EXPLORING the ROLE of the MAJOR PILIN Pile in the FUNCTIONS of TYPE IV PILI
Total Page:16
File Type:pdf, Size:1020Kb
Université Paris Descartes École doctorale Frontières du vivant (ED 474) Unité de pathogénèse des Infections Vasculaires – Institut Pasteur NEW INSIGHTS INTO MENINGOCOCCAL PATHOGENESIS: EXPLORING THE ROLE OF THE MAJOR PILIN PilE IN THE FUNCTIONS OF TYPE IV PILI Par Paul Kennouche Thèse de doctorat de Biologie Dirigée par le Dr. Guillaume Duménil Présentée et soutenue publiquement le 14 juin 2018 Devant un jury composé de : Pr. Jeremy Derrick Rapporteur Pr. Han Remaut Rapporteur Dr. Olivera Francetic Examinatrice Dr. Alexandra Walczak Examinatrice Dr. Guillaume Duménil Directeur de thèse À mes formidables grand-mères, À toi Nenès, qui ne m’auras pas vu « gagner le dernier bac ». À toi Manou, c’en est fini de « l’École Nationale Scientifique ». Outline INTRODUCTION 1 1 A HISTORICAL OVERVIEW OF THE DIVERSITY OF PROKARYOTIC APPENDAGES 3 1.1 THE FIRST OBSERVED APPENDAGES ARE ASSEMBLED BY TYPE THREE SECRETION SYSTEMS ............. 3 1.1.1 Flagella: rotating bacterial filaments 4 1.1.1.1 Diversity of flagellar systems 4 1.1.1.2 Functions: motility and more 5 1.1.1.3 Structure and assembly 7 1.1.2 The injectisome: needles assembled by the type three secretion system 8 1.1.2.1 Relationships to the flagellum 8 1.1.2.2 Diversity of injectisomes 8 1.1.2.3 A translocation machine 9 1.1.2.4 Structure and assembly 9 1.2 FIMBRIAE: A CATCH-ALL TERM FOR THIN PROKARYOTIC APPENDAGES......................................... 12 1.2.1 Fimbriae of diderm bacteria need to cross two membranes 12 1.2.1.1 Curli: unique amyloid fibers 12 ¬ Discovery of functional amyloid pili 12 ¬ Pili for adhesion and biofilm formation 13 ¬ Structure and assembly 13 1.2.1.2 Chaperone-usher pili: a diverse class of pili assembled by two conserved proteins 15 ¬ CU pili are widespread among diderm bacteria 15 ¬ CU pili are powerful adhesins 15 ¬ Structure and assembly 17 ¬ Structural features of adhesion 17 1.2.1.3 Pseudopili assembled by the type II secretion system 18 ¬ Discovery and distribution 18 ¬ A secretion machine with high substrate specificity 18 ¬ Structure and assembly 19 1.2.1.4 The newly discovered type V pili 20 ¬ Distribution 20 ¬ Multifunctional pili 20 ¬ Structure and assembly 20 1.2.2 A monoderm-specific pilus: the sortase-dependent pilus 22 1.2.2.1 The first pili ever discovered in monoderm bacteria 22 1.2.2.2 Pili for adhesion and aggregation 22 1.2.2.3 Assembly of a peptidoglycan-anchored pilus 23 1.2.3 Archaeal pili: an unexplored diversity 25 1.2.3.1 Hami: archaeal grappling hooks 25 1.2.3.2 Archaeal cannulae and bacterial spinae: intercellular communication fibers? 26 1.2.3.3 Mth60 fimbriae: species-specific multifunctional fimbriae 28 1.2.3.4 Archaella: the archaeal motility structure 28 ¬ Discovery of an archaeal flagellum unrelated to the bacterial flagellum 28 ¬ Motility and more… 29 ¬ Structure and assembly 29 1.2.4 Pili found in all three types of prokaryotes: 2 different strategies to reach the surface 31 1.2.4.1 Pili assembled by type 4 secretion systems 31 1.2.4.2 Type IV pili: the all-in-one prokaryotic appendages 33 ¬ Distribution and discovery 34 ¬ TFP: multi-tasking champions 34 ¬ Structure and assembly 34 2 TYPE FOUR FILAMENTS: MULTIFUNCTIONAL HOMOLOGOUS SYSTEMS 37 2.1 A CONSERVED BIOSYNTHESIS MACHINERY FORMED BY 3 COMPLEXES ........................................ 38 2.1.1 The inner membrane complex 38 2.1.1.1 The prepilin peptidase cleaves the leader peptide of the class III signal 38 2.1.1.2 The assembly platform initiates pilus assembly 39 2.1.1.3 The ATPases: powering pilus assembly and retraction 41 2.1.2 The outer membrane complex: crossing the outer membrane 44 2.1.3 The filament 45 2.1.3.1 Major pilins: major components of the pilus 46 ¬ Structure 46 ¬ Post-translational modifications 48 2.1.3.2 Minor (pseudo)pilins: a start/stop button? 48 2.2 ONE MACHINERY, MANY FUNCTIONS ......................................................................................... 51 2.2.1 TFF mediate attachment through surface adhesion 51 2.2.2 TFF allow prokaryotes to move in various ways 53 2.2.3 TFF allow the formation of multicellular communities through aggregation 55 2.2.4 TFF allow selective protein secretion 56 2.2.5 TFF generate genetic diversity by providing transformation competence 58 2.2.6 TFF can be hijacked by phages 59 2.2.7 TFF can act as nanowires to allow extracellular respiration 60 2.2.8 TFF can enable surface sensing by mechanotransduction 61 3 TYPE IV PILI OF NEISSERIA MENINGITIDIS: A CASE STUDY 63 3.1 A HUMAN OBLIGATE PATHOGEN ................................................................................................ 63 3.1.1 The Neisseriaceae family: a diversity of commensal bacteria 63 3.1.2 Meningococcus has a high carriage rate 64 3.1.3 Meningococcal disease: a rare but deadly disease 64 3.2 VIRULENCE OF NEISSERIA MENINGITIDIS..................................................................................... 67 3.2.1 Hyperinvasive lineages: a few clonal complexes cause most disease cases 67 3.2.2 Multiple surface structures involved in infection 68 3.2.2.1 The protective capsule 68 3.2.2.2 The pro-inflammatory lipooligosaccharide 70 3.2.2.3 Metabolic adaptations 70 3.2.2.4 Several adhesins contribute to colonization of the human host 71 ¬ Minor adhesins 71 ¬ Opacity proteins 72 ¬ Type IV pili: long distance adhesins 72 3.2.3 Infection models as a tool for in vivo identification of virulence factors 74 3.3 NEISSERIAL TYPE IV PILI: LINKING STRUCTURE AND FUNCTION .................................................... 75 3.3.1 Specificities of the meningococcal machinery 76 3.3.1.1 PilC-like proteins 76 3.3.1.2 Minor pilins 76 3.3.2 Pilus biogenesis 77 3.3.2.1 Role of the components of the piliation machinery 77 3.3.2.2 Pilus structure 78 3.3.3 TFP-dependent functions in Neisseria meningitidis 79 3.3.3.1 Pilus retraction enables twitching motility 79 3.3.3.2 Pilus retraction enables natural competence 80 3.3.3.3 Pilus retraction enables phage infection 81 3.3.3.4 Pilus retraction enables the formation of fluid aggregates 82 3.3.3.5 Adhesion to human cells 83 ¬ Adhesion to epithelial cells: two putative receptors 84 ¬ Adhesion to endothelial cells: a CD 147-dependent adhesion? 85 ¬ TFP: one adhesin or multiple adhesins? 85 3.3.3.6 Cellular response and signaling 86 OBJECTIVES: UNDERSTANDING HOW TFP MEDIATE SO MANY FUNCTIONS 89 RESULTS 91 1 SUBMITTED ARTICLE: MECHANISMS OF MENINGOCOCCAL TYPE IV PILI MULTIPLE FUNCTIONS REVEALED BY DEEP MUTATIONAL SCANNING. 93 2 ADDITIONAL RESULTS 129 2.1 CHARACTERIZING THE IMPORTANCE OF PILE IN COMPETENCE FOR TRANSFORMATION ........... 129 2.2 EXPLAINING THE PHENOTYPE OF THE “SHORT PILI” MUTANTS................................................... 130 2.2.1 Mutants with short pili have retractile pili 130 2.2.2 A role for minor pilins in pilus assembly 131 2.3 EXPLORING ADHESION TO HUMAN CELLS ................................................................................ 134 2.3.1 Deep mutational scanning shows a specific role of tyrosine residues in adhesion 134 2.3.2 Cholesterol-binding by TFP 136 2.3.3 Meningococcal TFP are electrically conductive 140 DISCUSSION 143 1 ADHERING UNDER FLOW, LEARNING FROM OTHER BACTERIA 144 2 REGULATION OF MENINGOCOCCAL PILIATION, A MATTER OF BISTABILITY? 147 3 CONSERVATION AMONG TFP-BEARING PROKARYOTES 150 3.1 PILIATION: HOMOLOGOUS STRUCTURES WITH DIFFERENT PROPERTIES..................................... 151 3.1.1 Folding PilE 151 3.1.2 Bistability and pilus length 151 3.2 COMPETENCE: ELECTROPOSITIVE GROOVES TO BIND DNA?................................................... 152 3.3 AGGREGATION THROUGH ELECTROSTATIC COMPLEMENTARITY .............................................. 153 3.4 ADHESION: A CONSERVED MECHANISM FOR TYPE IVA PILI? ..................................................... 155 3.5 USING TFF TO UNDERSTAND HOW TFP MEDIATE THEIR FUNCTIONS ....................................... 157 CONCLUSION 159 SUPPLEMENTARY MATERIALS AND METHODS 161 REFERENCES 165 ACKNOWLEDGEMENTS 195 List of figures: Figure 1: Summary of the introduction. 1 Figure 2: Early observation of 2 types of appendages: flagella and pili. 2 Venn diagram 4 Figure 3: Flagellum functions, structure and assembly. 6 Figure 4: Injectisome functions, structure and assembly. 10 Figure 5: Curli pili assembly and appearance. 14 Figure 6: Chaperone-usher pilus structure, functions and assembly. 16 Figure 7: Type 2 secretion system assembly. 19 Figure 8: Type V pilus structure and assembly. 21 Figure 9: Sortase-dependent pilus appearance and assembly. 24 Figure 10: Archaeal hami structure and functions. 26 Figure 11: The archaeal cannulae and the bacterial spinae share similar features. 27 Figure 12: Mth60 fimbriae functions and appearance. 28 Figure 13: Archaellum structure and functions. 30 Figure 14: Type IV secretion systems structure, function and assembly. 32 Figure 15: Type IV pili structure, functions and assembly. 35 Figure 16: Type four filaments share a conserved machinery. 37 Figure 17: Conservation of the class III signal peptide. 39 Figure 18: The inner membrane complex. 41 Figure 19: Structure of the ATPases PilF and PilT. 43 Figure 20: Structure/function relationship of secretins. 45 Figure 21: Conservation of type IV pilins structure. 47 Figure 22: Structure and functions of minor pseudopilins. 48 Figure 23: Type IV filaments are involved in a wide array of functions. 51 Figure 24: TFF-dependent adhesion to biotic and abiotic surfaces. 52 Figure 25: Diverse motility phenotypes can be achieved by TFF-bearing prokaryotes. 54 Figure 26: TFF-mediated aggregation. 56 Figure 27: Proposed mechanisms for protein secretion. 57 Figure 28: Proposed models for DNA uptake. 58 Figure 29: Phage binding to Type IV pili. 59 Figure 30: Type IV pili as nanowires. 61 Figure 31: Type IV pili as mechanosensors. 62 Figure 32: Diversity of the Neisseria genus. 63 Figure 33: Epidemiology of meningococcal disease. 65 Figure 34: Development of meningococcal disease. 67 Figure 35: Cell envelope of Neisseria meningitidis.