Concepts to Be Covered Circuit Theory
Introductory Medical Device Prototyping Analog Circuits Part 1 – Circuit Theory Prof. Steven S. Saliterman, http://saliterman.umn.edu/ Department of Biomedical Engineering, University of Minnesota Concepts to be Covered Circuit Theory (Using National Instruments Multisim* Software) Kirchoff’s Voltage and Current Laws Voltage Divider Rule Resistances - Series and Parallel Resistors Capacitance Series and Parallel Capacitors Charging and Discharging a Capacitor Self Review - Advanced Topics Inductors Impedance (Z) and Admittance (Y) Thevenin’s Theorem Superposition Theorem * Multisim - Simulation Program with Integrated Circuit Emphasis - SPICE Prof. Steven S. Saliterman Circuit Theory – Ohm’s Law Ohm’s Law: Where V = Voltage in volts, V. I = Current in amps, A. R = Resistance in ohms, Ω. For example, if the voltage is 5 V (volts direct current), and the resistor is 220 Ω, the current flow would be: ~.0227 22.7 Prof. Steven S. Saliterman Image courtesy of Texas Instruments 1 Ohm’s Law Simulation… Prof. Steven S. Saliterman Resistor Color Code… Prof. Steven S. Saliterman Image courtesy of Electronix Express Measuring Resistance… Select “DMM” mode, Place leads across the 220 Ohm Measured resistance is ~216 ohm then “Ohms.” 5% Resistor on a breadboard. which is within 5% tolerance. (Note Bands: Red-Red-Brown- Gold) Prof. Steven S. Saliterman 2 Setting up 5 VDC on the Powered Breadboard… Set the left-most power supply to 5VDC, You can double check the voltage using and jumper from the binding posts to the the Hantek meter. Select the “DMM” and breadboard rails (red is +, blue is GND (-). “DC V”, then probe the insides of the appropriate binding post.
[Show full text]