bioRxiv preprint doi: https://doi.org/10.1101/493668; this version posted December 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Structural Insights into Curli Amyloid Fibrils suggest Repurposing Anti- amyloid Compounds as Anti-biofilm Agents Authors: Sergei Perov1†, Ofir Lidor1†, Nir Salinas1†, Nimrod Golan1, Einav Tayeb- Fligelman1,2, Dieter Willbold3,4, and Meytal Landau1* Affiliations: 1Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel 2 Present affiliation: Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles 90095, USA. 3Institute of Complex Systems (ICS-6, Structural Biochemistry), Forschungszentrum Jülich , 52425 Jülich , Germany 4Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf , Germany †These authors contributed equally to this work *Correspondence to:
[email protected] Curli amyloid fibrils secreted by Enterobacteriaceae mediate host cell adhesion and contribute to biofilm formation, thereby promoting bacterial resistance to environmental stressors. Here, we present crystal structures of amyloid-forming segments from the major curlin subunit, CsgA, revealing steric zipper fibrils of tightly mated β-sheets, demonstrating a structural link between curli and human pathological amyloids. We propose that these cross-β segments structure the highly robust curli amyloid core. D-enantiomeric