text]
  • Appendix 13C: Clinical Evidence Study Characteristics Tables
    APPENDIX 13C: CLINICAL EVIDENCE STUDY CHARACTERISTICS TABLES: PHARMACOLOGICAL INTERVENTIONS Abbreviations ............................................................................................................ 3 APPENDIX 13C (I): INCLUDED STUDIES FOR INITIAL TREATMENT WITH ANTIPSYCHOTIC MEDICATION .................................. 4 ARANGO2009 .................................................................................................................................. 4 BERGER2008 .................................................................................................................................... 6 LIEBERMAN2003 ............................................................................................................................ 8 MCEVOY2007 ................................................................................................................................ 10 ROBINSON2006 ............................................................................................................................. 12 SCHOOLER2005 ............................................................................................................................ 14 SIKICH2008 .................................................................................................................................... 16 SWADI2010..................................................................................................................................... 19 VANBRUGGEN2003 ....................................................................................................................
    [Show full text]
  • Designing Inhibitors Via Molecular Modelling Methods for Monoamine Oxidase Isozymes a and B Filiz Varnali Kadir Has Universit
    DESIGNING INHIBITORS VIA MOLECULAR MODELLING METHODS FOR MONOAMINE OXIDASE ISOZYMES A AND B FİLİZ VARNALI KADİR HAS UNIVERSITY 2012 DESIGNING INHIBITORS VIA MOLECULAR MODELLING METHODS FOR MONOAMINE OXIDASE ISOZYMES A AND B FİLİZ VARNALI M.S. in Computational Biology and Bioinformatics, Kadir Has University, 2012 Submitted to the Graduate School of Science and Engineering in partial fulfilment of the requirements for the degree of Master of Science in Computational Biology and Bioinformatics KADİR HAS UNIVERSITY 2012 DESIGNING INHIBITORS VIA MOLECULAR MODELING METHODS FOR MONOAMINE OXIDASE ISOZYMES A AND B Abstract In drug development studies, a large number of new drug candidates (leads) have to be synthesized and optimized by changing several moieties of the leads in order to increase efficacies and decrease toxicities. Each synthesis of these new drug candidates include multi-steps procedures. Overall, discovering a new drug is a very time-consuming and very costly works. The development of molecular modelling programs and their applications in pharmaceutical research have been formalized as a field of study known computer assisted drug design (CADD) or computer assisted molecular design (CAMD). In this study, using the above techniques, Monoamine Oxidase isozymes, which play an essential role in the oxidative deamination of the biogenic amines, were studied. Compounds that inhibit these isozymes were shown to have therapeutic value in a variety of conditions including several psychiatric and neurological as well as neurodegenerative diseases. First, a series of new pyrazoline derivatives were screened using molecular modelling and docking methods and promising lead compounds were selected, and proposed for synthesis as novel selective MAO-A or –B inhibitors.
    [Show full text]
  • Pharmacological Stimulation of Brain Dopamine D3 Receptors Induced
    ABSTRACT Pharmacological stimulation of brain dopamine D3 receptors induced ejaculation in anaesthetised rats # 163 Pierre Clément 1, Jacques Bernabé 1, Laurent Alexandre 1, François Giuliano 1,2 * 1PELVIPHARM Laboratories, Gif-sur-Yvette, France 2Raymond Poincaré Hospital, Neuro-Urology Unit, Garches, France * e-mail address: [email protected] ABSTRACT INTRODUCTION & OBJECTIVE RESULTS Introduction and Objective : We have previously found that intracerebroventricular (i.c.v.) Ejaculation consists in two distinct and successive phases i.e. emission and expulsion with the latter caused Figure 1 . Sample of EMG recording of the injection of the non selective dopamine D2/D3 receptors agonist by rhythmic contractions of pelvic floor striated muscles; the primary role being played by bulbospongiosus 7-OH-DPAT i.c.v. bulbospongiosus (BS) muscles obtained in quinelorane induced rhythmic (BS) muscles (Gerstenberg et al., 1990). (1 µg) anaesthetised rats after i.c.v. delivery of 7- contractions of bulbospongiosus 10 s (BS) muscles, which is key for OH-DPAT (1 µg). expelling semen out the urethra, in anaesthetised rats. In the present We have previously reported that the dopamine D2-like receptor agonist quinelorane delivered in cerebral A magnification of the tracing of BS-EMG is study we aimed at demonstrating ventricle was capable to elicit rhythmic BS muscles contractions in anaesthetised rats (Clement et al., 2006; displayed in the inset and allows to see the which of these dopamine receptor subtypes is involved in triggering BS EAU 2006, poster #164). In addition it has been shown that the preferential D3 receptor agonist 7-OH-DPAT V unitary events (i.e.
    [Show full text]
  • Subject Index
    Subject Index A 68930 130 appetitive Conditions 81 A 86929 130 arachidonic acid 185,223 acetylcholine (ACh) 9 arcuate nucleus 89,97 acoustic neurinoma 227 aripiprazole 36 ACTH, see Adrenocortcotropic asynaptic release 100 hormone 173 ATF1, see Activating transcription factor activating transcription factor 1 (ATF 1) 1 326 attention 276 adaptive reponses 321 attention deficit hyperactivity disorder adenosine A2A receptor 164 (ADHD) 278 adenosine triphosphatase 269, 306 autism 128 adenylyl cyclase 11, 121, 163, 185, 236 autoreceptor 34 ADHD, see attention deficit aversive conditions 81 hyperactivity disorder adrenal gland 173 basal ganglia 31,166,310 adrenal medullary hormones 25 bed nucleus 55 adrenocorticotropic hormone (ACTH) benzazepine 130, 140 173 benzonaphtazepine 131 aggression 276 benztropine 270 akinesia 167 beta (~) adrenoreceptor 10, 238 alcohol 33, 169,203 beta (~)-arrestin 135 alpha (a)olf protein 237 beta (~)-endorphin 173 alpha (a)receptor adrenergic 10 biogenic amines 29 alpha's protein 237 bipolar cell 92 alpha-(a) melanocyte stimulating bipolar disorder 127,227 hormone (a-MSH) 171 bradykinesia 167 alpha-(a) methyltyrosine 33 brain development 201 amacrine cells 92 brain-derived neurotrophic factor amineptine 206 (BDNF) 187 aminotetralin 195 bromocriptine 12, 171, 309 amisulpride 196 brown adipose tissue 243 amitriptyline 206 buproprion 206 AMPA receptor channels 333 butaclamol 125,131 amperozide 196 amphetamine 12,33,135, 169,270,276, calbindin (CaBP) 44,87 325 calcineurin 244 amphetamine stereoselectivity 262 calcium
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0052435 A1 Van Der Graaf Et Al
    US 20060052435A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0052435 A1 Van der Graaf et al. (43) Pub. Date: Mar. 9, 2006 (54) SELECTIVE DOPAMIN D3 RECEPTOR (86) PCT No.: PCT/GB02/05595 AGONSTS FOR THE TREATMENT OF SEXUAL DYSFUNCTION (30) Foreign Application Priority Data (76) Inventors: Pieter Hadewijn Van der Graaf, Dec. 18, 2001 (GB) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O1302199 County of Kent (GB); Christopher Peter Wayman, County of Kent (GB); Publication Classification Andrew Douglas Baxter, Bury St. Edmunds (GB); Andrew Simon Cook, (51) Int. Cl. County of Kent (GB); Stephen A6IK 31/405 (2006.01) Kwok-Fung Wong, Guilford, CT (US) (52) U.S. Cl. .............................................................. 514/419 Correspondence Address: (57) ABSTRACT PFIZER INC. PATENT DEPARTMENT, MS8260-1611 The use of a composition comprising a Selective dopamine EASTERN POINT ROAD D3 receptor agonist, wherein Said dopamine D3 receptor GROTON, CT 06340 (US) agonist is at least about 15-times more functionally Selective for a dopamine D3 receptor as compared with a dopamine (21) Appl. No.: 10/499,210 D2 receptor when measured using the same functional assay, in the preparation of a medicament for the treatment and/or (22) PCT Filed: Dec. 10, 2002 prevention of Sexual dysfunction. Patent Application Publication Mar. 9, 2006 Sheet 1 of 2 US 2006/0052435 A1 Figure 1 A Selective D3 agonist provides a significant therapeutic window between prosexual and dose-limitind side effects Apomorphine EHV VE - vomiterection D27.2nMD33.9nM E HV H - hypotension O3 0.56nM Log Free plasma O. 1.0 O 1OO 1OOO conc (nM) D3D24973M agonist E noH noV D2 adOnist D2 ag Conclusion D3 No effect D2 & D3 mediates erection D2 mediates vomiting/hypotension Patent Application Publication Mar.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,486,621 B2 Luo Et Al
    USOO8486.621B2 (12) United States Patent (10) Patent No.: US 8,486,621 B2 Luo et al. (45) Date of Patent: Jul. 16, 2013 (54) NUCLEICACID-BASED MATRIXES 2005. O130180 A1 6/2005 Luo et al. 2006/0084607 A1 4/2006 Spirio et al. (75) Inventors: ity, N. (US); Soong Ho 2007/01482462007/0048759 A1 3/20076/2007 Luo et al. m, Ithaca, NY (US) 2008.0167454 A1 7, 2008 Luo et al. 2010, O136614 A1 6, 2010 Luo et al. (73) Assignee: Cornell Research Foundation, Inc., 2012/0022244 A1 1, 2012 Yin Ithaca, NY (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this WO WO 2004/057023 A1 T 2004 patent is extended or adjusted under 35 U.S.C. 154(b) by 808 days. OTHER PUBLICATIONS Lin et al. (J Biomech Eng. Feb. 2004;126(1):104-10).* (21) Appl. No.: 11/464,184 Li et al. (Nat Mater. Jan. 2004:3(1):38-42. Epub Dec. 21, 2003).* Ma et al. (Nucleic Acids Res. Dec. 22, 1986;14(24):9745-53).* (22) Filed: Aug. 11, 2006 Matsuura, et al. Nucleo-nanocages: designed ternary oligodeoxyribonucleotides spontaneously form nanosized DNA (65) Prior Publication Data cages. Chem Commun (Camb). 2003; (3):376-7. Li, et al. Multiplexed detection of pathogen DNA with DNA-based US 2007/01 17177 A1 May 24, 2007 fluorescence nanobarcodes. Nat Biotechnol. 2005; 23(7): 885-9. Lund, et al. Self-assembling a molecular pegboard. JAm ChemSoc. Related U.S. Application Data 2005; 127(50): 17606-7. (60) Provisional application No. 60/722,032, filed on Sep.
    [Show full text]
  • Parkinson's Disease Current Awareness Bulletin
    Parkinson’s Disease Current Awareness Bulletin February 2018 A number of other bulletins are also available – please contact the Academy Library for further details If you would like to receive these bulletins on a regular basis please contact the library. For any references where there is a link to the full text please use your NHS Athens username & password to access If you would like any of the full references from those that do not have links we will source them for you. Contact us: Academy Library 824897/98 Email: [email protected] Title: Motor imagery training with augmented cues of motor learning on cognitive functions in patients with Parkinsonism Citation: International Journal of Therapy and Rehabilitation; 2018; vol. 25 (no. 1); p. 13 Author(s): Lama Saad El Din Mahmoud; Nawal Abd EL Raouf Abu Shady; Ehab Shaker Hafez Objective: Patients with Parkinsonism demonstrate impairments in cognitive functions, such as deficit in attention, planning, and working memory. The objective was to investigate the effect of motor imagery training with augmented cues of motor learning on cognitive functions in patients with Parkinsonism. Methods: A total of 30 patients from both sexes participated in this study. All of the patients had been diagnosed as idiopathic Parkinson patients experiencing cognitive dysfunction. The patients were randomly divided into two equal groups: the study group (n=15) received motor imagery training with augmented cues of motor learning and the specifically designed intervention. The control group (n=15) received conventional treatment (cognitive remediation therapy). The treatment took place three times a week for 6 weeks (18 sessions).
    [Show full text]
  • Discrimination Between Mechanism-Based Inactivation and Tight Binding Inhibitor Behavior
    Biomedical Chemistry: Research and Methods 2020, 3(1), e00115. DOI: 10.18097/bmcrm00115 1 EXPERIMENTAL RESEARCH A SIMPLE APPROACH FOR PILOT ANALYSIS OF TIME-DEPENDENT ENZYME INHIBITION: DISCRIMINATION BETWEEN MECHANISM-BASED INACTIVATION AND TIGHT BINDING INHIBITOR BEHAVIOR O.A. Buneeva, L.N. Aksenova, A.E. Medvedev* Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, 119121 Russia; *e-mail: [email protected] The increase in enzyme inhibition developed during prolonged incubation of an enzyme preparation with a chemical substance may be associated with both the non-covalent and also with covalent enzyme-inhibitor complex formation. The latter case involves catalytic conversion of a mechanism-based irreversible inhibitor (a poor substrate) into a reactive species forming covalent adduct(s) with the enzyme and thus irreversibly inactivating the enzyme molecule. Using a simple approach, based on comparison of enzyme inhibition after preincubation with a potential inhibitor at 4ºC or 37ºC we have analyzed inhibition of monoamine oxidase A (MAO A) by known MAO inhibitors pargyline and pirlindole (pyrazidol). MAO A inhibitory activity of pirlindole (reversible tight binding inhibitor of MAO A) assayed after mitochondrial wash was basically the same for the incubation at both 4ºC and 37ºC. In contrast to pirlindole, the effect of pargyline (mechanism based irreversible MAO inhibitor) strongly depended on the temperature of the incubation medium. At 37ºC the residual activity MAO A in the mitochondrial fraction after washing was significantly lower than in the mitochondrial samples incubated with pargyline at 4ºC. Results of this study suggest that using analysis of both time- and temperature-dependence of inhibition it is possible to discriminate mechanism-based irreversible inhibition and reversible tight binding inhibition of target enzym Key words: enzyme inhibition; time-dependent and temperature-dependent inhibition; mechanism-based inhibitors; reversible tight binding inhibitors DOI: 10.18097/BMCRM00115 INTRODUCTION (England).
    [Show full text]