RESEARCH ARTICLE Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire Repurposing of Anti-amyloid Compounds as Anti-biofilm Agents 1☯ 1☯ 1☯ 1☯ Sergei Perov , Ofir LidorID , Nir SalinasID , Nimrod GolanID , Einav Tayeb- 1 1 2,3 1 Fligelman , Maya DeshmukhID , Dieter WillboldID , Meytal LandauID * a1111111111 1 Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel, 2 Institute of Complex Systems (ICS-6, Structural Biochemistry), Forschungszentrum JuÈlich, JuÈlich, Germany, 3 Institut fuÈr a1111111111 Physikalische Biologie, Heinrich-Heine-UniversitaÈt DuÈsseldorf, DuÈsseldorf, Germany a1111111111 a1111111111 ☯ These authors contributed equally to this work. a1111111111 *
[email protected] Abstract OPEN ACCESS Curli amyloid fibrils secreted by Enterobacteriaceae mediate host cell adhesion and contrib- Citation: Perov S, Lidor O, Salinas N, Golan N, ute to biofilm formation, thereby promoting bacterial resistance to environmental stressors. Tayeb- Fligelman E, Deshmukh M, et al. (2019) Here, we present crystal structures of amyloid-forming segments from the major curli sub- Structural Insights into Curli CsgA Cross-β Fibril Architecture Inspire Repurposing of Anti-amyloid unit, CsgA, revealing steric zipper fibrils of tightly mated β-sheets, demonstrating a structural Compounds as Anti-biofilm Agents. PLoS Pathog link between curli and human pathological amyloids. D-enantiomeric peptides, originally 15(8): e1007978. https://doi.org/10.1371/journal. developed to interfere with Alzheimer's disease-associated amyloid-β, inhibited CsgA fibril- ppat.1007978 lation and reduced biofilm formation in Salmonella typhimurium. Moreover, as previously Editor: Fitnat H. Yildiz, UC Santa Cruz, UNITED shown, CsgA fibrils cross-seeded fibrillation of amyloid-β, providing support for the pro- STATES posed structural resemblance and potential for cross-species amyloid interactions.