Prevalence of Loa Loa and Mansonella Perstans Detection in Urban Areas of Southeast Gabon

Total Page:16

File Type:pdf, Size:1020Kb

Prevalence of Loa Loa and Mansonella Perstans Detection in Urban Areas of Southeast Gabon Vol. 12(2), pp. 44-51, July-December 2020 DOI: 10.5897/JPVB2020.0390 Article Number: 29A046465474 ISSN: 2141-2510 Copyright ©2020 Journal of Parasitology and Author(s) retain the copyright of this article http://www.academicjournals.org/JPVB Vector Biology Full Length Research Paper Prevalence of Loa loa and Mansonella perstans detection in urban areas of Southeast Gabon Eyang-Assengone Elsa Rush1, Roland Dieki2, Mvoula Odile Ngounga3, Antoine Roger Mbou Moutsimbi2, Jean Bernard Lekana-Douki2 and Jean Paul Akue2* 1Department of Tropical Infectiology, Ecole Doctorale Régionaled‟ Afrique Centrale, Franceville, Gabon. 2Department of Parasitology, Interdisciplinary Center for Medical Research of Franceville, Franceville, Gabon. 3Department of Health, Ministry of National Defense, Gabon. Received 19 May 2020 Accepted 20 October 2020 Loa loa and Mansonella perstans are two filarial species commonly found in Gabon loiasis has gained attention because of severe adverse events occurring in individuals harboring very high L. loa microfilarial loads after treatment with ivermectin. However, most studies were carried out in rural areas. This work aimed at the study of the prevalence of filarial infections in different urban areas of southeast Gabon. The cross-sectional survey was conducted between May and December 2018 in Franceville, Moanda, and Mvengue. Participants provided written informed consent, a questionnaire to collect data on demographics and related clinical signs (ocular passage of the worm, Calabar swelling, and pruritus). Blood was collected to search for filarial infections. Plasma and blood pellets were separated after centrifugation. The plasma was used for detection of specific IgG4 by ELISA. In total, 545 were samples collected, the overall prevalence of filarial infection in the three cities was 4.77% (95% CI: 3.06–7.97). The prevalence of L. loa infection was 4.59% (95% CI: 3.05–6.79), and 0.18% (95% CI: 0.01–1.18) for M. perstans. The prevalence of ocular passage of the worm, Calabar swelling and pruritus was 27.71% (95% CI: 24.03–31.07), 17.98% (95% CI: 17.90–24.52) and 48.99% (95% CI: 44.72– 53.27), respectively. The overall prevalence of specific IgG4 producers was 15.60% (95% CI: 12.71– 19.98). There was no correlation between the density of microfilaremia and ocular passage of the worm (p=0.074), but there was a correlation with Calabar swelling (p=0.0005) and between the level of IgG4 subclass and microfilaremic status (p=0.001). This study reveal that the prevalence of L. loa and Mansonella perstans was low in these urban areas, compared with that in rural areas of the same region which was 20.4% for L. loa and 10.2% for M. perstans. These results suggest a different pattern of filarial infection between rural and urban areas. Keywords: Prevalence, Loa loa, M. perstans, urban area, specific IgG4 INTRODUCTION Gabon is located in an area in which filariasis is endemic. Loa loa, Onchocerca volvulus, Mansonella perstans, *Corresponding author. E-mail: [email protected]. Tel: +24166274162. Author(s) agree that this article remain permanently open access under the terms of the Creative Commons Attribution License 4.0 International License Eyang-Assengone et al. 45 Mansonella streptocerca, and Mansonella rodhaini have (Boussinesq, 2006). In contrast to L.loa, which seems to endemic foci in Gabon (Zouré et al., 2011). The most be found only in central Africa and in some west African prevalent filarial worms in Gabon are L. loa and M. countries, M. perstans is widely spread in many countries perstans (Akue et al., 2011). Loiasis is endemic in heavily and is endemic in a large part of sub-Saharan Africa as forested areas of Central Africa, including Cameroon, the well as in South America (Simonsen et al., 2011). Democratic Republic of the Congo (DRC), Gabon, and However, few studies have been carried out on M. Nigeria (Richardson et al., 2012). In Gabon, the perstans filaria. Although very prevalent, the potential prevalence of L. loa infection is greater than 20% (Zouré consequences of the infection by this filarial parasite are et al., 2011). The parasite is transmitted to humans by not well known. Attenuated anemia and a tabanids belonging to the genus Chrysops: Chrysops proinflammatory response were shown to be associated dimidiata and Chrysops silacea. Weather transformission with M. perstans infection (Housseini et al. 2012). has great effect on vectors and vector borne diseases Hyper-eosinophilia caused by M. perstans (Fux et al., having potential effect (Sumbria and Singla, 2017). They 2006) and the intraocular localization of M. perstans have are blood sucking flies mainly found in high trees of rainy also been reported (Bregani et al., 2002). In a study in forests (Ratmanov and Mediannikov, 2013). Loiasis Uganda the pattern of microfilaremia M. perstans and causes a variety of disease symptoms such as Calabar clinical manifestations were analyzed (Asio et al., 2009). swelling, the migration of the adult worm under the bulbar This study suggested that the host's regulatory responses conjunctiva, and pruritus. It is estimated that more than are downregulated in M. perstans infections. 10 million people in Africa have loiasis (Saito et al., Furthermore, most of the reports on both filariae are 2015). L. loa infection has attracted considerable based on rural populations, with no study performed on attention in the context of onchocerciasis control the pattern of the filarial transmissions in urban areas. In programs (Mischlinger et al., 2018) owing to the serious this era of mass control of parasitic diseases, information side effects associated with the use of ivermectin and/or on the prevalence and the distribution of filarial parasites diethylcarbamazine as a mass treatment to eliminate is necessary for an appropriate planning strategy. The onchocerciasis and lymphatic filariasis in endemic areas objective of the present research was to study the (Boussinesq and Gardon, 1997). Because of the co- prevalence of Loa loa and M. perstans in different cities endemicity, administration of anthelmintic drugs requires of the southeast of Gabon. great caution especially in patients with loiasis and particularly in individuals with a high load of L. loa microfilaria. It is now accepted that the most effective MATERIALS AND METHODS drugs for L. loa infection are not safe for heavily infected Study area individuals (>30,000 microfilariae per milliliter of blood), and the safer ones are not completely effective Sampling was carried out in three different urban areas of Haut- (Mogoung-Wafo et al., 2019). A study conducted (Akue et Ogooué province: Mvengue, Franceville, and Moanda (Figure 1). al., 2011) on the epidemiology of concomitant infection Haut-Ogooué is in the southeast of Gabon. The geographic region due to L. loa and M. perstans in Gabon showed that there of the three cities is characterized by isolated areas of savannah and forest. is a spatial relationship between the prevalence and intensity of parasitemia in populations living in rural areas. In fact, rural environments in Gabon, are Study population characterized by low levels of urbanization: There are no hospitals but only dispensaries, no road, and houses are The study was conducted from May to July 2018 and October to surrounded by forest and/ or savannah. The principal December 2018 depending on the availability of individual (Holiday, etc.). Blood was collected during day time between 10 a.m. to 2 activities are field work for women and fishing and p.m. A cross-sectional survey was carried out among citizens of hunting for men, food is cooked with fire wood. All these Franceville, Moanda, and Mvengue. In order to determine the conditions, are favorable for the development of period prevalence of L. loa and M. perstans, a probability sampling infectious diseases. In 2017, a study carried outin rural technique using a stratified sampling method was carried out department of Tsamba-Magotsi, located in the central among civil servant from the three cities. The size of the sample was determined according to the formula n=P(100p) Z2/E2.. With P part of Gabon, found that the environment is afflicted by as the percentage of occurrence of the L. loa and M. perstans the burden of infectious diseases, in particular malaria microfilaria determined during a previous survey in the area (Akue and neglected tropical diseases (Manego et al., 2017). et al., 2011); E is the percentage maximum error required and Z the Microfilaria of L. loa and M. perstans were the most value corresponding to the level of confidence. Each person who prevalent parasitic infections affecting the local agreed to participate was assigned a code number and was population (Manego et al., 2017). Furthermore, the interviewed. All volunteers, including the guardians of all children, provided written, individual informed consent. The National Ethics prevalence of L. loa microfilaremia varies from country to Committee of Gabon (PROT N00001/20/6/3/SG/CNE) approved the country (Boussinesq and Gardon, 1997) as well as within project for this research. The rationale and objective of the study a country and even within a given geographic area were explained and a one-page questionnaire was administered to 46 J. Parasitol. Vector Biol. Figure 1. Study site in Gabon, showing the different sampling areas in the province of Haut Ogooue (Moanda, Mvengué, and Franceville).Departments in which the three study sites are located are shown. The map was created using ArcGIS (ArcMap v10.3). all participants. The reliability of the questionnaire was assumed Parasitological analyses following the procedure developed for the RAPLOA method (Zouré et al., 2011). The question on a history of eye worm was: „„Have A systematic analysis was initiated by direct examination of a 10-µl you ever experienced or noticed worms moving in your eye or sample of blood under an optical microscope, followed by a under the eyelid?” The questions on Calabar swellings and pruritus concentration technique.
Recommended publications
  • The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
    pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes).
    [Show full text]
  • Pathophysiology and Gastrointestinal Impacts of Parasitic Helminths in Human Being
    Research and Reviews on Healthcare: Open Access Journal DOI: 10.32474/RRHOAJ.2020.06.000226 ISSN: 2637-6679 Research Article Pathophysiology and Gastrointestinal Impacts of Parasitic Helminths in Human Being Firew Admasu Hailu1*, Geremew Tafesse1 and Tsion Admasu Hailu2 1Dilla University, College of Natural and Computational Sciences, Department of Biology, Dilla, Ethiopia 2Addis Ababa Medical and Business College, Addis Ababa, Ethiopia *Corresponding author: Firew Admasu Hailu, Dilla University, College of Natural and Computational Sciences, Department of Biology, Dilla, Ethiopia Received: November 05, 2020 Published: November 20, 2020 Abstract Introduction: This study mainly focus on the major pathologic manifestations of human gastrointestinal impacts of parasitic worms. Background: Helminthes and protozoan are human parasites that can infect gastrointestinal tract of humans beings and reside in intestinal wall. Protozoans are one celled microscopic, able to multiply in humans, contributes to their survival, permits serious infections, use one of the four main modes of transmission (direct, fecal-oral, vector-borne, and predator-prey) and also helminthes are necked multicellular organisms, referred as intestinal worms even though not all helminthes reside in intestines. However, in their adult form, helminthes cannot multiply in humans and able to survive in mammalian host for many years due to their ability to manipulate immune response. Objectives: The objectives of this study is to assess the main pathophysiology and gastrointestinal impacts of parasitic worms in human being. Methods: Both primary and secondary data were collected using direct observation, books and articles, and also analyzed quantitativelyResults and and conclusion: qualitatively Parasites following are standard organisms scientific living temporarily methods. in or on other organisms called host like human and other animals.
    [Show full text]
  • Co-Infection with Onchocerca Volvulus and Loa Loa Microfilariae in Central Cameroon: Are These Two Species Interacting?
    843 Co-infection with Onchocerca volvulus and Loa loa microfilariae in central Cameroon: are these two species interacting? S. D. S. PION1,2*, P. CLARKE3, J. A. N. FILIPE2,J.KAMGNO1,J.GARDON1,4, M.-G. BASA´ N˜ EZ2 and M. BOUSSINESQ1,5 1 Laboratoire mixte IRD (Institut de Recherche pour le De´veloppement) – CPC (Centre Pasteur du Cameroun) d’Epide´miologie et de Sante´ publique, Centre Pasteur du Cameroun, BP 1274, Yaounde´, Cameroun 2 Department of Infectious Disease Epidemiology, St Mary’s campus, Norfolk Place, London W2 1PG, UK 3 Infectious Disease Epidemiology Unit London School of Hygiene and Tropical Medicine Keppel Street, London WC1E 7HT, UK 4 Institut de Recherche pour le De´veloppement, UR 24 Epide´miologie et Pre´vention, CP 9214 Obrajes, La Paz, Bolivia 5 Institut de Recherche pour le De´veloppement, De´partement Socie´te´s et Sante´, 213 rue La Fayette, 75480 Paris Cedex 10, France (Received 16 August 2005; revised 3 October; revised 9 December 2005; accepted 9 December 2005; first published online 10 February 2006) SUMMARY Ivermectin treatment may induce severe adverse reactions in some individuals heavily infected with Loa loa. This hampers the implementation of mass ivermectin treatment against onchocerciasis in areas where Onchocerca volvulus and L. loa are co-endemic. In order to identify factors, including co-infections, which may explain the presence of high L. loa micro- filaraemia in some individuals, we analysed data collected in 19 villages of central Cameroon. Two standardized skin snips and 30 ml of blood were obtained from each of 3190 participants and the microfilarial (mf) loads of both O.
    [Show full text]
  • Review of the Genus Mansonella Faust, 1929 Sensu Lato (Nematoda: Onchocercidae), with Descriptions of a New Subgenus and a New Subspecies
    Zootaxa 3918 (2): 151–193 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3918.2.1 http://zoobank.org/urn:lsid:zoobank.org:pub:DE65407C-A09E-43E2-8734-F5F5BED82C88 Review of the genus Mansonella Faust, 1929 sensu lato (Nematoda: Onchocercidae), with descriptions of a new subgenus and a new subspecies ODILE BAIN1†, YASEN MUTAFCHIEV2, KERSTIN JUNKER3,8, RICARDO GUERRERO4, CORALIE MARTIN5, EMILIE LEFOULON5 & SHIGEHIKO UNI6,7 1Muséum National d'Histoire Naturelle, Parasitologie comparée, UMR 7205 CNRS, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France 2Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria E-mail: [email protected] 3ARC-Onderstepoort Veterinary Institute, Private Bag X05, Onderstepoort, 0110, South Africa 4Instituto de Zoología Tropical, Faculdad de Ciencias, Universidad Central de Venezuela, PO Box 47058, 1041A, Caracas, Venezuela. E-mail: [email protected] 5Muséum National d'Histoire Naturelle, Parasitologie comparée, UMR 7245 MCAM, CP52, 61 rue Buffon, 75231 Paris Cedex 05, France E-mail: [email protected], [email protected] 6Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia E-mail: [email protected] 7Department of Parasitology, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka 545-8585, Japan 8Corresponding author. E-mail: [email protected] †In memory of our colleague Dr Odile Bain, who initiated this study and laid the ground work with her vast knowledge of the filarial worms and detailed morphological studies of the species presented in this paper Table of contents Abstract .
    [Show full text]
  • Performance of Two Serodiagnostic Tests for Loiasis in A
    Performance of two serodiagnostic tests for loiasis in a Non-Endemic area Federico Gobbi, Dora Buonfrate, Michel Boussinesq, Cédric Chesnais, Sébastien Pion, Ronaldo Silva, Lucia Moro, Paola Rodari, Francesca Tamarozzi, Marco Biamonte, et al. To cite this version: Federico Gobbi, Dora Buonfrate, Michel Boussinesq, Cédric Chesnais, Sébastien Pion, et al.. Perfor- mance of two serodiagnostic tests for loiasis in a Non-Endemic area. PLoS Neglected Tropical Dis- eases, Public Library of Science, 2020, 14 (5), pp.e0008187. 10.1371/journal.pntd.0008187. inserm- 02911633 HAL Id: inserm-02911633 https://www.hal.inserm.fr/inserm-02911633 Submitted on 4 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PLOS NEGLECTED TROPICAL DISEASES RESEARCH ARTICLE Performance of two serodiagnostic tests for loiasis in a Non-Endemic area 1 1 2 2 Federico GobbiID *, Dora Buonfrate , Michel Boussinesq , Cedric B. Chesnais , 2 1 1 1 3 Sebastien D. Pion , Ronaldo Silva , Lucia Moro , Paola RodariID , Francesca Tamarozzi , Marco Biamonte4, Zeno Bisoffi1,5 1 IRCCS Sacro
    [Show full text]
  • Hookworm-Related Cutaneous Larva Migrans
    326 Hookworm-Related Cutaneous Larva Migrans Patrick Hochedez , MD , and Eric Caumes , MD Département des Maladies Infectieuses et Tropicales, Hôpital Pitié-Salpêtrière, Paris, France DOI: 10.1111/j.1708-8305.2007.00148.x Downloaded from https://academic.oup.com/jtm/article/14/5/326/1808671 by guest on 27 September 2021 utaneous larva migrans (CLM) is the most fre- Risk factors for developing HrCLM have specifi - Cquent travel-associated skin disease of tropical cally been investigated in one outbreak in Canadian origin. 1,2 This dermatosis fi rst described as CLM by tourists: less frequent use of protective footwear Lee in 1874 was later attributed to the subcutane- while walking on the beach was signifi cantly associ- ous migration of Ancylostoma larvae by White and ated with a higher risk of developing the disease, Dove in 1929. 3,4 Since then, this skin disease has also with a risk ratio of 4. Moreover, affected patients been called creeping eruption, creeping verminous were somewhat younger than unaffected travelers dermatitis, sand worm eruption, or plumber ’ s itch, (36.9 vs 41.2 yr, p = 0.014). There was no correla- which adds to the confusion. It has been suggested tion between the reported amount of time spent on to name this disease hookworm-related cutaneous the beach and the risk of developing CLM. Consid- larva migrans (HrCLM).5 ering animals in the neighborhood, 90% of the Although frequent, this tropical dermatosis is travelers in that study reported seeing cats on the not suffi ciently well known by Western physicians, beach and around the hotel area, and only 1.5% and this can delay diagnosis and effective treatment.
    [Show full text]
  • Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
    h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID
    [Show full text]
  • For Onchocerciasis on Parasitological Indicators of Loa Loa Infection
    pathogens Article Collateral Impact of Community-Directed Treatment with Ivermectin (CDTI) for Onchocerciasis on Parasitological Indicators of Loa loa Infection Hugues C. Nana-Djeunga 1,*, Cédric G. Lenou-Nanga 1, Cyrille Donfo-Azafack 1, Linda Djune-Yemeli 1, Floribert Fossuo-Thotchum 1, André Domche 1, Arsel V. Litchou-Tchuinang 1, Jean Bopda 1, Stève Mbickmen-Tchana 1, Thérèse Nkoa 2, Véronique Penlap 3, Francine Ntoumi 4,5 and Joseph Kamgno 1,6,* 1 Centre for Research on Filariasis and Other Tropical Diseases, P.O. Box 5797, Yaoundé, Cameroon; [email protected] (C.G.L.-N.); [email protected] (C.D.-A.); [email protected] (L.D.-Y.); fl[email protected] (F.F.-T.); [email protected] (A.D.); [email protected] (A.V.L.-T.); bopda@crfilmt.org (J.B.); mbickmen@crfilmt.org (S.M.-T.) 2 Ministry of Public Health, Yaoundé, Cameroon; [email protected] 3 Department of Biochemistry, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon; [email protected] 4 Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville CG-BZV, Republic of the Congo; [email protected] 5 Faculty of Science and Technology, Marien Ngouabi University, P.O. Box 69, Brazzaville, Republic of the Congo 6 Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, P.O. Box 1364, Yaoundé, Cameroon * Correspondence: nanadjeunga@crfilmt.org (H.C.N.-D.); kamgno@crfilmt.org (J.K.); Tel.: +237-699-076-499 (H.C.N.-D.); +237-677-789-736 (J.K.) Received: 24 October 2020; Accepted: 9 December 2020; Published: 12 December 2020 Abstract: Ivermectin (IVM) is a broad spectrum endectocide whose initial indication was onchocerciasis.
    [Show full text]
  • Genomics of Loa Loa, a Wolbachia-Free Filarial Parasite of Humans
    ARTICLES OPEN Genomics of Loa loa, a Wolbachia-free filarial parasite of humans Christopher A Desjardins1, Gustavo C Cerqueira1, Jonathan M Goldberg1, Julie C Dunning Hotopp2, Brian J Haas1, Jeremy Zucker1, José M C Ribeiro3, Sakina Saif1, Joshua Z Levin1, Lin Fan1, Qiandong Zeng1, Carsten Russ1, Jennifer R Wortman1, Doran L Fink4,5, Bruce W Birren1 & Thomas B Nutman4 Loa loa, the African eyeworm, is a major filarial pathogen of humans. Unlike most filariae, L. loa does not contain the obligate intracellular Wolbachia endosymbiont. We describe the 91.4-Mb genome of L. loa and that of the related filarial parasite Wuchereria bancrofti and predict 14,907 L. loa genes on the basis of microfilarial RNA sequencing. By comparing these genomes to that of another filarial parasite, Brugia malayi, and to those of several other nematodes, we demonstrate synteny among filariae but not with nonparasitic nematodes. The L. loa genome encodes many immunologically relevant genes, as well as protein kinases targeted by drugs currently approved for use in humans. Despite lacking Wolbachia, L. loa shows no new metabolic synthesis or transport capabilities compared to other filariae. These results suggest that the role of Wolbachia in filarial biology is more subtle All rights reserved. than previously thought and reveal marked differences between parasitic and nonparasitic nematodes. Filarial nematodes dwell within the lymphatics and subcutaneous (but not the worm itself) have shown efficacy in treating humans tissues of up to 170 million people worldwide and are responsible with these infections4,5. Through genomic analysis, Wolbachia have for notable morbidity, disability and socioeconomic loss1.
    [Show full text]
  • Filarial Worms
    Filarial worms Blood & tissues Nematodes 1 Blood & tissues filarial worms • Wuchereria bancrofti • Brugia malayi & timori • Loa loa • Onchocerca volvulus • Mansonella spp • Dirofilaria immitis 2 General life cycle of filariae From Manson’s Tropical Diseases, 22 nd edition 3 Wuchereria bancrofti Life cycle 4 Lymphatic filariasis Clinical manifestations 1. Acute adenolymphangitis (ADLA) 2. Hydrocoele 3. Lymphoedema 4. Elephantiasis 5. Chyluria 6. Tropical pulmonary eosinophilia (TPE) 5 Figure 84.10 Sequence of development of the two types of acute filarial syndromes, acute dermatolymphangioadenitis (ADLA) and acute filarial lymphangitis (AFL), and their possible relationship to chronic filarial disease. From Manson’s tropical Diseases, 22 nd edition 6 Bancroftian filariasis Pathology 7 Lymphatic filariasis Parasitological Diagnosis • Usually diagnosis of microfilariae from blood but often negative (amicrofilaraemia does not exclude the disease!) • No relationship between microfilarial density and severity of the disease • Obtain a specimen at peak (9pm-3am for W.b) • Counting chamber technique: 100 ml blood + 0.9 ml of 3% acetic acid microscope. Species identification is difficult! 8 Lymphatic filariasis Parasitological Diagnosis • Staining (Giemsa, haematoxylin) . Observe differences in size, shape, nuclei location, etc. • Membrane filtration technique on venous blood (Nucleopore) and staining of filters (sensitive but costly) • Knott concentration technique with saponin (highly sensitive) may be used 9 The microfilaria of Wuchereria bancrofti are sheathed and measure 240-300 µm in stained blood smears and 275-320 µm in 2% formalin. They have a gently curved body, and a tail that becomes thinner to a point. The nuclear column (the cells that constitute the body of the microfilaria) is loosely packed; the cells can be visualized individually and do not extend to the tip of the tail.
    [Show full text]
  • Phylogenetic and Population Genetic Studies on Some Insect and Plant Associated Nematodes
    PHYLOGENETIC AND POPULATION GENETIC STUDIES ON SOME INSECT AND PLANT ASSOCIATED NEMATODES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Amr T. M. Saeb, M.S. * * * * * The Ohio State University 2006 Dissertation Committee: Professor Parwinder S. Grewal, Adviser Professor Sally A. Miller Professor Sophien Kamoun Professor Michael A. Ellis Approved by Adviser Plant Pathology Graduate Program Abstract: Throughout the evolutionary time, nine families of nematodes have been found to have close associations with insects. These nematodes either have a passive relationship with their insect hosts and use it as a vector to reach their primary hosts or they attack and invade their insect partners then kill, sterilize or alter their development. In this work I used the internal transcribed spacer 1 of ribosomal DNA (ITS1-rDNA) and the mitochondrial genes cytochrome oxidase subunit I (cox1) and NADH dehydrogenase subunit 4 (nd4) genes to investigate genetic diversity and phylogeny of six species of the entomopathogenic nematode Heterorhabditis. Generally, cox1 sequences showed higher levels of genetic variation, larger number of phylogenetically informative characters, more variable sites and more reliable parsimony trees compared to ITS1-rDNA and nd4. The ITS1-rDNA phylogenetic trees suggested the division of the unknown isolates into two major phylogenetic groups: the HP88 group and the Oswego group. All cox1 based phylogenetic trees agreed for the division of unknown isolates into three phylogenetic groups: KMD10 and GPS5 and the HP88 group containing the remaining 11 isolates. KMD10, GPS5 represent potentially new taxa. The cox1 analysis also suggested that HP88 is divided into two subgroups: the GPS11 group and the Oswego subgroup.
    [Show full text]
  • Historic Accounts of Mansonella Parasitaemias in the South Pacific and Their Relevance to Lymphatic Filariasis Elimination Efforts Today
    Asian Pacific Journal of Tropical Medicine 2016; 9(3): 205–210 205 HOSTED BY Contents lists available at ScienceDirect Asian Pacific Journal of Tropical Medicine journal homepage: http://ees.elsevier.com/apjtm Review http://dx.doi.org/10.1016/j.apjtm.2016.01.040 Historic accounts of Mansonella parasitaemias in the South Pacific and their relevance to lymphatic filariasis elimination efforts today J. Lee Crainey*,Tullio´ Romão Ribeiro da Silva, Sergio Luiz Bessa Luz Ecologia de Doenças Transmissíveis na Amazonia,ˆ Instituto Leonidasˆ e Maria Deane-Fiocruz Amazoniaˆ Rua Terezina, 476. Adrian´opolis, CEP: 69.057-070, Manaus, Amazonas, Brazil ARTICLE INFO ABSTRACT Article history: There are two species of filarial parasites with sheathless microfilariae known to Received 15 Dec 2015 commonly cause parasitaemias in humans: Mansonella perstans and Mansonella ozzardi. Received in revised form 20 Dec In most contemporary accounts of the distribution of these parasites, neither is usually 2015 considered to occur anywhere in the Eastern Hemisphere. However, Sir Patrick Manson, Accepted 30 Dec 2015 who first described both parasite species, recorded the existence of sheathless sharp-tailed Available online 11 Jan 2016 Mansonella ozzardi-like parasites occurring in the blood of natives from New Guinea in each and every version of his manual for tropical disease that he wrote before his death in 1922. Manson's reports were based on his own identifications and were made from at Keywords: least two independent blood sample collections that were taken from the island. Pacific Mansonella ozzardi region Mansonella perstans parasitaemias were also later (in 1923) reported to occur in Mansonella perstans New Guinea and once before this (in 1905) in Fiji.
    [Show full text]