Sedimentary Record of Glacial Dynamics Lake Level Fluctuations

Total Page:16

File Type:pdf, Size:1020Kb

Sedimentary Record of Glacial Dynamics Lake Level Fluctuations University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 2005 Sedimentary record of glacial dynamics lake level fluctuations and tectonics: Late Pleistocene-Holocene structural and stratigraphic analysis of the Flathead Lake basin and the Mission Valley Montana United States America Michael H. Hofmann The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Hofmann, Michael H., "Sedimentary record of glacial dynamics lake level fluctuations and tectonics: Late Pleistocene-Holocene structural and stratigraphic analysis of the Flathead Lake basin and the Mission Valley Montana United States America" (2005). Graduate Student Theses, Dissertations, & Professional Papers. 9583. https://scholarworks.umt.edu/etd/9583 This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. NOTE TO USERS The CD is not included in this original manuscript. This reproduction is the best copy available. __ ® UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Maureen and Mike MANSFIELD LIBRARY The University of Montana Permission is granted by the author to reproduce this material in its entirety, provided that this material is used for scholarly purposes and is properly cited in published works and reports. **Please check "Yes" or "No" and provide signature** Yes, I grant permission No, I do not grant permission Author's Signature: Date: Yj j0 'S Any copying for commercial purposes or financial gain may be undertaken only with the author's explicit consent. 8/98 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. SEDIMENTARY RECORD OF GLACIAL DYNAMICS, LAKE LEVEL FLUCTUATIONS, AND TECTONICS: LATE PLEISTOCENE - HOLOCENE STRUCTURAL AND STRATIGRAPHIC ANALYSIS OF THE FLATHEAD LAKE BASIN AND THE MISSION VALLEY, MONTANA, USA by Michael H. Hofmann Dipl.Geol. Universitat Erlangen-Niirnberg, Germany, 2001 presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy The University of Montana December 2005 Approved by: C. •erson Dean, Graduate School -3o-os Date Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3205772 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3205772 Copyright 2006 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, Ml 48106-1346 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Hofmann, Michael H., Ph.D., December 2005 Geology Sedimentary Record of glacial dynamics, lake level fluctuations, and tectonics: Late Pleistocene - Holocene structural and stratigraphic analysis of the Flathead Lake basin and the Mission Valley, Montana, USA Chairperson: Marc H. Hendrix /n srt Integrated analysis of high-resolution seismic reflection profiles, sediment cores and onshore geologic mapping from Flathead Lake and adjacent areas in northwest Montana has revealed considerable information about late Pleistocene and Holocene geologic and tectonic history of the region. During the last glacial maximum, the Flathead Lobe of the Cordilleran Ice sheet advanced twice to its terminal position just south of present day Flathead Lake. During retreat of the lobe, a pro-glacial lake developed with a surface elevation higher than that of modern Flathead Lake. Fault scarps offsetting glacial deposits but not younger stratigraphic units indicate that a tectonic event along the Mission Fault system also occurred during this early post-glacial time. Just after the deposition of the Glacier Peak tephra (13,180 ±120 cal yr BP) the surface level of Flathead Lake dropped to an initial Holocene lowstand at ~10,000 cal yr BP. This lowstand coincided with another period of tectonic activity along the Mission Fault system. After 10,000 cal yr BP, the lake level stabilized for about 2,000 years before dropping to its lowest Holocene level at -7,600 cal yr BP. Seismic and core data from shallow parts of the lake indicate the presence of a fundamental erosional unconformity at this time. This unconformity coincides with the deposition of the Mount Mazama tephra (7,630±80 cal yr BP) and provides information about a post-glacial lake-level lowstand during which the surface of the lake dropped about 15m below the modern lake level and Flathead Lake lost about 25% of its present volume. Although no increase in CaCQ? content was observed along this unconformity, simple hydrologic and geochemical models suggest that the lake level lowering was related to a significant decrease in precipitation, likely triggered by the Mount Mazama volcanic eruption. After this short extreme drought, the lake refilled roughly to its modern day level and fluctuated slightly throughout the reminder of the Holocene. Tectonic activity in the study area was low throughout the Holocene, although several vertically offset seismic reflections in Holocene seismic stratigraphic units that may be seismically-related were recognized. ii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. PREFACE FOREWORD The Flathead and Mission Valleys in northwestern Montana have a colorful late Pleistocene and Holocene history that can be interpreted from the wide variety of sediments and landforms of this age that occur in the area. The most obvious landforms are the Poison moraine, a terminal moraine from the Flathead lobe of the late Pleistocene Cordilleran Ice Sheet, and different sets of alpine moraines that reflect the advance of glaciers from the Mission Range into the Flathead Valley. Another relict of the late Pleistocene glaciation and the neotectonic history of the area is Flathead Lake, with a surface area of 496km2 the biggest naturally occurring freshwater lake west of the Mississippi River. Sediments in this lake captured the late Pleistocene and Holocene neotectonic, glacial, and climate history in great detail and are the cornerstones of many of the interpretations published in this dissertation. By making use of this tremendous geologic natural laboratory this dissertation focuses on the detailed interpretation of the latest Pleistocene and Holocene history of the Flathead and Mission Valleys. Its goal is to establish the spatial and temporal linkages between the sediment fill history of these valleys and its relationship to advances of late iii Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Pleistocene glaciers, fluctuations in lake levels and drought frequency, and movements on major faults. It is especially important to better understand the late Pleistocene and Holocene history in the study area because northwestern Montana is a region of steady population growth. Detailed documentation of the depositional history and the transport mechanism of the Quaternary sediments will help to elucidate the distribution of the sediments and other geologic features such as major faults. This will be of immediate use to community planners concerned about new groundwater resources and seismic hazards in the Flathead and Mission Valleys. This dissertation comprises four papers that describe the late Pleistocene and Holocene sediment fill history of the Flathead and Mission Valleys in northwestern Montana and the Flathead Lake region in particular. The first paper (Chapter 1), entitled "Results of geologic mapping of the East Bay 7.5' Quadrangle, Northwest Montana" is published in large parts in the Montana Bureau of Mines and Geology Open File Report 496. Chapter 1 summarizes the geology of parts of the northern Mission Valley in order to match the offshore data from the Flathead Lake sub-bottom (described in Chapters 2-4) to deposits exposed onshore around the margins of the lake. This chapter contains an explanation of new geologic mapping and a complete stratigraphic overview of the Flathead Lake vicinity. Particular attention is given to the Ethology and facies iv Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. of the late Pleistocene and Holocene deposits to establish their correlation to the sediments and facies mapped offshore, within the
Recommended publications
  • Wisconsinan and Sangamonian Type Sections of Central Illinois
    557 IL6gu Buidebook 21 COPY no. 21 OFFICE Wisconsinan and Sangamonian type sections of central Illinois E. Donald McKay Ninth Biennial Meeting, American Quaternary Association University of Illinois at Urbana-Champaign, May 31 -June 6, 1986 Sponsored by the Illinois State Geological and Water Surveys, the Illinois State Museum, and the University of Illinois Departments of Geology, Geography, and Anthropology Wisconsinan and Sangamonian type sections of central Illinois Leaders E. Donald McKay Illinois State Geological Survey, Champaign, Illinois Alan D. Ham Dickson Mounds Museum, Lewistown, Illinois Contributors Leon R. Follmer Illinois State Geological Survey, Champaign, Illinois Francis F. King James E. King Illinois State Museum, Springfield, Illinois Alan V. Morgan Anne Morgan University of Waterloo, Waterloo, Ontario, Canada American Quaternary Association Ninth Biennial Meeting, May 31 -June 6, 1986 Urbana-Champaign, Illinois ISGS Guidebook 21 Reprinted 1990 ILLINOIS STATE GEOLOGICAL SURVEY Morris W Leighton, Chief 615 East Peabody Drive Champaign, Illinois 61820 Digitized by the Internet Archive in 2012 with funding from University of Illinois Urbana-Champaign http://archive.org/details/wisconsinansanga21mcka Contents Introduction 1 Stopl The Farm Creek Section: A Notable Pleistocene Section 7 E. Donald McKay and Leon R. Follmer Stop 2 The Dickson Mounds Museum 25 Alan D. Ham Stop 3 Athens Quarry Sections: Type Locality of the Sangamon Soil 27 Leon R. Follmer, E. Donald McKay, James E. King and Francis B. King References 41 Appendix 1. Comparison of the Complete Soil Profile and a Weathering Profile 45 in a Rock (from Follmer, 1984) Appendix 2. A Preliminary Note on Fossil Insect Faunas from Central Illinois 46 Alan V.
    [Show full text]
  • Vegetation and Fire at the Last Glacial Maximum in Tropical South America
    Past Climate Variability in South America and Surrounding Regions Developments in Paleoenvironmental Research VOLUME 14 Aims and Scope: Paleoenvironmental research continues to enjoy tremendous interest and progress in the scientific community. The overall aims and scope of the Developments in Paleoenvironmental Research book series is to capture this excitement and doc- ument these developments. Volumes related to any aspect of paleoenvironmental research, encompassing any time period, are within the scope of the series. For example, relevant topics include studies focused on terrestrial, peatland, lacustrine, riverine, estuarine, and marine systems, ice cores, cave deposits, palynology, iso- topes, geochemistry, sedimentology, paleontology, etc. Methodological and taxo- nomic volumes relevant to paleoenvironmental research are also encouraged. The series will include edited volumes on a particular subject, geographic region, or time period, conference and workshop proceedings, as well as monographs. Prospective authors and/or editors should consult the series editor for more details. The series editor also welcomes any comments or suggestions for future volumes. EDITOR AND BOARD OF ADVISORS Series Editor: John P. Smol, Queen’s University, Canada Advisory Board: Keith Alverson, Intergovernmental Oceanographic Commission (IOC), UNESCO, France H. John B. Birks, University of Bergen and Bjerknes Centre for Climate Research, Norway Raymond S. Bradley, University of Massachusetts, USA Glen M. MacDonald, University of California, USA For futher
    [Show full text]
  • Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework Due Thursday Nov
    Learning Objectives (LO) Lecture 21: Glaciers and Paleoclimate Read: Chapter 15 Homework due Thursday Nov. 12 What we’ll learn today:! 1. 1. Glaciers and where they occur! 2. 2. Compare depositional and erosional features of glaciers! 3. 3. Earth-Sun orbital parameters, relevance to interglacial periods ! A glacier is a river of ice. Glaciers can range in size from: 100s of m (mountain glaciers) to 100s of km (continental ice sheets) Most glaciers are 1000s to 100,000s of years old! The Snowline is the lowest elevation of a perennial (2 yrs) snow field. Glaciers can only form above the snowline, where snow does not completely melt in the summer. Requirements: Cold temperatures Polar latitudes or high elevations Sufficient snow Flat area for snow to accumulate Permafrost is permanently frozen soil beneath a seasonal active layer that supports plant life Glaciers are made of compressed, recrystallized snow. Snow buildup in the zone of accumulation flows downhill into the zone of wastage. Glacier-Covered Areas Glacier Coverage (km2) No glaciers in Australia! 160,000 glaciers total 47 countries have glaciers 94% of Earth’s ice is in Greenland and Antarctica Mountain Glaciers are Retreating Worldwide The Antarctic Ice Sheet The Greenland Ice Sheet Glaciers flow downhill through ductile (plastic) deformation & by basal sliding. Brittle deformation near the surface makes cracks, or crevasses. Antarctic ice sheet: ductile flow extends into the ocean to form an ice shelf. Wilkins Ice shelf Breakup http://www.youtube.com/watch?v=XUltAHerfpk The Greenland Ice Sheet has fewer and smaller ice shelves. Erosional Features Unique erosional landforms remain after glaciers melt.
    [Show full text]
  • Introduction to Geological Process in Illinois Glacial
    INTRODUCTION TO GEOLOGICAL PROCESS IN ILLINOIS GLACIAL PROCESSES AND LANDSCAPES GLACIERS A glacier is a flowing mass of ice. This simple definition covers many possibilities. Glaciers are large, but they can range in size from continent covering (like that occupying Antarctica) to barely covering the head of a mountain valley (like those found in the Grand Tetons and Glacier National Park). No glaciers are found in Illinois; however, they had a profound effect shaping our landscape. More on glaciers: http://www.physicalgeography.net/fundamentals/10ad.html Formation and Movement of Glacial Ice When placed under the appropriate conditions of pressure and temperature, ice will flow. In a glacier, this occurs when the ice is at least 20-50 meters (60 to 150 feet) thick. The buildup results from the accumulation of snow over the course of many years and requires that at least some of each winter’s snowfall does not melt over the following summer. The portion of the glacier where there is a net accumulation of ice and snow from year to year is called the zone of accumulation. The normal rate of glacial movement is a few feet per day, although some glaciers can surge at tens of feet per day. The ice moves by flowing and basal slip. Flow occurs through “plastic deformation” in which the solid ice deforms without melting or breaking. Plastic deformation is much like the slow flow of Silly Putty and can only occur when the ice is under pressure from above. The accumulation of meltwater underneath the glacier can act as a lubricant which allows the ice to slide on its base.
    [Show full text]
  • Flood Basalts and Glacier Floods—Roadside Geology
    u 0 by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 WASHINGTON STATE DEPARTMENTOF Natural Resources Jennifer M. Belcher - Commissioner of Public Lands Kaleen Cottingham - Supervisor FLOOD BASALTS AND GLACIER FLOODS: Roadside Geology of Parts of Walla Walla, Franklin, and Columbia Counties, Washington by Robert J. Carson and Kevin R. Pogue WASHINGTON DIVISION OF GEOLOGY AND EARTH RESOURCES Information Circular 90 January 1996 Kaleen Cottingham - Supervisor Division of Geology and Earth Resources WASHINGTON DEPARTMENT OF NATURAL RESOURCES Jennifer M. Belcher-Commissio11er of Public Lands Kaleeo Cottingham-Supervisor DMSION OF GEOLOGY AND EARTH RESOURCES Raymond Lasmanis-State Geologist J. Eric Schuster-Assistant State Geologist William S. Lingley, Jr.-Assistant State Geologist This report is available from: Publications Washington Department of Natural Resources Division of Geology and Earth Resources P.O. Box 47007 Olympia, WA 98504-7007 Price $ 3.24 Tax (WA residents only) ~ Total $ 3.50 Mail orders must be prepaid: please add $1.00 to each order for postage and handling. Make checks payable to the Department of Natural Resources. Front Cover: Palouse Falls (56 m high) in the canyon of the Palouse River. Printed oo recycled paper Printed io the United States of America Contents 1 General geology of southeastern Washington 1 Magnetic polarity 2 Geologic time 2 Columbia River Basalt Group 2 Tectonic features 5 Quaternary sedimentation 6 Road log 7 Further reading 7 Acknowledgments 8 Part 1 - Walla Walla to Palouse Falls (69.0 miles) 21 Part 2 - Palouse Falls to Lower Monumental Dam (27.0 miles) 26 Part 3 - Lower Monumental Dam to Ice Harbor Dam (38.7 miles) 33 Part 4 - Ice Harbor Dam to Wallula Gap (26.7 mi les) 38 Part 5 - Wallula Gap to Walla Walla (42.0 miles) 44 References cited ILLUSTRATIONS I Figure 1.
    [Show full text]
  • The Cordilleran Ice Sheet 3 4 Derek B
    1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide.
    [Show full text]
  • Canyon Formation Constraints on the Discharge of Catastrophic Outburst
    PUBLICATIONS Journal of Geophysical Research: Planets RESEARCH ARTICLE Canyon formation constraints on the discharge of catastrophic 10.1002/2016JE005061 outburst floods of Earth and Mars Key Points: Mathieu G. A. Lapotre1, Michael P. Lamb1, and Rebecca M. E. Williams2 • A new model for canyon formation through waterfall retreat combines 1Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA, 2Planetary flood hydraulics and erosional mechanics Science Institute, Tucson, Arizona, USA • The model is used as a paleohydraulic tool to estimate the discharge of megafloods on Earth and Mars Abstract Catastrophic outburst floods carved amphitheater-headed canyons on Earth and Mars, and the • Compared with previous estimates, steep headwalls of these canyons suggest that some formed by upstream headwall propagation through predicted discharges are lower, fl durations higher, and water waterfall erosion processes. Because topography evolves in concert with water ow during canyon erosion, volumes are similar we suggest that bedrock canyon morphology preserves hydraulic information about canyon-forming floods. In particular, we propose that for a canyon to form with a roughly uniform width by upstream headwall retreat, erosion must occur around the canyon head, but not along the sidewalls, such that canyon width is fl fl Correspondence to: related to ood discharge. We develop a new theory for bedrock canyon formation by mega oods based M. G. A. Lapotre, on flow convergence of large outburst floods toward a horseshoe-shaped waterfall. The model is developed [email protected] for waterfall erosion by rock toppling, a candidate erosion mechanism in well fractured rock, like columnar basalt. We apply the model to 14 terrestrial (Channeled Scablands, Washington; Snake River Plain, Idaho; Citation: and Ásbyrgi canyon, Iceland) and nine Martian (near Ares Vallis and Echus Chasma) bedrock canyons and Lapotre, M.
    [Show full text]
  • Washington's Channeled Scabland
    t\D l'llrl,. \·· ~. r~rn1 ,uR\fEY Ut,l\n . .. ,Y:ltate" tit1Washington ALBEIT D. ROSEWNI, Governor Department of Conservation EARL COE, Dlnctor DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By J HARLEN BRETZ 9TAT• PIUHTIHO PLANT ~ OLYMPIA, WASH., 1"511 State of Washington ALBERT D. ROSELLINI, Governor Department of Conservation EARL COE, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 45 WASHINGTON'S CHANNELED SCABLAND By .T HARLEN BRETZ l•or sate by Department or Conservation, Olympia, Washington. Price, 50 cents. FOREWORD Most travelers who have driven through eastern Washington have seen a geologic and scenic feature that is unique-nothing like it is to be found anywhere else in the world. This is the Channeled Scab­ land, a gigantic series of deeply cut channels in the erosion-resistant Columbia River basalt, the rock that covers most of the east-central and southeastern part of the state. Grand Coulee, with its spectac­ ular Dry Falls, is one of the most widely known features of this ex­ tensive set of dry channels. Many thousands of travelers must have wondered how this Chan­ neled Scabland came into being, and many geologists also have speculated as to its origin. Several geologists have published papers outlining their theories of the scabland's origin, but the geologist who has made the most thorough study of the problem and has ex­ amined the whole area and all the evidence having a bearing on the problem is Dr. J Harlen Bretz. Dr.
    [Show full text]
  • Bibliography of PHYSI~AL LIMNOLOGY
    STATE OF OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF SHORE EROSION DIVISION OF GEOLOGICAL SURVEY REPORT OF INVESTIGATIONS NO. 25 (CONTRIBUTION NO. 4 LAKE ERIE GEOLOGICAL RESEARCH PROGRAM) Bibliography Of PHYSI~AL LIMNOLOGY 1781 ••••1954 COLUMBUS 1955 STATE OF OHIO Frank J. Lausche, Governor DEPAR 1MENT OF NATURAL RESOURCES A. W. Marion, Director NATURAL RESOURCES COMMISSION George Wenger, Chairman John A. Slipher, Bryce Browning, Vice Chairman Secretary C. D. Blubaugh Dr. John L. Rich Dr. C. L. Dow Milton Ronsheim A. W. Marion Dean L. L. Rummell DIVISION OF GEOLOGICAL SURVEY John H. Melvin, Chief DIVIS ION OF SHORE EROSION F . 0 , Kugle , Chief STATE OF OHIO Frank J. Lausche, Governor DEPARTMENT OF NATURAL RESOURCES A. W. Marion, Director DIVISION OF SHORE EROSION F. 0. Kugel, Chief DIVISION OF GEOLOGICAL SURVEY John H. Melvin, Chief REPORT OF INVESTIGATIONS NO. 2 5 (CONTRIBUTION NO. 4 LAKE ERIE GEOLOGICAL RESEARCH PROGRAM) BIBLIOGRAPHY OF PHYSICAL LIMNOLOGY 1781 .... 1954 By James L. Verber This publication is a cooperative project of the Division of Shore Erosion and The Division of Geological Survey. The research upon which the publication is based has been sponsored chiefly by t the Division of Shore Erosion. i COLUMBUS, 1955 I Blank Page t:;ONTENTS Page INTRODUCTION •••••••••• v Organization of the Index • v Suggestions on using the Index vi ABBREVIATIONS • vii BmLIOGRAPHY 1 INDEX and ALPHABETICAL LIST OF LAKES CITED 45 ADDENDUM WITH INDEX . • . 54 iii Blank Page INTBODU~TION The Bibliography of Physical Limnology, 1781- their assistance in preparing the manuscript for publica- 1953, contains both a bibliography and subject index tion.
    [Show full text]
  • Pacific Northwest Geomorphology
    d:\wou\research\newrefs\nwgeomrf.wpd PNW General Geomorphology References Updated March 3, 2006 Drawer III:3 Allison, I.S., 1935, Glacial erratics in Willamette Valley, Geological Society of America Bulletin, v. 46, p. 615- 632. Allison, I.S., 1979, Fluvial Fort Rock Lake, Lake County, Oregon, Oregon State Department of Geology and Mineral Industries Specail Paper No. 7. Allison, I.S., 1982, Geology of Fluvial Lake Chewaucan, Lake County, Oregon, Oregon State University Geologyic Study 11, Oregon State University Press, Corvallis, Oregon. Ambers, Rebecca K. R., 2001, Using the sediment record in a western Oregon flood-control reservoir to asses the influence of storm history and loggin on sediment yield: Journal of Hydrology, v. 244, p. 181-200. ON FLIE Appt, Jeremy, Skaugset, Arne, Pyles, Marvin, Wing, Michael G., 2003, Discrimination between landslides sites and potentially unstable terrain using topographic variables: Hydrological Science and Technology, v. 19, No. 1-4, p. 363-372. ON FILE Allen, John Eliot, 1984, Oregon lakes and their origins: Oregon Geology, v. 46, n. 12, p. 143-146. On File No PDF Allison, Ira S., 1979, Pluvial Fort Rock Lake, Lake County, Oregon: Special Paper - Oregon, Department of Geology and Mineral Industries, , n. 7, 72 p. Allison, I. S., 1978, Late Pleistocene sediments and floods in the Willamette Valley: The Ore Bin, v. 40, n. 12, p. 193-202. On File No PDF Alpha, T. R.; Hunter, R. E.; Richmond, B. M., 1980, Map showing landforms of the Umpqua South area, the Oregon Dunes National Recreation Area: Miscellaneous Field Studies Map - U. S. Geological Survey, MF- 1205 (2 sheets).
    [Show full text]
  • Routing of Meltwater from the Laurentide Ice Sheet During The
    LETTERS TO NATURE very high sulphate concentrations (Fig. 1). Thus, differences in P release has yet to prove the mechanism behind this relation­ P cycling between fresh waters and salt waters may also influence ship. If sediment P release were controlled largely by sulphur, the switch in nutrient limitation. our view of the lakes that are being affected by atmospheric A further implication of our findings is a possible effect of S pollution could be altered. It is believed generally that anthropogenic S pollution on P cycling in lakes. Our data lakes with well-buffered watersheds are insensitive to the effects indicate that aquatic systems with low sulphate concentrations of atmospheric S pollution. However, because changing have low RPR under either oxic or anoxic conditions; systems atmospheric S inputs can alter the sulfate concentration in with only slightly elevated sulphate concentrations have sig­ surface waters22 independent of acid neutralization in the water­ nificantly elevated RPR, particularly under anoxic conditions shed, the P cycle of even so-called 'insensitive' lakes may be (Fig. 1). Work on the relationship between sulphate loading and affected. D Received 22 February; accepted 15 August 1987. 17. Nurnberg. G. Can. 1 Fish. aquat. Sci. 43, 574-560 (1985). 18. Curtis, P. J. Nature 337, 156-156 (1989). 1. Bostrom, B .. Jansson. M. & Forsberg, G. Arch. Hydrobiol. Beih. Ergebn. Limno/. 18, 5-59 (1982). 19. Carignan, R. & Tessier, A. Geochim. cosmochim. Acta 52, 1179-1188 (1988). 2. Mortimer. C. H. 1 Ecol. 29, 280-329 (1941). 20. Howarth, R. W. & Cole, J. J. Science 229, 653-655 (1985).
    [Show full text]
  • Geomorphic and Sedimentological History of the Central Lake Agassiz Basin
    Electronic Capture, 2008 The PDF file from which this document was printed was generated by scanning an original copy of the publication. Because the capture method used was 'Searchable Image (Exact)', it was not possible to proofread the resulting file to remove errors resulting from the capture process. Users should therefore verify critical information in an original copy of the publication. Recommended citation: J.T. Teller, L.H. Thorleifson, G. Matile and W.C. Brisbin, 1996. Sedimentology, Geomorphology and History of the Central Lake Agassiz Basin Field Trip Guidebook B2; Geological Association of CanadalMineralogical Association of Canada Annual Meeting, Winnipeg, Manitoba, May 27-29, 1996. © 1996: This book, orportions ofit, may not be reproduced in any form without written permission ofthe Geological Association ofCanada, Winnipeg Section. Additional copies can be purchased from the Geological Association of Canada, Winnipeg Section. Details are given on the back cover. SEDIMENTOLOGY, GEOMORPHOLOGY, AND HISTORY OF THE CENTRAL LAKE AGASSIZ BASIN TABLE OF CONTENTS The Winnipeg Area 1 General Introduction to Lake Agassiz 4 DAY 1: Winnipeg to Delta Marsh Field Station 6 STOP 1: Delta Marsh Field Station. ...................... .. 10 DAY2: Delta Marsh Field Station to Brandon to Bruxelles, Return En Route to Next Stop 14 STOP 2: Campbell Beach Ridge at Arden 14 En Route to Next Stop 18 STOP 3: Distal Sediments of Assiniboine Fan-Delta 18 En Route to Next Stop 19 STOP 4: Flood Gravels at Head of Assiniboine Fan-Delta 24 En Route to Next Stop 24 STOP 5: Stott Buffalo Jump and Assiniboine Spillway - LUNCH 28 En Route to Next Stop 28 STOP 6: Spruce Woods 29 En Route to Next Stop 31 STOP 7: Bruxelles Glaciotectonic Cut 34 STOP 8: Pembina Spillway View 34 DAY 3: Delta Marsh Field Station to Latimer Gully to Winnipeg En Route to Next Stop 36 STOP 9: Distal Fan Sediment , 36 STOP 10: Valley Fill Sediments (Latimer Gully) 36 STOP 11: Deep Basin Landforms of Lake Agassiz 42 References Cited 49 Appendix "Review of Lake Agassiz history" (L.H.
    [Show full text]