Molecular Geometry of Alkaloids Present in Seeds of Mexican Prickly Poppy

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Geometry of Alkaloids Present in Seeds of Mexican Prickly Poppy MOLECULAR GEOMETRY OF ALKALOIDS PRESENT IN SEEDS OF MEXICAN PRICKLY POPPY Ricardo Gobato [[email protected]] Secretaria de Estado da Educação do Paraná (SEED/PR) Av. Maringá, 290, Jardim Dom Bosco, Londrina/PR, 86060-000, Brasil. Desire Francine Gobato Fedrigo [[email protected]] Panoramic Residence, Rua Uruguai, 1380, ap. 405, Parque Jardim America, Centro, Londrina/PR, 86010-210, Brasil Alekssander Gobato [[email protected]] Faculdade Pitágoras Londrina Rua Edwy Taques de Araújo, 1100, Gleba Palhano, Londrina/PR, 86047-500, Brasil. ABSTRACT The work is a study of the geometry of the molecules via molecular mechanics of the main alkaloids found in the seeds of Argemone Mexicana Linn, a prickly poppy, which is considered one of the most important species of plants in traditional Mexican and Indian medicine system. The seeds have toxic properties as well as bactericide, hallucinogenic, fungicide, insecticide, in isoquinolines and sanguinarine alkaloids such as berberine. A computational study of the molecular geometry of the molecules through molecular mechanics of the main alkaloids compounds present in plant seeds is described in a computer simulation. The plant has active ingredients compounds: allocryptopine, berberine, chelerythrine, copsitine, dihydrosanguinarine, protopine and sanguinarine. The studied alkaloids form two groups having similar charge distribution among themselves, which have dipole moments of these two times higher than in the other group. Keywords: Alkaloids, Argemone Mexicana Linn, Bactericidal, Fungicide, Hallucinogenic, Insecticide, Molecular Geometry, Prickly Poppy, Toxic. Contents 3.5 Dihydrosanguinarine . 6 3.6 Protopine . 6 Introduction 1 3.7 Sanguinarine . 6 1 The plant 2 4 Discussion and conclusions 6 1.1 Argemone Mexicana Linn . 2 Figures 7 1.2 History . 2 Acknowledgments 11 1.3 Ethnobotany and anthropology . 3 References 11 1.4 Current use . 3 1.5 Toxicity . 3 Introduction 2 Fundamentals 4 2.1 Introduction to Molecular Mechanics . 4 The Mexican Argemone Linn popularly known as 2.2 Steric Energy . .4 Mexican poppy, Mexican prickly poppy, thistle or holy 2.3 Geometry Optimization . 4 thistle [1] is a species of poppy found in Mexico and 3 Chemical formula and physico-chemical properties widespread in various parts of the world. It is an of the active ingredients 5 extremely resistant, tolerant to drought and poor soils 3.1 Allocryptopine . 5 plant, often being the only vegetation in the soil. It has 3.2 Berberine . 5 bright yellow latex, and although toxic to grazing 3.3 Chelerythrine . 5 animals, is rarely ingested [2]. The Family 3.4 Copsitine . .5 Papaveraceae, informally known as poppies, is an important ethnopharmacological family of 44 genera and bristly capsules containing seeds and resembling and about 760 species of flowering plants. The plant is black mustard seeds. A native of America, it has run the source of many types of chemical compounds such wild into many other countries including India. The as flavonoids, although the alkaloids are the most seeds yield from 22 to 36 per cent of nauseous, bitter, commonly found. In the pharmaceutical efficacy of non-edible oil, which is considered a remedy for skin certain parts of the plant also show toxic effects [3]. It diseases. In small amounts (1-2 ml.) it is a cathartic is used in different parts of the world, for treatment of and in larger doses it causes violent purging and various diseases, including tumors, warts, skin vomiting. The seeds are sometimes found mixed with diseases, rheumatism, inflammations, jaundice, black mustard. Adulteration of edible mustard oil with leprosy, microbial infections, malaria [3] agrobacteria argemone oil is probably responsible for outbreaks of [4], mong others, and as a larvicide against the Aedes epidermic dropsy [13, 14]. Its presence in aegypti, the dengue vector [5, 6]. Structurally, concentrations of 0.2 per cent or lessis detected by polyphenols or phenolic have one or more aromatic the rich orange-red colour which appears when rings with hydroxyl groups and may occur as simple concentrated nitric acid is added to the oil or its and complex molecules. The flavonoids are subgroups mixtures, or by the ferric chloride test [15, 16]. The of polyphenols [3, 7]. The sanguinarine and berberine plant contains barberine and protopine [17]. The have a wide range of biological and / or seeds also are considered to have a medicinal value, as pharmacological properties, including anti- a laxative, emetic, expectorant and demulcent; taken inflammatory, respiratory stimulation, transient in large quantities, they are said to be poisonous. The hypotension, convulsions, uterine contraction, yellow juice which exudes when the plant is damaged antiaritmica property, positive inotropic, is used externally in scabies, dropsy, jaundice, adrenocorticotropic hormone activity and analgesic cutaneous affections and ophthalmic. The oil is effect [8]. Because of its quaternary nitrogen atom considered to be a purgative and is also used for and planar polycyclic structure, sanguinarine and cutaneous affections. [18] berberine can react with nucleophilic amino acids and anionic groups of different biomolecules, receptors and enzymes. For example, these alkaloids bind to microtubules, inhibit various enzymes including sodium-potassium-ATPase, promoting oxidative phosphorylation and are able to intercalate in DNA regions rich in guanine-cytosine [8]. Contents of alkaloids in the seeds of Argemone mexicana in percentage, total alkaloids 0.13%, diidrosanguinarine 87.00%, sanguinarine 5.00%, berberine 0.57%, protopine 0.34%, chelerythrine 0.12% and coptisine 0.03%. [9] 1. The plant 1.1 Argemone Mexicana Linn The Argemone Mexican Linn, family: Papaveraceae, genius: Argemone, species: Mexicana, common names: Amapolas del campo, Bermuda Thistle, Bird-in- the-bush, Brahmadanti, Cardo Santo, Caruancho, Chadron, Flowering Thistle, Gamboge Thistle, Gold Thistle of Peru, Hierba Loca, Jamaican Thistle, Kawinchu, Mexican Prickly Poppy, Mexican Thistle, Mexican Thorn Poppy, Prickly Pepper, Prickly Poppy, Queen Thistle, Satayanasi, Shate, Svarnasiri, Thistle- bush, xate, Yellow Thistle, Zebe Dragon. [10, 11] Figure 1. Photo papaveraceae plant, Argemone Mexicana Common Indian names: Linn Hindi: Shialkanta, Satyanashi; Gujrati: Darudi; Danarese: Balurakkisa, Datturi, Pirangi, datturi; 1.2 History Marathi: Daruri, Firangikote-pavola, dhotara; Sanskrit: The Florentine Codex, in the sixteenth century, Brahmadandi, Pitopushpa, Srigalkanta, Svarnakshiri; indicated for sore eyes. In the same century, Francisco Malyalam: Ponnummattu, Kantankattiri; Tamil: Hernandez he says: “evacuates all moods, mainly Kutiyotti, Ponnummuttai; Telugu: Brahmadandicettu. pituitous and damaging the joints, cure inflammation [12] of the eyes, is effective against fevers accesses, heals An annual with prickly leaves, bright yellow flowers, ulcers sexual parts, scabies, dissolves clouds eyes, consume superfluous flesh and calm the pain of boiled, often bathe drinkers (alcohol) that have migraine.” In the late eighteenth century, Vicente irritated skin. For use as a laxative, the seeds are Cervantes tells that “purges pituitous moods, relieves boiled. It is also reported useful in the treatment of inflammation of the eyes and dissipates the clouds bile, toothache, colic in children (newborn colic V.) which begin to form in them.” [11] The Mexican expulsion of placenta, flow, wounds and ulcers, kidney Society of Natural History records it as antidiarrheal, pain, diabetes, skin infections, pimples, spots, rashes, anti-dysentery, anti-gonorrhoeal, astringent, eye inflammation, malaria, convulsions, spasms, infection diseases, diuretic, emeto-cathartic, hypnotic, chest, and bleeding, as a purgative and healing. [10, 11] hair tonic and analgesic, for cafalalgias, dermatosis. Later, Francisco Flores slogan use for simple 1.4 Current use conjunctivitis, combat the emerging leucome, The Argemone Mexicana Linn is used as a medicinal nephelion eyes, chemosis and as a sedative. In the plant in several countries. In Mexico the seeds are same years that Flores, Eleuterio Gonzalez considered an antidote to the poison of the snakes in appointment to cure clouds corneal against headaches India while the smoke of the seeds are used to relieve as work as a lever and soothing to wash the head and toothache. The extract fresh seeds contain substances thus is bornhair, and as a drastic purgative[11]. In the that dissolve the protein and is effective in the twentieth century, Narciso Souza describes their use treatment of warts, herpes sores, skin infections, skin for diseases of the pancreas liver, lack of appetite, as diseases, itching and also in the treatment of an emetic and purgative, for eye inflammation and dropsy and jaundice [19]. Also in India the plant is skin diseases. Make attributed pectoral properties and used in Ayurvedic and Unani medicine for the soporific. Around the same time that Souza, Luis treatment of a wide range of diseases including Cabrera registers as antitussive, hypnotic and cough malaria. The use against malaria is also widespread in whooping. Finally, the Pharmaceutical Society of several African countries, including Benin, Mali and Mexico mentions its use as anti-escabiotic, Sudan [20]. There is no documentation of the antispasmodic, antitussive, cathartic, dermatosis, psychoactive properties the plant. From the emeto-cathartic, hypnotic, pectoral and sedative. [11] information contained in the websites it shows that the leaves
Recommended publications
  • Sensnity of Bacillus Subtilis to Water Soluble Alkaloid Extracts of Chelidonium Majus L
    SENSNITY OF BACILLUS SUBTILIS TO WATER SOLUBLE ALKALOID EXTRACTS OF CHELIDONIUM MAJUS L. (PAPAVERACEA) ROOTS FROM AZORES M. LEONOR PAVAO & RWE. PINTO PAVAO, M. LEUNOR & RUY E. PINTO1995. Sensivity of Bacillus subtilis to water soluble alkaloid extracts from Azores Chelidonium majus L. (Papaveracea) roots. Arquipdago. Life and Marine Sciences 13A: 93-97. Angra do Heroismo. ISSN 0870-658 1. Water soluble alkaloid (WSA) extracts from Chelidonium majus L. (great celandine) roots. growing on uncultivated ground in the Azores. were prepared. The WSA showed antibacterial properties towards Bacillus subtilis. The effect of WSA appeared to be 1/10 of tetracycline. For concentrations lower than 100 @disc, no reproducible sensivity was observed. Chelidonine, protopine and allocryptopine had no action against Bacillus subtilis. Coptisine, which is reported as not exhibiting antibacterial activity, showed activity against Bacillus subtilis in a similar way as sanguinarine and berberine. Chelerythrine was the most active alkaloid (about 40-50% higher than sanguinarine). Sanguinarine and chelerythrine are generally accepted as the alkaloids responsible for the antibacterial properties of Chelidonium latex. Results suggest that, at least for the species existing in the Azores, berberine and coptisine also contribute to that biological activity . PAVAO, M. LEONOR & RUY E. PINTO1995. Sensibilidade de Bacillus subtilis a extractos de alcaldides solliveis em 5gua de raizes de Chelidonium majus L. (Papaveracea) dos Aqores. Arquipdago. Cigncias Biol6gicas e Marinhas 13A: 93- 97. Angra do Heroismo. ISSN 0870-6581. Prepararam-se extractos de alcalbides soltiveis em Agua de raizes de Chelidonium majus L. (celidbnia), colhida em terrenos incultos nos Agores. Estes extractos revelaram possuir propriedades antibacterianas em relagHo a Bacillus subtilis.
    [Show full text]
  • Application of Black Salve to a Thin Melanoma That Subsequently Progressed to Metastatic Melanoma: a Case Study
    DERMATOLOGY PRACTICAL & CONCEPTUAL www.derm101.com Application of black salve to a thin melanoma that subsequently progressed to metastatic melanoma: a case study Graham W. Sivyer1 Cliff Rosendahl1 1 School of Medicine, The University of Queensland, Australia Keywords: black salve, melanoma, metastatic Citation: Sivyer GW, Rosendahl C. Application of black salve to a thin melanoma that subsequently progressed to metastatic melanoma: a case study. Dermatol Pract Concept. 2014;4(3): 16. http://dx.doi.org/10.5826/dpc.0403a16 Received: November 25, 2013; Accepted: December 27, 2013; Published: July 31, 2014 Copyright: ©2014 Sivyer et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: None. Competing interests: The authors have no conflicts of interest to disclose. All authors have contributed significantly to this publication. Corresponding author: Graham Sivyer, MBBS(Hons) FSCCANZ. Email. [email protected] ABSTRACT This is a case study of a female patient diagnosed with superficial spreading melanoma who decided to treat the lesion by the application of a preparation known as black salve. Persistence of the melanoma was documented five years later with subsequent evidence of metastatic spread to the regional lymph nodes, lungs, liver, subcutaneous tissues and musculature. A literature search has revealed one other case study of the use of black salve for the treatment of melanoma. Case report 2011, five years later, when the patient presented for a routine skin check, a small dark blue firm nodule with surrounding In 2006 an otherwise healthy 76-year-old woman presented skin discoloration was noticed on her right calf at the site of to her general practitioner (GP) with a pigmented skin lesion the biopsied melanoma (Figure 1A).
    [Show full text]
  • Boletín De Pasuchaca Patentes Extranjeras
    BOLETÍN DE PASUCHACA Septiembre 2014 PATENTES EXTRANJERAS Número de solicitud: JP200173253A Título: COMPOSITION FOR ENHANCING GLTATHIONE | The composition for a glutathione increase|augmentation Fecha de solicitud: 2001-03-15 Solicitante: FANCL CORP Abstract: Compositions for increasing glutathione are new. Compositions for increasing glutathione contain at least one of Filipendula ulmaria, Valeriana fauriei, Sanbucus nigra, Granium dielsianum, Carthamus tinctorius, Foeniculum vulgare, Eriobotrya japonica, Phyllostachys bambusoides, Coriandrum sativum, Satureja hortensis, Zanthoxylum piperitum, Eucommia ulmoides, Olea europaea, Camellia japonica, Agaricus blasei, Actinidia polygama, Glehnia littoralis, Althaea rosea, Crataegus cuneate, Coixlachryma- jobi, Centaurea cyanus, Gentianella alborocea, Allium cepa, Sesamum indicum, Illicium verum, Anethum graveolens, Beta vulgaris, Trigonella foenum-graecum, Lonicera caerulea, Glycine max, Lactuca formosana, Lepidiemmeyenii, Malva sylvestris, Dioscorea batatas, Phaseolus vulgaris, Allium fistulosum, Capsicum annuum, Brassica oleracea, and Cannabis sativa. The compositions are useful as foods and pharmaceuticals especially for liver diseases, e.g., alcoholic liver disease, pulmonary diseases, and cataracts. The compositions increase supply of glutathione in vivo, and the glutathione increasing activity largely increases when using with cysteine. Número de solicitud: JP2002241369A Título: AGENT FOR INHIBITING DIFFERENTIATION OF LIPOCYTE | Fat-cell differential inhibition agent Fecha de solicitud:
    [Show full text]
  • Colorado Agricultural College I EXTENSION SERVICE Fort Collin •• Colorado
    mmm.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII_IIIIID"iiii"" !iif!!i!!m'IIII1_IIIIIIIIIIIIIIII_IIIIIIII_lIIImmlll = February, 1919 Extension Bulletin Series I, No. 155-A 1= Reprint of Extension Bulletin No. 147 1I Colorado Agricultural College I EXTENSION SERVICE Fort Collin •• Colorado H. T. FRENCH. Dir~ct()r 1IIIIIIII1IIIIIIIII'lIIIii!!iDIII""lIIIIII'IIIImIllllii"IIIIIIIIIIIIIIIIIIII"lIIIiiiillllii"'lIIIiiiillllhiiilllll!iiilllll!iiilllll!!!!1III"IIImmI,jjii!!iiiiiiiii!ii!,i!i!ii 'iiii"!!I!ii!iiii!mih_mlll'" !!Iiii'''' IIII IIII i1/1 IIII ID IIII D I ~ R I c::=::::aU:=U:::::UI:I!II::C:::=:::I"IIIIl":IIII!iiiIllllii!i:llll!!iiIlllli!iiIlll!iiiillll"'.IIIIIIIIIIIIIIIiIII"'IiIC ·!i:::;:·3:1111!!iiIl:!·:::l'::::,lII:w:::::a'mmlmDlIII"a:'IIIiIj,jIli:" m'" ~. CO·OPERATIV. aXTENSION aERY.ell IN AGRICULTUA. AND HOME ECONOMIC.- a COLORADO AOIIICULTURAL COLLEGE AND U . S. DEPARTMENT OF' D IIII AGRICULTUR~ Co-OP."ATING III IIIl11allllii!iIlll"":IIII!llIIIIIIIlIIIIIIIlIIIIIIIlIIIlmmm"'lIIl11l111i! j~· i!~, :IIII!iiiDlllli lilllli!"IIII"!ii1llll'IIIIIIII:IIII!!iU"illlli!!iIlll!i"~'::::I"IIII... gmm"i!lIIIl!.i!lIIIij,:::I'1III!ii·:IIII!iiiIlll!!i1lllllll1lllllll1llllm1ll1ll1ll Colorado Agricultural College FORT COLLINS. COLORADO Term Expires THE STATE BOARD OF AGRICULTURE HON. CHAS. PEARSON ..................................... Durango. 1919 HON. R. W. CORWIN ........................................ Pueblo. 1919 HON. A. A. EDWARDS. President. ....................... Fort Collins. 1921 RON.. T. S. CALKTNS ................................... Westmlnster. 1921 HON. H. D. PARKER ........................................ Greeley. 1923 MRS. AGNES L. RIDDLE .................................... Denver. 1923 HON. J. C. BELL .......................................... Montrose. 1926 HON. E. M. AMMONS ......................................... Denver. 1926 PRESIDENT CHAS. A. LORY \, Ex-otl'lcio GOVERNOR .JULTUS C. GUNTER. --- L. M. TAYLOR. Secretary CHAS. H. SHELDON. Treasurer EXECUTIVE CO:nMITTEE A. A. EDWARDS. Chairman Eo M. AMMONS H.D. PARKER EXTENSION SERVICE CHAS. A.
    [Show full text]
  • Argemone Mexicana L.)
    Electronic Journal of Biotechnology ISSN: 0717-3458 Vol.11 No.1, Issue of January 15, 2008 © 2008 by Pontificia Universidad Católica de Valparaíso -- Chile Received March 21, 2007 / Accepted Mayo 20, 2007 DOI: 10.2225/vol11-issue1-fulltext-3 SHORT COMMUNICATION Agrobacterium-mediated transient transformation of Mexican prickly poppy (Argemone mexicana L.) Gregorio Godoy-Hernández* Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Elidé Avilés-Berzunza Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Mildred Carrillo-Pech Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Felipe Vázquez-Flota Unidad de Bioquímica y Biología Molecular de Plantas Centro de Investigación Científica de Yucatán A.C. C. 43 No. 130, Chuburná de Hidalgo 97200 Mérida, Yucatán, México Tel: 999 9428330 Fax: 999 9 81 39 00 E-mail: [email protected] Website: http://www.cicy.mx Financial support: Consejo Nacional de Ciencia y Tecnología (CONACYT) from México (Grant No. 28643-B). Keywords: Argemone mexicana, β-glucuronidase, benzylisoquinoline alkaloids, genetic transformation, neomycin phosphotransferase II.
    [Show full text]
  • Anticancer Effects of NSC‑631570 (Ukrain) in Head and Neck Cancer Cells: in Vitro Analysis of Growth, Invasion, Angiogenesis and Gene Expression
    282 ONCOLOGY REPORTS 43: 282-295, 2020 Anticancer effects of NSC‑631570 (Ukrain) in head and neck cancer cells: In vitro analysis of growth, invasion, angiogenesis and gene expression RUTH HERRMANN1, JOSEPH SKAF2, JEANETTE ROLLER1, CHRISTINE POLEDNIK1, ULRIKE HOLZGRABE2 and MARIANNE SCHMIDT1 1Department of Otorhinolaryngology, University of Würzburg, D-97080 Würzburg; 2Institute of Pharmacy and Food Chemistry, University of Würzburg, D-97074 Würzburg, Germany Received September 17, 2018; Accepted September 30, 2019 DOI: 10.3892/or.2019.7416 Abstract. NSC-631570 (Ukrain) is an aqueous extract of laminin). Microarray analysis revealed the downregulation of Chelidonium majus, a herbaceous perennial plant, one of two genes encoding key regulators, including EGFR, AKT2, JAK1, species in the genus Chelidonium, which has been demonstrated STAT3 and ß-catenin (CTNNB1), all of which are involved in to selectively kill tumor cells without affecting non-malignant cell proliferation, migration, angiogenesis, apoptosis as well as cells. In the present study, the components of NSC-631570 the radiation- and chemo-resistance of HNSCC. The strongest were examined by combined liquid chromatography/mass upregulation occurred for cytochrome P450 1A1 (CYP1A1) spectroscopy (LC-MS) and the effects of NSC-631570 on and 1B1 (CYP1B1), involved in the metabolism of xenobiotics. HNSCC cell lines, as well as primary cells, were analyzed Upregulation of CYP1A1 was at least partially caused by chel- with respect to growth, apoptosis, invasion, angiogenesis erythrine and allocryptopine, as shown by RT-qPCR in two and gene expression. LC-MS identified chelerythrine and HNSCC cell lines. In addition, NSC-631570 showed a high allocryptopine as the major alkaloids of the extract.
    [Show full text]
  • Changing Pattern of Epidemic Dropsy in North India
    Epidemic Dropsy in North India N. Sharma et al. ORIGINAL ARTICLE Changing Pattern of Epidemic Dropsy in North India NAVNEET SHARMA1,*, NAINA MOHAN 2, ASHISH BHALLA1, AMAN SHARMA1, SURJIT SINGH 1 1 The Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India 2 King's College London, Strand, London, United Kingdom Abstract Background: Epidemic dropsy occurs due to ingestion of mustard oil contaminated with oil from Argemone mexicana, leading to edema and tenderness of the abdomen, upper and lower limbs. In this study, clinical profiles of patients presented with epidemic dropsy in north India are described. Methods: This was a prospective study of patients presented with epidemic dropsy to the emergency department of Nehru Hospital, during the period from March 2004 to December 2011. Inclusion criteria were patients presenting with tender bilateral pitting leg edema and dermal telangiectasia. Clinical and laboratory data of patients were entered into case record forms at the time of presentation until discharge from the hospital. Results: Leg edema was the principal symptom in our series, and was in concurrence with current literature. Erythema has only been reported in 35-82% of published series, though it was present in all of our patients. Similarly, features such as diarrhea, hepatomegaly and anemia were more frequent in our cases compared to the literature. Furthermore, pancytopenia which was documented on peripheral blood counts in 54% of our cases has never been reported before. Conclusion: Epidemic dropsy should be considered in patients presenting with progressive erythema, edema, and tenderness of the limbs who had a history of consumption of mustard oil and confirmation of Argemone oil contamination according to laboratory tests.
    [Show full text]
  • Effects of Berberine, Chelerythrine, and Sanguinarine on Proliferation in Four Human Immortalized Cell Lines
    Journal of the Iowa Academy of Science: JIAS Volume 119 Number 1-4 Article 6 2012 Effects of Berberine, Chelerythrine, and Sanguinarine on Proliferation in Four Human Immortalized Cell Lines David S. Senchina Drake University Nisarg B. Shah Drake University Marc G. Busch Drake University Let us know how access to this document benefits ouy Copyright © Copyright 2014 by the Iowa Academy of Science, Inc. Follow this and additional works at: https://scholarworks.uni.edu/jias Part of the Anthropology Commons, Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Science and Mathematics Education Commons Recommended Citation Senchina, David S.; Shah, Nisarg B.; and Busch, Marc G. (2012) "Effects of Berberine, Chelerythrine, and Sanguinarine on Proliferation in Four Human Immortalized Cell Lines," Journal of the Iowa Academy of Science: JIAS, 119(1-4), 22-27. Available at: https://scholarworks.uni.edu/jias/vol119/iss1/6 This Research is brought to you for free and open access by the Iowa Academy of Science at UNI ScholarWorks. It has been accepted for inclusion in Journal of the Iowa Academy of Science: JIAS by an authorized editor of UNI ScholarWorks. For more information, please contact [email protected]. Jour. Iowa Acad. Sci. 119(1--4):22-27, 2012 Effects of Berberine, Chelerythrine, and Sanguinarine on Proliferation in Four Human Immortalized Cell Lines DAVIDS. SENCHINA1·*, NISARG B. SHAH2 and MARC G. BUSCH 1 1Deparcmenc of Biology, Drake University, Des Moines, IA 2Pharmacy Program, Drake University, Des Moines, IA Bloodroot (Sanguinaria canadensis L., Papaveraceae) is a plane rich in benzophenanchridine (isoquinoline) alkaloids ~uch_ as sanguinarine and chelerychrine.
    [Show full text]
  • Epidemic Dropsy in India
    Postgrad Med J 1999;75:657–661 © The Fellowship of Postgraduate Medicine, 1999 Postgrad Med J: first published as 10.1136/pgmj.75.889.657 on 1 November 1999. Downloaded from Epidemic dropsy in India B D Sharma, Sanjay Malhotra, Vikram Bhatia, Mandeep Rathee Summary Epidemic dropsy results from ingestion of edible oil adulterated with Argemone Epidemic dropsy is a clinical state mexicana (Mexican Poppy) oil. The outbreak of epidemic dropsy in the Indian resulting from use of edible oils capital, New Delhi, during the rainy season of 1998 was of one of the most severe adulterated with Argemone mexi- forms and had repercussions in both health and political circles. Some 2552 cana oil. Sanguinarine and dehyd- cases were reported and 65 deaths occurred between 5 August and 12 October, rosanguinarine are two major causing untold misery and economic loss to the aVected families. The actual fig- toxic alkaloids of Argemone oil, ures are likely to be much higher due to nonreporting of milder cases to the hos- which cause widespread capillary pitals. The aim of this article is to consolidate and update the available dilatation, proliferation and in- information on clinical aspects of epidemic dropsy. creased capillary permeability. The condition was first reported by Lyon in 1877 from Calcutta1 and has since Leakage of the protein-rich occurred in other countries including the Fiji Islands, Mauritius, Madagascar, plasma component into the extra- South Africa and Burma (Myanmar).2 In India, it has been reported from time cellular compartment leads to the to time from the States of West Bengal, Bihar, Orissa, Madhya Pradesh, Uttar formation of oedema.
    [Show full text]
  • A Systematic Review on Main Chemical Constituents of Papaver Bracteatum
    Journal of Medicinal Plants A Systematic Review on Main Chemical Constituents of Papaver bracteatum Soleymankhani M (Ph.D. student), Khalighi-Sigaroodi F (Ph.D.)*, Hajiaghaee R (Ph.D.), Naghdi Badi H (Ph.D.), Mehrafarin A (Ph.D.), Ghorbani Nohooji M (Ph.D.) Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran * Corresponding author: Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, P.O.Box: 33651/66571, Karaj, Iran Tel: +98 - 26 - 34764010-9, Fax: +98 - 26-34764021 E-mail: [email protected] Received: 17 April 2013 Accepted: 12 Oct. 2014 Abstract Papaver bracteatum Lindly (Papaveraceae) is an endemic species of Iran which has economic importance in drug industries. The main alkaloid of the plant is thebaine which is used as a precursor of the semi-synthetic and synthetic compounds including codeine and naloxone, respectively. This systematic review focuses on main component of Papaver bracteatum and methods used to determine thebaine. All studies which assessed the potential effect of the whole plant or its extract on clinical or preclinical studies were reviewed. In addition, methods for determination of the main components, especially thebaine, which have been published from 1948 to March 2013, were included. Exclusion criteria were agricultural studies that did not assess. This study has listed alkaloids identified in P. bracteatum which reported since 1948 to 2013. Also, the biological activities of main compounds of Papaver bracteatum including thebaine, isothebaine, (-)-nuciferine have been reviewed. As thebaine has many medicinal and industrial values, determination methods of thebaine in P. bracteatum were summarized. The methods have being used for determination of thebaine include chromatographic (HPLC, GC and TLC) and non chromatographic methods.
    [Show full text]
  • Argemone Mexicana
    Argemone mexicana General description Scientific Name with Author Argemone mexicana L. Synonyms Argemone leiocarpa Greene; Argemone ochroleuca Sweet; Echtrus trivialis Lour.; Echtrus mexicanus (L.) Nieuwl.; Argemone vulgaris Spach; Argemone versicolor Salisb.; Argemone spinosa Moench; Argemone sexvalis Stokes; Argemone mucronata Dum. Cours. ex Steud.; Argemone mexicana var. typica Prain; Argemone mexicana var. parviflora Kuntze; Argemone mexicana var. ochroleuca (Sweet) Lindl.; Argemone mexicana var. lutea Kuntze; Argemone mexicana fo. leiocarpa (Greene) G.B. Ownbey (Pires, 2009). Family Papaveraceae Vernacular Names Mexican poppy, prickly poppy, yellow thistle, Mexican thistle (En). Argémone, pavot épineux, pavot du Mexique, tache de l’œil, chardon du pays (Fr) (Bosch, 2008) Botanical Description Argemone mexicana is an annual herb, growing up to 150 cm with a slightly branched tap root. Its stem is branched and usually extremely prickly. It exudes a yellow juice when cut. It has showy yellow flowers. Leaves are thistle-like and alternate, without leaf stalks (petioles), toothed (serrate) and the margins are spiny. The grey-white veins stand out against the bluish-green upper leaf surface. The stem is oblong in cross-section. Flowers are at the tips of the branches (are terminal) and solitary, yellow and of 2.5-5 cm diameter. Fruit is a prickly oblong or egg-shaped (ovoid) capsule. Seeds are very numerous, nearly spherical, covered in a fine network of veins, brownish black and about 1 m m in diameter (Nacoulma, 1996; Bosch, 2008). 1 MEAMP – Appear Project – 75 September 2012 – August 2014 Photo LABIOCA 1. Argemone mexicana Origin and Distribution Argemone mexicana is native in Mexico and the West Indies, but has become pantropical after accidental introduction or introduction as an ornamental.
    [Show full text]
  • Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders
    REVIEW published: 21 August 2018 doi: 10.3389/fphar.2018.00557 Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders Maria A. Neag 1, Andrei Mocan 2*, Javier Echeverría 3, Raluca M. Pop 1, Corina I. Bocsan 1, Gianina Cri¸san 2 and Anca D. Buzoianu 1 1 Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 2 Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 3 Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile Edited by: Berberine-containing plants have been traditionally used in different parts of the world for Anna Karolina Kiss, the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, Medical University of Warsaw, Poland affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial Reviewed by: Pinarosa Avato, pathologies. The physico-chemical properties of berberine contribute to the high diversity Università degli Studi di Bari Aldo of extraction and detection methods. Considering its particularities this review describes Moro, Italy various methods mentioned in the literature so far with reference to the most important Sylwia Zielinska, Wroclaw Medical University, Poland factors influencing berberine extraction. Further, the common separation and detection *Correspondence: methods like thin layer chromatography, high performance liquid chromatography, and Andrei Mocan mass spectrometry are discussed in order to give a complex overview of the existing [email protected] methods. Additionally, many clinical and experimental studies suggest that berberine Specialty section: has several pharmacological properties, such as immunomodulatory, antioxidative, This article was submitted to cardioprotective, hepatoprotective, and renoprotective effects.
    [Show full text]