EXPLORING the ROLE of the MAJOR PILIN Pile in the FUNCTIONS of TYPE IV PILI

Total Page:16

File Type:pdf, Size:1020Kb

EXPLORING the ROLE of the MAJOR PILIN Pile in the FUNCTIONS of TYPE IV PILI Université Paris Descartes École doctorale Frontières du vivant (ED 474) Unité de pathogénèse des Infections Vasculaires – Institut Pasteur NEW INSIGHTS INTO MENINGOCOCCAL PATHOGENESIS: EXPLORING THE ROLE OF THE MAJOR PILIN PilE IN THE FUNCTIONS OF TYPE IV PILI Par Paul Kennouche Thèse de doctorat de Biologie Dirigée par le Dr. Guillaume Duménil Présentée et soutenue publiquement le 14 juin 2018 Devant un jury composé de : Pr. Jeremy Derrick Rapporteur Pr. Han Remaut Rapporteur Dr. Olivera Francetic Examinatrice Dr. Alexandra Walczak Examinatrice Dr. Guillaume Duménil Directeur de thèse À mes formidables grand-mères, À toi Nenès, qui ne m’auras pas vu « gagner le dernier bac ». À toi Manou, c’en est fini de « l’École Nationale Scientifique ». Outline INTRODUCTION 1 1 A HISTORICAL OVERVIEW OF THE DIVERSITY OF PROKARYOTIC APPENDAGES 3 1.1 THE FIRST OBSERVED APPENDAGES ARE ASSEMBLED BY TYPE THREE SECRETION SYSTEMS ............. 3 1.1.1 Flagella: rotating bacterial filaments 4 1.1.1.1 Diversity of flagellar systems 4 1.1.1.2 Functions: motility and more 5 1.1.1.3 Structure and assembly 7 1.1.2 The injectisome: needles assembled by the type three secretion system 8 1.1.2.1 Relationships to the flagellum 8 1.1.2.2 Diversity of injectisomes 8 1.1.2.3 A translocation machine 9 1.1.2.4 Structure and assembly 9 1.2 FIMBRIAE: A CATCH-ALL TERM FOR THIN PROKARYOTIC APPENDAGES......................................... 12 1.2.1 Fimbriae of diderm bacteria need to cross two membranes 12 1.2.1.1 Curli: unique amyloid fibers 12 ¬ Discovery of functional amyloid pili 12 ¬ Pili for adhesion and biofilm formation 13 ¬ Structure and assembly 13 1.2.1.2 Chaperone-usher pili: a diverse class of pili assembled by two conserved proteins 15 ¬ CU pili are widespread among diderm bacteria 15 ¬ CU pili are powerful adhesins 15 ¬ Structure and assembly 17 ¬ Structural features of adhesion 17 1.2.1.3 Pseudopili assembled by the type II secretion system 18 ¬ Discovery and distribution 18 ¬ A secretion machine with high substrate specificity 18 ¬ Structure and assembly 19 1.2.1.4 The newly discovered type V pili 20 ¬ Distribution 20 ¬ Multifunctional pili 20 ¬ Structure and assembly 20 1.2.2 A monoderm-specific pilus: the sortase-dependent pilus 22 1.2.2.1 The first pili ever discovered in monoderm bacteria 22 1.2.2.2 Pili for adhesion and aggregation 22 1.2.2.3 Assembly of a peptidoglycan-anchored pilus 23 1.2.3 Archaeal pili: an unexplored diversity 25 1.2.3.1 Hami: archaeal grappling hooks 25 1.2.3.2 Archaeal cannulae and bacterial spinae: intercellular communication fibers? 26 1.2.3.3 Mth60 fimbriae: species-specific multifunctional fimbriae 28 1.2.3.4 Archaella: the archaeal motility structure 28 ¬ Discovery of an archaeal flagellum unrelated to the bacterial flagellum 28 ¬ Motility and more… 29 ¬ Structure and assembly 29 1.2.4 Pili found in all three types of prokaryotes: 2 different strategies to reach the surface 31 1.2.4.1 Pili assembled by type 4 secretion systems 31 1.2.4.2 Type IV pili: the all-in-one prokaryotic appendages 33 ¬ Distribution and discovery 34 ¬ TFP: multi-tasking champions 34 ¬ Structure and assembly 34 2 TYPE FOUR FILAMENTS: MULTIFUNCTIONAL HOMOLOGOUS SYSTEMS 37 2.1 A CONSERVED BIOSYNTHESIS MACHINERY FORMED BY 3 COMPLEXES ........................................ 38 2.1.1 The inner membrane complex 38 2.1.1.1 The prepilin peptidase cleaves the leader peptide of the class III signal 38 2.1.1.2 The assembly platform initiates pilus assembly 39 2.1.1.3 The ATPases: powering pilus assembly and retraction 41 2.1.2 The outer membrane complex: crossing the outer membrane 44 2.1.3 The filament 45 2.1.3.1 Major pilins: major components of the pilus 46 ¬ Structure 46 ¬ Post-translational modifications 48 2.1.3.2 Minor (pseudo)pilins: a start/stop button? 48 2.2 ONE MACHINERY, MANY FUNCTIONS ......................................................................................... 51 2.2.1 TFF mediate attachment through surface adhesion 51 2.2.2 TFF allow prokaryotes to move in various ways 53 2.2.3 TFF allow the formation of multicellular communities through aggregation 55 2.2.4 TFF allow selective protein secretion 56 2.2.5 TFF generate genetic diversity by providing transformation competence 58 2.2.6 TFF can be hijacked by phages 59 2.2.7 TFF can act as nanowires to allow extracellular respiration 60 2.2.8 TFF can enable surface sensing by mechanotransduction 61 3 TYPE IV PILI OF NEISSERIA MENINGITIDIS: A CASE STUDY 63 3.1 A HUMAN OBLIGATE PATHOGEN ................................................................................................ 63 3.1.1 The Neisseriaceae family: a diversity of commensal bacteria 63 3.1.2 Meningococcus has a high carriage rate 64 3.1.3 Meningococcal disease: a rare but deadly disease 64 3.2 VIRULENCE OF NEISSERIA MENINGITIDIS..................................................................................... 67 3.2.1 Hyperinvasive lineages: a few clonal complexes cause most disease cases 67 3.2.2 Multiple surface structures involved in infection 68 3.2.2.1 The protective capsule 68 3.2.2.2 The pro-inflammatory lipooligosaccharide 70 3.2.2.3 Metabolic adaptations 70 3.2.2.4 Several adhesins contribute to colonization of the human host 71 ¬ Minor adhesins 71 ¬ Opacity proteins 72 ¬ Type IV pili: long distance adhesins 72 3.2.3 Infection models as a tool for in vivo identification of virulence factors 74 3.3 NEISSERIAL TYPE IV PILI: LINKING STRUCTURE AND FUNCTION .................................................... 75 3.3.1 Specificities of the meningococcal machinery 76 3.3.1.1 PilC-like proteins 76 3.3.1.2 Minor pilins 76 3.3.2 Pilus biogenesis 77 3.3.2.1 Role of the components of the piliation machinery 77 3.3.2.2 Pilus structure 78 3.3.3 TFP-dependent functions in Neisseria meningitidis 79 3.3.3.1 Pilus retraction enables twitching motility 79 3.3.3.2 Pilus retraction enables natural competence 80 3.3.3.3 Pilus retraction enables phage infection 81 3.3.3.4 Pilus retraction enables the formation of fluid aggregates 82 3.3.3.5 Adhesion to human cells 83 ¬ Adhesion to epithelial cells: two putative receptors 84 ¬ Adhesion to endothelial cells: a CD 147-dependent adhesion? 85 ¬ TFP: one adhesin or multiple adhesins? 85 3.3.3.6 Cellular response and signaling 86 OBJECTIVES: UNDERSTANDING HOW TFP MEDIATE SO MANY FUNCTIONS 89 RESULTS 91 1 SUBMITTED ARTICLE: MECHANISMS OF MENINGOCOCCAL TYPE IV PILI MULTIPLE FUNCTIONS REVEALED BY DEEP MUTATIONAL SCANNING. 93 2 ADDITIONAL RESULTS 129 2.1 CHARACTERIZING THE IMPORTANCE OF PILE IN COMPETENCE FOR TRANSFORMATION ........... 129 2.2 EXPLAINING THE PHENOTYPE OF THE “SHORT PILI” MUTANTS................................................... 130 2.2.1 Mutants with short pili have retractile pili 130 2.2.2 A role for minor pilins in pilus assembly 131 2.3 EXPLORING ADHESION TO HUMAN CELLS ................................................................................ 134 2.3.1 Deep mutational scanning shows a specific role of tyrosine residues in adhesion 134 2.3.2 Cholesterol-binding by TFP 136 2.3.3 Meningococcal TFP are electrically conductive 140 DISCUSSION 143 1 ADHERING UNDER FLOW, LEARNING FROM OTHER BACTERIA 144 2 REGULATION OF MENINGOCOCCAL PILIATION, A MATTER OF BISTABILITY? 147 3 CONSERVATION AMONG TFP-BEARING PROKARYOTES 150 3.1 PILIATION: HOMOLOGOUS STRUCTURES WITH DIFFERENT PROPERTIES..................................... 151 3.1.1 Folding PilE 151 3.1.2 Bistability and pilus length 151 3.2 COMPETENCE: ELECTROPOSITIVE GROOVES TO BIND DNA?................................................... 152 3.3 AGGREGATION THROUGH ELECTROSTATIC COMPLEMENTARITY .............................................. 153 3.4 ADHESION: A CONSERVED MECHANISM FOR TYPE IVA PILI? ..................................................... 155 3.5 USING TFF TO UNDERSTAND HOW TFP MEDIATE THEIR FUNCTIONS ....................................... 157 CONCLUSION 159 SUPPLEMENTARY MATERIALS AND METHODS 161 REFERENCES 165 ACKNOWLEDGEMENTS 195 List of figures: Figure 1: Summary of the introduction. 1 Figure 2: Early observation of 2 types of appendages: flagella and pili. 2 Venn diagram 4 Figure 3: Flagellum functions, structure and assembly. 6 Figure 4: Injectisome functions, structure and assembly. 10 Figure 5: Curli pili assembly and appearance. 14 Figure 6: Chaperone-usher pilus structure, functions and assembly. 16 Figure 7: Type 2 secretion system assembly. 19 Figure 8: Type V pilus structure and assembly. 21 Figure 9: Sortase-dependent pilus appearance and assembly. 24 Figure 10: Archaeal hami structure and functions. 26 Figure 11: The archaeal cannulae and the bacterial spinae share similar features. 27 Figure 12: Mth60 fimbriae functions and appearance. 28 Figure 13: Archaellum structure and functions. 30 Figure 14: Type IV secretion systems structure, function and assembly. 32 Figure 15: Type IV pili structure, functions and assembly. 35 Figure 16: Type four filaments share a conserved machinery. 37 Figure 17: Conservation of the class III signal peptide. 39 Figure 18: The inner membrane complex. 41 Figure 19: Structure of the ATPases PilF and PilT. 43 Figure 20: Structure/function relationship of secretins. 45 Figure 21: Conservation of type IV pilins structure. 47 Figure 22: Structure and functions of minor pseudopilins. 48 Figure 23: Type IV filaments are involved in a wide array of functions. 51 Figure 24: TFF-dependent adhesion to biotic and abiotic surfaces. 52 Figure 25: Diverse motility phenotypes can be achieved by TFF-bearing prokaryotes. 54 Figure 26: TFF-mediated aggregation. 56 Figure 27: Proposed mechanisms for protein secretion. 57 Figure 28: Proposed models for DNA uptake. 58 Figure 29: Phage binding to Type IV pili. 59 Figure 30: Type IV pili as nanowires. 61 Figure 31: Type IV pili as mechanosensors. 62 Figure 32: Diversity of the Neisseria genus. 63 Figure 33: Epidemiology of meningococcal disease. 65 Figure 34: Development of meningococcal disease. 67 Figure 35: Cell envelope of Neisseria meningitidis.
Recommended publications
  • Review Pili in Gram-Negative and Gram-Positive Bacteria – Structure
    Cell. Mol. Life Sci. 66 (2009) 613 – 635 1420-682X/09/040613-23 Cellular and Molecular Life Sciences DOI 10.1007/s00018-008-8477-4 Birkhuser Verlag, Basel, 2008 Review Pili in Gram-negative and Gram-positive bacteria – structure, assembly and their role in disease T. Profta,c,* and E. N. Bakerb,c a School of Medical Sciences, Department of Molecular Medicine & Pathology, University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand), Fax: +64-9-373-7492, e-mail: [email protected] b School of Biological Sciences, University of Auckland, Auckland (New Zealand) c Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland (New Zealand) Received 08 August 2008; received after revision 24 September 2008; accepted 01 October 2008 Online First 27 October 2008 Abstract. Many bacterial species possess long fila- special form of bacterial cell movement, known as mentous structures known as pili or fimbriae extend- twitching motility. In contrast, the more recently ing from their surfaces. Despite the diversity in pilus discovered pili in Gram-positive bacteria are formed structure and biogenesis, pili in Gram-negative bac- by covalent polymerization of pilin subunits in a teria are typically formed by non-covalent homopo- process that requires a dedicated sortase enzyme. lymerization of major pilus subunit proteins (pilins), Minor pilins are added to the fiber and play a major which generates the pilus shaft. Additional pilins may role in host cell colonization. be added to the fiber and often function as host cell This review gives an overview of the structure, adhesins. Some pili are also involved in biofilm assembly and function of the best-characterized pili formation, phage transduction, DNA uptake and a of both Gram-negative and Gram-positive bacteria.
    [Show full text]
  • B. Fragilis Is Mediated by Capsular
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.19.258442; this version posted August 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Hemagglutination by B. fragilis is mediated by capsular 2 polysaccharides and is influenced by host ABO blood type. 3 Kathleen L. Arnolds a, Nancy Moreno-Huizar b, Maggie A. Stanislawski c, 4 Brent Palmer c, Catherine Lozupone c* 5 a Department of Microbiology, University of Colorado Anschutz Medical Campus, 6 Aurora, CO, USA [email protected] 7 b Department of Computer Science, University of Colorado Denver, Denver, CO, USA. 8 c Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, 9 CO, USA [email protected] 10 11 12 13 14 15 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.19.258442; this version posted August 21, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Hemagglutination by B. fragilis is mediated by capsular polysaccharides and is 17 influenced by host ABO blood type. 18 19 Bacterial hemagglutination of red blood cells (RBCs) is mediated by 20 interactions between bacterial cell components and RBC envelope glycans 21 that vary across individuals by ABO blood type.
    [Show full text]
  • Structure and Function of the Archaeal Response Regulator Chey
    Structure and function of the archaeal response PNAS PLUS regulator CheY Tessa E. F. Quaxa, Florian Altegoerb, Fernando Rossia, Zhengqun Lia, Marta Rodriguez-Francoc, Florian Krausd, Gert Bangeb,1, and Sonja-Verena Albersa,1 aMolecular Biology of Archaea, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; bLandes-Offensive zur Entwicklung Wissenschaftlich- ökonomischer Exzellenz Center for Synthetic Microbiology & Faculty of Chemistry, Philipps-University-Marburg, 35043 Marburg, Germany; cCell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; and dFaculty of Chemistry, Philipps-University-Marburg, 35043 Marburg, Germany Edited by Norman R. Pace, University of Colorado at Boulder, Boulder, CO, and approved December 13, 2017 (received for review October 2, 2017) Motility is a central feature of many microorganisms and provides display different swimming mechanisms. Counterclockwise ro- an efficient strategy to respond to environmental changes. Bacteria tation results in smooth swimming in well-characterized peritri- and archaea have developed fundamentally different rotary motors chously flagellated bacteria such as Escherichia coli, whereas enabling their motility, termed flagellum and archaellum, respec- rotation in the opposite direction results in tumbling. In contrast, tively. Bacterial motility along chemical gradients, called chemo- in other bacteria (i.e., Vibrio alginolyticus) and haloarchaea, taxis, critically relies on the response regulator CheY, which, when clockwise rotation results
    [Show full text]
  • Bradymonabacteria, a Novel Bacterial Predator Group with Versatile
    Mu et al. Microbiome (2020) 8:126 https://doi.org/10.1186/s40168-020-00902-0 RESEARCH Open Access Bradymonabacteria, a novel bacterial predator group with versatile survival strategies in saline environments Da-Shuai Mu1,2, Shuo Wang2, Qi-Yun Liang2, Zhao-Zhong Du2, Renmao Tian3, Yang Ouyang3, Xin-Peng Wang2, Aifen Zhou3, Ya Gong1,2, Guan-Jun Chen1,2, Joy Van Nostrand3, Yunfeng Yang4, Jizhong Zhou3,4 and Zong-Jun Du1,2* Abstract Background: Bacterial predation is an important selective force in microbial community structure and dynamics. However, only a limited number of predatory bacteria have been reported, and their predatory strategies and evolutionary adaptations remain elusive. We recently isolated a novel group of bacterial predators, Bradymonabacteria, representative of the novel order Bradymonadales in δ-Proteobacteria. Compared with those of other bacterial predators (e.g., Myxococcales and Bdellovibrionales), the predatory and living strategies of Bradymonadales are still largely unknown. Results: Based on individual coculture of Bradymonabacteria with 281 prey bacteria, Bradymonabacteria preyed on diverse bacteria but had a high preference for Bacteroidetes. Genomic analysis of 13 recently sequenced Bradymonabacteria indicated that these bacteria had conspicuous metabolic deficiencies, but they could synthesize many polymers, such as polyphosphate and polyhydroxyalkanoates. Dual transcriptome analysis of cocultures of Bradymonabacteria and prey suggested a potential contact-dependent predation mechanism. Comparative genomic analysis with 24 other bacterial predators indicated that Bradymonabacteria had different predatory and living strategies. Furthermore, we identified Bradymonadales from 1552 publicly available 16S rRNA amplicon sequencing samples, indicating that Bradymonadales was widely distributed and highly abundant in saline environments. Phylogenetic analysis showed that there may be six subgroups in this order; each subgroup occupied a different habitat.
    [Show full text]
  • Motile Ghosts of the Halophilic Archaeon, Haloferax Volcanii
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.899351; this version posted May 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Motile ghosts of the halophilic archaeon, 2 Haloferax volcanii 3 Yoshiaki Kinosita1,2,¶,*, Nagisa Mikami2, Zhengqun Li2, Frank Braun2, Tessa EF. Quax2, 4 Chris van der Does2, Robert Ishmukhametov1, Sonja-Verena Albers2 & Richard M. Berry1 5 1Department of Physics, University of Oxford, Park load OX1 3PU, Oxford, UK 6 2Institute for Biology II, University of Freiburg, Schaenzle strasse 1, 79104 Freiburg, 7 Germany 8 ¶Present address: Molecular Physiology Laboratory, RIKEN, Japan 9 *Correspondence should be addressed to [email protected] 10 Author Contributions: 11 Y.K. and R.M.B designed the research. Y.K. performed all experiments and 12 obtained all data; N.M. helped genetics, biochemistry, and preparation of figures; 13 Z.L, F.B., T.EF.Q., C.v.d.D and S.-V. A. helped genetics; R.I helped the ghost 14 experiments; N.M. and R.M.B helped microscope measurements; Y.K., and 15 R.M.B. wrote the paper. 16 17 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.08.899351; this version posted May 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Bacteriophages Targeting Acinetobacter Baumannii Capsule
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.25.965590; this version posted February 26, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Bacteriophages targeting Acinetobacter baumannii capsule 2 induce antimicrobial resensitization 3 4 Fernando Gordillo Altamirano1*, John H. Forsyth1, Ruzeen Patwa1, Xenia Kostoulias2, Michael Trim1, Dinesh 5 Subedi1, Stuart Archer3, Faye C. Morris2, Cody Oliveira1, Luisa Kielty1, Denis Korneev1, Moira K. O’Bryan1, 6 Trevor J. Lithgow2, Anton Y. Peleg2,4, Jeremy J. Barr1* 7 8 1 School of Biological Sciences, Monash University 9 2 Biomedicine Discovery Institute and Department of Microbiology, Monash University 10 3 Monash Bioinformatics Platform, Faculty of Medicine, Nursing and Health Sciences, Monash University 11 4 Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University 12 13 *Corresponding authors 14 Fernando Gordillo Altamirano [email protected] 15 Jeremy J. Barr [email protected] 16 School of Biological Sciences, Monash University 17 25 Rainforest Walk, 18 Clayton, 3800, VIC 19 Australia 20 21 Abstract 22 Carbapenem-resistant Acinetobacter baumannii is responsible for frequent, hard-to-treat and often fatal 23 healthcare-associated infections. Phage therapy, the use of viruses that infect and kill bacteria, is an approach 24 gaining significant clinical interest to combat antibiotic-resistant infections. However, a major limitation is that 25 bacteria can develop resistance against phages. Here, we isolated phages with activity against a panel of A.
    [Show full text]
  • Viruses of Hyperthermophilic Archaea: Entry and Egress from the Host Cell
    Viruses of hyperthermophilic archaea : entry and egress from the host cell Emmanuelle Quemin To cite this version: Emmanuelle Quemin. Viruses of hyperthermophilic archaea : entry and egress from the host cell. Microbiology and Parasitology. Université Pierre et Marie Curie - Paris VI, 2015. English. NNT : 2015PA066329. tel-01374196 HAL Id: tel-01374196 https://tel.archives-ouvertes.fr/tel-01374196 Submitted on 30 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université Pierre et Marie Curie – Paris VI Unité de Biologie Moléculaire du Gène chez les Extrêmophiles Ecole doctorale Complexité du Vivant ED515 Département de Microbiologie - Institut Pasteur 7, quai Saint-Bernard, case 32 25, rue du Dr. Roux 75252 Paris Cedex 05 75015 Paris THESE DE DOCTORAT DE L’UNIVERSITE PIERRE ET MARIE CURIE Spécialité : Microbiologie Pour obtenir le grade de DOCTEUR DE L’UNIVERSITE PIERRE ET MARIE CURIE VIRUSES OF HYPERTHERMOPHILIC ARCHAEA: ENTRY INTO AND EGRESS FROM THE HOST CELL Présentée par M. Emmanuelle Quemin Soutenue le 28 Septembre 2015 devant le jury composé de : Prof. Guennadi Sezonov Président du jury Prof. Christa Schleper Rapporteur de thèse Dr. Paulo Tavares Rapporteur de thèse Dr.
    [Show full text]
  • Structure of the Archaellar Motor and Associated Cytoplasmic Cone In
    bioRxiv preprint first posted online Feb. 13, 2017; doi: http://dx.doi.org/10.1101/108209. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license. 1 Structure of the archaellar motor and associated cytoplasmic cone in 2 Thermococcus kodakaraensis 3 4 Ariane Briegel1,2, Catherine M. Oikonomou1, Yi-Wei Chang1, Andreas Kjær1,3, Audrey N. 5 Huang1, Ki Woo Kim4, Debnath Ghosal1, Robert P. Gunsalus5, and Grant J. Jensen1,6,* 6 7 8 9 1 Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. 10 California Blvd., Pasadena, CA 91125 11 2 Current: Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE Leiden, Netherlands 12 3 Current address: University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark 13 4 School of Ecology and Environmental System, Kyungpook National University, Sangju 37224, 14 South Korea 15 5 Department of Microbiology, Immunology and Molecular Genetics, the Molecular Biology 16 Institute, University of California, Los Angeles, 609 Charles E. Young Dr. S., Los Angeles, CA 17 90095 18 6 Howard Hughes Medical Institute, 1200 E. California Blvd., Pasadena, CA 91125 19 * Correspondence: [email protected] 20 21 Keywords: electron cryotomography, cryo-EM, archaea, archaella, flagella, T4P, motility, 22 Thermococcus kodakaraensis, Thermococcus kodakarensis 23 1 bioRxiv preprint first posted online Feb. 13, 2017; doi: http://dx.doi.org/10.1101/108209. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It is made available under a CC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Characterization of the Agrobacterium Tumefaciens Virb2 Pilin of the Virb/D4 Type IV Secretion System
    The Texas Medical Center Library DigitalCommons@TMC The University of Texas MD Anderson Cancer Center UTHealth Graduate School of The University of Texas MD Anderson Cancer Biomedical Sciences Dissertations and Theses Center UTHealth Graduate School of (Open Access) Biomedical Sciences 12-2010 Characterization of the Agrobacterium tumefaciens VirB2 pilin of the VirB/D4 Type IV Secretion System Jennifer Kerr Follow this and additional works at: https://digitalcommons.library.tmc.edu/utgsbs_dissertations Part of the Molecular Genetics Commons, and the Pathogenic Microbiology Commons Recommended Citation Kerr, Jennifer, "Characterization of the Agrobacterium tumefaciens VirB2 pilin of the VirB/D4 Type IV Secretion System" (2010). The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access). 97. https://digitalcommons.library.tmc.edu/utgsbs_dissertations/97 This Dissertation (PhD) is brought to you for free and open access by the The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences at DigitalCommons@TMC. It has been accepted for inclusion in The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Dissertations and Theses (Open Access) by an authorized administrator of DigitalCommons@TMC. For more information, please contact [email protected]. CHARACTERIZATION OF THE AGROBACTERIUM TUMEFACIENS VIRB2 PILIN OF THE VIRB/D4 TYPE IV SECRETION SYSTEM by Jennifer Evangeline Kerr, B.A. APPROVED: ______________________________________ Supervisory Professor - Peter J. Christie, Ph.D. ______________________________________ William Margolin, Ph.D. ______________________________________ Ambro van Hoof, Ph.D. ______________________________________ Renhao Li, Ph.D. ______________________________________ Mikhail Bogdanov, Ph.D. APPROVED: ____________________________________ George M. Stancel, Ph.D.
    [Show full text]
  • Formation of Pilin in Pseudomonas Aeruginosa Requires
    Proc. Natd. Acad. Sci. USA Vol. 86, pp. 1954-1957, March 1989 Genetics Formation of pilin in Pseudomonas aeruginosa requires the alternative a- factor (RpoN) of RNA polymerase (Pseudomonas pfli/adhesion/transcriptional regulation) KARYN S. ISHIMOTO AND STEPHEN LORY Department of Microbiology, School of Medicine, University of Washington, Seattle, WA 98195 Communicated by Bernard D. Davis, December 22, 1988 ABSTRACT The promoter region of the Pseudomonas Bradley (Memorial University of Newfoundland, St. John's, aeruginosa pilin gene has a high degree of similarity to the Newfoundland). PAK-SR is a streptomycin-resistant mutant nitrogen-regulated promoters of enteric bacteria. These pro- of PAK and was isolated after selection on plates containing moters are recognized by the alternative a factor of RNA streptomycin at 200 jig/ml. The E. coli DHS a [endAI hsdR17 polymerase, termed RpoN (NtrA or GlnF). This observation supE44 thi-J recAl gyrA96 relAl A(lacZYA-argF)U169 A-+80 suggested that the P. aeruginosa pilin gene may be transcribed dlacZ AM15] and E. coli HB101 [hsd-20 recA13 ara-14 proA2 by the RpoN-containing RNA polymerase. We, therefore, lac4J galK2 mtl-i xyl-S supE44 rpsL2] were the recipient cloned the RpoN gene from P. aeruginosa into Escherichia coli strains for recombinant plasmids. E. coli YMC10 [endAl thi-J (where it formed a functional product) and used that cloned hsdRJ7 supE44 AlacU169 hutCk] and E. coli TH1 [same as gene to construct a mutant of P. aeruginosa that was inser- YMC10, with the RpoN gene region deleted) were provided tionally inactivated in its RpoN gene.
    [Show full text]
  • An In-Vitro Investigation to Determine the Neuroinflammatory Response of CNS Cells to Oral Bacteria and Their Virulence Factors
    An in-vitro investigation to determine the neuroinflammatory response of CNS cells to oral bacteria and their virulence factors by Rahul Previn A thesis submitted in partial fulfilment for the requirements for the degree of MSc (by Research) at the University of Central Lancashire February 2013 i ACKNOWLEDGEMENTS I would like to thank the University of Central Lancashire, UK for the opportunity to undertake my postgraduate research degree. I wish to thank my Principle Investigator (PI) and Director of studies (D0S), Dean, Prof St John Crean for steering me into an interesting, and a hybrid dental-neurosciences project. His inspirational and expert guidance made the challenges of education seem more manageable. I would also like to thank Dr Peter Robinson, my Research Degrees Tutor (RDT), as without his expert help in getting through the various postgraduate degree hurdles would have been impossible. I would like to express my sincere gratitude to my supervisor, Dr Sim Singhrao for the daily guidance, advice, and patience throughout the practical work of the project. I would also like to thank Miss Sophie Poole, currently a PhD student, for ad-hoc assistance in the lab and for guidance in interpreting row data whenever she was nearby. I would like to acknowledge Prof. M. Curtis for the essential reagents I used to investigate my research question without which, my project would be incomplete. Above all, I would like to express my heartfelt gratitude to my family, especially my mother for her undying love, invaluable moral and financial support and encouragement to do well, during my time away from home.
    [Show full text]
  • Bacterial Size, Shape and Arrangement & Cell Structure And
    Lecture 13, 14 and 15: bacterial size, shape and arrangement & Cell structure and components of bacteria and Functional anatomy and reproduction in bacteria Bacterial size, shape and arrangement Bacteria are prokaryotic, unicellular microorganisms, which lack chlorophyll pigments. The cell structure is simpler than that of other organisms as there is no nucleus or membrane bound organelles.Due to the presence of a rigid cell wall, bacteria maintain a definite shape, though they vary as shape, size and structure. When viewed under light microscope, most bacteria appear in variations of three major shapes: the rod (bacillus), the sphere (coccus) and the spiral type (vibrio). In fact, structure of bacteria has two aspects, arrangement and shape. So far as the arrangement is concerned, it may Paired (diplo), Grape-like clusters (staphylo) or Chains (strepto). In shape they may principally be Rods (bacilli), Spheres (cocci), and Spirals (spirillum). Size of Bacterial Cell The average diameter of spherical bacteria is 0.5- 2.0 µm. For rod-shaped or filamentous bacteria, length is 1-10 µm and diameter is 0.25-1 .0 µm. E. coli , a bacillus of about average size is 1.1 to 1.5 µm wide by 2.0 to 6.0 µm long. Spirochaetes occasionally reach 500 µm in length and the cyanobacterium Accepted wisdom is that bacteria are smaller than eukaryotes. But certain cyanobacteria are quite large; Oscillatoria cells are 7 micrometers diameter. The bacterium, Epulosiscium fishelsoni , can be seen with the naked eye (600 mm long by 80 mm in diameter). One group of bacteria, called the Mycoplasmas, have individuals with size much smaller than these dimensions.
    [Show full text]