1 Effects of a Ketone-Caffeine Supplement on Cycling And

Total Page:16

File Type:pdf, Size:1020Kb

1 Effects of a Ketone-Caffeine Supplement on Cycling And Effects of A Ketone-Caffeine Supplement On Cycling and Cognitive Performance in Chronic Keto-Adapted Participants THESIS Presented in Partial Fulfillment of the Requirements for the Degree Master of Science in the Graduate School of The Ohio State University By Madison Lee Bowling Graduate Program in Kinesiology The Ohio State University 2018 Thesis Committee Dr. Jeff Volek Dr. William Kraemer Dr. Carl Maresh 1 Copyrighted by Madison Lee Bowling 2018 2 Abstract As research begins to broaden our understanding of the effects of low carbohydrate, high fat ketogenic diets to different populations, it is crucial to utilize evidence associated with the metabolic and physiological adaptation of chronic implementation. Specific populations are finding that nutritional ketosis may prove advantageous to athletic or cognitive performance. Nutritional ketosis may be identified by an elevated plasma ketone concentration within the blood range 0.5 to 5 mmol/L that results from a chronic implementation of a ketogenic diet. Recently, science shows that ketones contribute to a vast range of therapeutic and performance benefits associated with nutritional ketosis, as a result, exogenous ketone supplements have become commercially available which have proven to induce acute nutritional ketosis without restriction of carbohydrate intake. We previously showed that a supplement containing ketone salts and caffeine significantly increased performance in a non-keto adapted population. To date, there are no reports of whether ketone supplements have an ergogenic effect in an already keto-adapted population. The primary purpose of this study was to determine the performance and metabolic effects of a supplement containing ketone salts and caffeine in a group of people habituated to a ketogenic diet. Twelve habitually ketogenic, ii recreationally trained individuals (3 female, 9 male: mean + SD age, 36.1 + 7.5 years; weight, 82.2 + 7.1 kilograms; height, 177.7 + 8.5 cm; VO2max 40.3 + 10.5 ml/kg/min). participated in two experimental sessions in a randomized and balanced order. Subjects consumed either a ketone-salt/caffeine supplement containing 7.2 BHB and 96.2g caffeine or water (control condition) 15 min prior to performing a staged cycle ergometer time to exhaustion test followed immediately by a 30 sec Wingate test. Symbol digit modality tests were administered at baseline, immediately post-exercise and 30-/60-min post-exercise. Blood ketone concentrations were significantly increased peaking 15 min after ingestion by more than 2-fold and staying elevated throughout 60 min recovery. Compared to the water trial, ingestion of the ketone-caffeine supplement significantly increased time to exhaustion (9.8%; P = 0.003) and increased peak VO2 during exercise (12%; P = 0.03). There were no significant differences between conditions in peak power output, average power output, cognitive performances, or blood glucose responses. These results indicate that ingestion of a moderate dose of ketone salts and caffeine prior to exercise significantly increases the magnitude of ketosis and improves high-intensity exercise performance in keto-adapted individuals. iii Acknowledgments I would first like to begin with thanking Dr. Volek, my mentor, advisor, and inspiration throughout my research as a graduate student. Not only do I feel my knowledge and professional experience has increased under your aid, but my passion for the research we have been devoted to. Through your guidance, I learned both perseverance and patience for the hands we are dealt, both personally and professionally. I am looking forward to continuing my doctoral education under your mentorship. To Dr. William Kraemer and Dr. Carl Maresh, thank you for serving on my committee. I have learned many things from the both of you, whether you meant to teach them to me or not. Through shadowing the both of you, I was able to observe my own idea and questions through other perspectives, bringing me closer to finding my “nitch”. Team Volek- Jay, Parker, Rich, Emily, Teryn, Anna, Ryan, Vin- I learned an incredible amount in the first 2 years of my graduate career from all of you. Whether it be “baptism meet fire” or a Vin-worthy blood processing manual on a Saturday morning. I iv To my boys, Ryan and Ryder- I can’t possible explain how much I needed you both to be by my side as I wrote this chapter of my life. Thank you both for being more than I ever thought I needed. Whether it was the copious amounts of coffee you kept coming, the unceasing support, or total family homework time- I can’t thank you enough for being by my side, boys. I love you. #TeamKackley To Mom, Morgan and Liberty- this road has seemed almost impossible hasn’t it? Here we are. I may have doubted when nothing seemed possible but you guys didn’t doubt me for a second. Thank you for the love, the overwhelming peace, and all the prayers. I love you all so much. I promised I’d make you proud. To my very best friends; Chey, Mak, Char, Emily, Allie, Claire, Justin, Ant, Mann, Hollywood, Sabrina, Marie, Jenn, TJ, Annette, Kailee. I love you all. Thank you for listening to me vent, pushing me forward, bringing me back to reality, and of course- all the nights I needed to breathe. I love you all for every part of your soul. I would not be here, where I am, without any of you. v Vita 2010…………………………………….... Northridge High School 2014……………………………………… B.A. Exercise Science, Otterbein University 2016 to present…………………………… Graduate Associate, Department of Kinesiology, The Ohio State University Fields of Study Major Field: Kinesiology vi Table of Contents Abstract ............................................................................................................................... ii Acknowledgments .............................................................................................................. iv Vita ..................................................................................................................................... vi List of Figures ..................................................................................................................... x List of Tables ..................................................................................................................... xi Chapter 1. Introduction ....................................................................................................... 1 Chapter 2. Literature Review ............................................................................................. 5 2.1 Ketone Metabolism/Physiology ................................................................................ 5 Metabolic Effects of Ketones ...................................................................................... 7 Non-Metabolic Effects of Ketones ............................................................................. 9 2.2 Well-Formulated Ketogenic Diet ............................................................................ 10 2.3 Ketone Supplementation ......................................................................................... 12 vii Chapter 3: Methods ........................................................................................................... 15 Experimental Approach ................................................................................................ 15 Subjects ......................................................................................................................... 16 Supplement ................................................................................................................... 17 Testing Preparation ....................................................................................................... 19 Baseline Testing ............................................................................................................ 19 Full Test Day: T1 & T2 ................................................................................................ 21 Blood Processing and Analysis ..................................................................................... 23 Statistics ........................................................................................................................ 23 Chapter 4: Results ............................................................................................................. 25 GI Distress .................................................................................................................... 25 Ketone and Glucose Levels .......................................................................................... 25 Time to Exhaustion ....................................................................................................... 26 Peak V02 ....................................................................................................................... 26 Wingate Power .............................................................................................................. 26 Cognitive Testing .......................................................................................................... 26 Rate of Perceived Exertion ........................................................................................... 27 Respiratory Exchange Ratio ......................................................................................... 27 viii Lactate ........................................................................................................................... 27 Glycerol ........................................................................................................................
Recommended publications
  • Alcohol Intoxication Withdrawal Adult
    Provincial Clinical Knowledge Topic Alcohol Intoxication Withdrawal, Adult Emergency Department V 1.5 © 2018, Alberta Health Services. This work is licensed under the Creative Commons Attribution-Non-Commercial-No Derivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. Disclaimer: This material is intended for use by clinicians only and is provided on an "as is", "where is" basis. Although reasonable efforts were made to confirm the accuracy of the information, Alberta Health Services does not make any representation or warranty, express, implied or statutory, as to the accuracy, reliability, completeness, applicability or fitness for a particular purpose of such information. This material is not a substitute for the advice of a qualified health professional. Alberta Health Services expressly disclaims all liability for the use of these materials, and for any claims, actions, demands or suits arising from such use. Document History Version Date Description of Revision Completed By / Revised By 1.1 July 2015 Completed document (2013) reformatted into Dr. Bullard / Carla new topic template Milligan 1.2 January Minor edits in the Rationale section and form 1 Dr. Bullard / Sarah 2016 info in general care section as well as addition Searle of CIWA-Ar Scoring Reference tool to appendix 1.3 May 2016 Minor edits made to working group Sarah Searle membership list 1.4 June Removed link to Center for Addiction and Dr. Bullard / Sarah 2017 Mental Health assessment and documentation Searle form on pg. 35. Documentation requirements will continue as per local practice at this time.
    [Show full text]
  • Dietary Supplements Based on the Ketone Body Β-Hydroxybutyrate Market Analysis and Evaluation of Ingredients of Supplements Used in the USA
    Copyright! Reproduction and dissemination – also partial – applicable to all media only with written permission of Umschau Zeitschriftenverlag GmbH, Wiesbaden. Science & Research | Original Contribution Peer-reviewed | Manuscript received: March 23, 2018 | Revision accepted: July 23, 2018 Dietary supplements based on the ketone body β-hydroxybutyrate Market analysis and evaluation of ingredients of supplements used in the USA Tobias Fischer, Thorsten Marquardt In more recent years, there has Abstract been a continuous growth in low- The use of β-hydroxybutyrate (βHB) as a supplement to the everyday diet is a carb diets. The health merits of new development in the lifestyle supplement market. In the USA, the market is various versions of the diet with growing and the composition of the products varies greatly. The supplements different fat, protein, and carbo- are mainly postulated to be useful for providing energy, for weight loss, for in- hydrate contents are the subject of creasing athletic performance, improving mental performance, and increasing much discussion. Some versions the level of ketone bodies in the blood. Using βHB supplements in the form of are diets that closely correspond a salt has the unfavorable effect of increasing intake of sodium, potassium, cal- to a ketogenic diet and contain less cium, and magnesium. Depending on the salt composition used, it is possible than 50 g of carbohydrate per day for these supplements to cause the reference values to be exceeded by up to five (very low-carb, high-fat – VLCHF) times. Based on the currently available research, side effects cannot be ruled out. [4, 5]. In the U.S.
    [Show full text]
  • The Effects of Ethanol on Ketone Body Metabolism of Fasted Rats Henry S
    Yale University EliScholar – A Digital Platform for Scholarly Publishing at Yale Yale Medicine Thesis Digital Library School of Medicine 1975 The effects of ethanol on ketone body metabolism of fasted rats Henry S. Cabin Yale University Follow this and additional works at: http://elischolar.library.yale.edu/ymtdl Recommended Citation Cabin, Henry S., "The effects of ethanol on ketone body metabolism of fasted rats" (1975). Yale Medicine Thesis Digital Library. 2432. http://elischolar.library.yale.edu/ymtdl/2432 This Open Access Thesis is brought to you for free and open access by the School of Medicine at EliScholar – A Digital Platform for Scholarly Publishing at Yale. It has been accepted for inclusion in Yale Medicine Thesis Digital Library by an authorized administrator of EliScholar – A Digital Platform for Scholarly Publishing at Yale. For more information, please contact [email protected]. YALE MEDICAL LIBRARY YALE MEDICAL LIBRARY Digitized by the Internet Archive in 2017 with funding from The National Endowment for the Humanities and the Arcadia Fund https://archive.org/details/effectsofethanolOOcabi The Effects of Ethanol on Ketone Body Metabolism of Fasted Rats by Henry S, Cabin B.A. University of Pennsylvania, 1971 Presented in partial fulfillment of the requirements for the degree of Doctor of Medicine, Yale University School of Medicine -March, 1975- ACKNOWLEDGEMENTS To Dr. Felig- who.has guided me through this research project from its inception, and for whom I have the highest esteem as a teacher, physician and human being. To Rosa, Bill and Andrea- without whose support and assistance this project would never have come to fruition.
    [Show full text]
  • Alcoholic Ketoacidosis
    Alcoholic Ketoacidosis: Mind The Gap, Give Them What They Need Brendan Innes BS, Stephanie Carreiro MD University of Massachusetts Medical School, Department of Emergency Medicine Introduction Differential Diagnosis Case Discussion Pancreatitis, Alcohol induced gastritis, Alcohol withdrawal, Diagnostic Criteria for Alcoholic Ketoacidosis2,3 • Patients with alcohol use disorder commonly present to the ED Alcohol induced hepatitis, Acute Kidney Injury, Sepsis, Binge drinking ending in nausea, vomiting, and decreased intake critically ill due to a myriad of underlying pathologies. Metabolic abnormality (Alcoholic ketoacidosis), Acute coronary syndrome, Pulmonary embolism Wide anion gap metabolic acidosis without alternate explanation • Alcoholic ketoacidosis (AKA) should be considered in anyone Clinical Data Positive serum/urine ketones with prolonged and/or binge consumption of alcohol. Low, normal, or slightly elevated serum glucose Anion Gap 36 130 83 27 Urinalysis Core Emergency Medicine Principles • Diagnosis and proper treatment results in rapid correction of 167 Lactate 1.9 5 11 1.9 Protein 2+ • Treatment for AKA requires glucose administration, thiamine underlying metabolic derangements often followed by rapid Salicylate, ethylene glycol, Ketones 3+ supplementation, and volume repletion. methanol not detected Urobilinogen + • D5 NS IV until rehydrated, D5 1/2NS for maintenance. clinical improvement. 16.6 Digoxin: 0.3 ng/mL 17.2 241 RBCs 5/hpf • Thiamine 100 mg IV before glucose. • Failure to make the diagnosis can result in shock, hypokalemia, 49.3 PT/INR: >120/>11 Hyaline casts 21 • Supplement electrolytes PRN. VBG: pH 7.34, pCO2 25 • Continue treatment until anion gap closes, oral intake tolerated. 90% PMNs /hpf hypoglycemia, and acidosis. • Consider other causes of anion gap if gap does not close with Neutrophils 15.6x103/µL BNP: 66 pc/mL UTox: caffeine Trop: 0.1 ng/mL treatment Lipase: 13 U/L Case Description EKG: sinus tach • Consider sodium bicarbonate if despite treatment pH < 7.0.
    [Show full text]
  • Diabetic Ketoacidosis
    PRIMER Diabetic ketoacidosis Ketan K. Dhatariya1,2, Nicole S. Glaser3, Ethel Codner4 and Guillermo E. Umpierrez5 ✉ Abstract | Diabetic ketoacidosis (DKA) is the most common acute hyperglycaemic emergency in people with diabetes mellitus. A diagnosis of DKA is confirmed when all of the three criteria are present — ‘D’, either elevated blood glucose levels or a family history of diabetes mellitus; ‘K’, the presence of high urinary or blood ketoacids; and ‘A’, a high anion gap metabolic acidosis. Early diagnosis and management are paramount to improve patient outcomes. The mainstays of treatment include restoration of circulating volume, insulin therapy , electrolyte replacement and treatment of any underlying precipitating event. Without optimal treatment, DKA remains a condition with appreciable, although largely preventable, morbidity and mortality. In this Primer, we discuss the epidemiology , pathogenesis, risk factors and diagnosis of DKA and provide practical recommendations for the management of DKA in adults and children. Circulatory volume Diabetic ketoacidosis (DKA) is the most common acute acid decarboxylase and protein tyrosine phosphatase depletion hyperglycaemic emergency in people with diabetes mel- autoantibodies, as those who present with hyperosmo- A reduction in intravascular litus. DKA is the consequence of an absolute (that is, lar hyperglycaemic state (HHS), and their β-cell func- and/or extracellular fluid total absence of) or relative (that is, levels insufficient tion recovers with restoration of insulin secretion quickly volume, such that there may 2 be an inability to adequately to supress ketone production) lack of insulin and con- after treatment . Thus, individuals with ketosis-prone perfuse tissue. comitant elevation of counter-regulatory hormones, T2DM can often go back to oral glucose-lowering medi- usually resulting in the triad of hyperglycaemia, met- cation without the need for continuing insulin therapy.
    [Show full text]
  • Exogenous Ketones, Ketone Esters and Ketone Salts Karen E
    ketoXid: 13684.001 September, 2020 KETOGENIC DIET RESEARCH Exogenous Ketones, Ketone Esters and Ketone Salts Karen E. E. Pendergrass 1 | Zad Rafi 2 ID ID Pendergrass, K., Rafi, Z. (2020) Exogenous Ketones, Ketone Esters and Ketone Salts. Ketogenic Diet Research. The Paleo Foundation. 1Department of Standards, Paleo Foundation, Encinitas, CA 2Department of Standards, Paleo Foundation, New York, NY Correspondence Karen E. E. Pendergrass Department of Standards, Paleo Foundation, Encinitas, CA Contact 1Email: [email protected] 1Twitter: @5WordsorlessKP 2Email: [email protected] 2Twitterl: @dailyzad Exogenous Ketones, Ketone Esters and Ketone Salts ketoXid: 13684.001 September, 2020 KETOgenic DIET RESEARCH Exogenous Ketones, Ketone Esters and Ketone Salts Karen E. E. Pendergrass 1 ID | Zad Rafi 2 ID 1Department of Standards, Paleo Foundation, Encinitas, CA Abstract 2Department of Standards, Paleo Foundation, New York, NY Ketones, which provide an alternative source of fuel when glucose stores are Correspondence low can be classified into those produced by the body (endogenous) and Karen E. E. Pendergrass those produced synthetically (exogenous). Exogenous ketones are typically Department of Standards, Paleo Foundation, Encinitas, CA used to rapidly increase ketone levels even without the restriction of carbohydrates. In addition to discussing the distinction between exogenous Contact and endogenous ketones, we review some of the evidence for claims that are 1Email: [email protected] often made about exogenous ketones. 1Twitter: @5WordsorlessKP 2Email: [email protected] 2 Twitter: @dailyzad KEYWORDS Ketones, Exogenous Ketones, Ketone Salts, Ketone Esters 1 | BACKGROUND etone bodies are water-soluble molecules adipose tissue (stored fat) via lipolysis. that provide an alternative source of energy K to various tissues within the body when the These free fatty acids are then oxidized via beta- amount of glucose is low and are responsible for a oxidation, and converted into acetyl coenzyme A person entering and staying in a state of ketosis.
    [Show full text]
  • Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature
    REVIEW published: 23 May 2019 doi: 10.3389/fpsyt.2019.00363 Therapeutic Potential of Exogenous Ketone Supplement Induced Ketosis in the Treatment of Psychiatric Disorders: Review of Current Literature Zsolt Kovács 1, Dominic P. D’Agostino 2,3, David Diamond 2,4, Mark S. Kindy 5,6,7, Christopher Rogers 2 and Csilla Ari 4* 1 Savaria Department of Biology, ELTE Eötvös Loránd University, Savaria University Centre, Szombathely, Hungary, 2 Department of Molecular Pharmacology and Physiology, Laboratory of Metabolic Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States, 3 Institute for Human and Machine Cognition, Ocala, FL, United States, 4 Department of Psychology, Hyperbaric Neuroscience Research Laboratory, University of South Florida, Tampa, FL, United States, Edited by: 5 Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, United States, Lourdes Martorell, 6 James A. Haley VA Medical Center, Tampa, FL, United States, 7 Shriners Hospital for Children, Tampa, FL, United States Institut Pere Mata, Spain Reviewed by: Globally, psychiatric disorders, such as anxiety disorder, bipolar disorder, schizophrenia, Hiromasa Funato, depression, autism spectrum disorder, and attention-deficit/hyperactivity disorder (ADHD) Toho University, Japan are becoming more prevalent. Although the exact pathological alterations are not yet clear, Yuri Zilberter, recent studies have demonstrated that widespread changes of very complex metabolic INSERM U1106 Institut de Neurosciences
    [Show full text]
  • Alcohol Withdrawal
    Alcohol withdrawal TERMINOLOGY CLINICAL CLARIFICATION • Alcohol withdrawal may occur after cessation or reduction of heavy and prolonged alcohol use; manifestations are characterized by autonomic hyperactivity and central nervous system excitation 1, 2 • Severe symptom manifestations (eg, seizures, delirium tremens) may develop in up to 5% of patients 3 CLASSIFICATION • Based on severity ○ Minor alcohol withdrawal syndrome 4, 5 – Manifestations occur early, within the first 48 hours after last drink or decrease in consumption 6 □ Manifestations develop about 6 hours after last drink or decrease in consumption and usually peak about 24 to 36 hours; resolution occurs in 2 to 7 days 7 if withdrawal does not progress to major alcohol withdrawal syndrome 4 – Characterized by mild autonomic hyperactivity (eg, tachycardia, hypertension, diaphoresis, hyperreflexia), mild tremor, anxiety, irritability, sleep disturbances (eg, insomnia, vivid dreams), gastrointestinal symptoms (eg, anorexia, nausea, vomiting), headache, and craving alcohol 4 ○ Major alcohol withdrawal syndrome 5, 4 – Progression and worsening of withdrawal manifestations, usually after about 24 hours from the onset of initial manifestations 4 □ Manifestations often peak around 50 hours before gradual resolution or may continue to progress to severe (complicated) withdrawal, particularly without treatment 4 – Characterized by moderate to severe autonomic hyperactivity (eg, tachycardia, hypertension, diaphoresis, hyperreflexia, fever); marked tremor; pronounced anxiety, insomnia,
    [Show full text]
  • Effects of Ketone Bodies on Brain Metabolism and Function In
    International Journal of Molecular Sciences Review Effects of Ketone Bodies on Brain Metabolism and Function in Neurodegenerative Diseases Nicole Jacqueline Jensen 1,* , Helena Zander Wodschow 1, Malin Nilsson 1 and Jørgen Rungby 1,2 1 Department of Endocrinology, Bispebjerg University Hospital, 2400 Copenhagen, Denmark; [email protected] (H.Z.W.); malin.sofi[email protected] (M.N.); [email protected] (J.R.) 2 Copenhagen Center for Translational Research, Copenhagen University Hospital, Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark * Correspondence: [email protected] Received: 4 November 2020; Accepted: 18 November 2020; Published: 20 November 2020 Abstract: Under normal physiological conditions the brain primarily utilizes glucose for ATP generation. However, in situations where glucose is sparse, e.g., during prolonged fasting, ketone bodies become an important energy source for the brain. The brain’s utilization of ketones seems to depend mainly on the concentration in the blood, thus many dietary approaches such as ketogenic diets, ingestion of ketogenic medium-chain fatty acids or exogenous ketones, facilitate significant changes in the brain’s metabolism. Therefore, these approaches may ameliorate the energy crisis in neurodegenerative diseases, which are characterized by a deterioration of the brain’s glucose metabolism, providing a therapeutic advantage in these diseases. Most clinical studies examining the neuroprotective role of ketone bodies have been conducted in patients with Alzheimer’s disease, where brain imaging studies support the notion of enhancing brain energy metabolism with ketones. Likewise, a few studies show modest functional improvements in patients with Parkinson’s disease and cognitive benefits in patients with—or at risk of—Alzheimer’s disease after ketogenic interventions.
    [Show full text]
  • The Effect of Exogenous Beta-Hydroxybutyrate Salt Supplementation on Metrics of Safety and Health in Adolescents
    nutrients Article The Effect of Exogenous Beta-Hydroxybutyrate Salt Supplementation on Metrics of Safety and Health in Adolescents Matthew Stefan *, Matthew Sharp , Raad Gheith, Ryan Lowery and Jacob Wilson The Applied Science and Performance Institute, Research Division, Tampa, FL 33607, USA; [email protected] (M.S.); [email protected] (R.G.); [email protected] (R.L.); [email protected] (J.W.) * Correspondence: [email protected] Abstract: The ketogenic diet is a high-fat, very low-carbohydrate, moderate-protein diet that will induce a state of ketosis, but because of its restrictive nature, it may be difficult to adhere to, es- pecially in adolescents. Supplementing with exogenous beta-hydroxybutyrate salts may induce a state of temporary ketosis without any undesirable side effects, thereby promoting the benefits of ketosis and minimizing adherence requirements to a ketogenic diet. To date, beta-hydroxybutyrate supplementation in healthy adolescents has not been explored. Therefore, the purpose of this study was to examine the safety of exogenous beta-hydroxybutyrate salt supplementation in a healthy adolescent population. In the present study, 22 healthy male and female adolescents consumed 3.75 g of beta-hydroxybutyrate salts or maltodextrin placebo twice daily for 90 days. Comprehensive blood safety analysis, bone densitometry, happiness and emotional intelligence surveys, and blood pressure were assessed at Pre, Day 45, and Day 90. There were no significant differences detected in subjects Citation: Stefan, M.; Sharp, M.; supplementing with beta-hydroxybutyrate salts, indicating that exogenous beta-hydroxybutyrate Gheith, R.; Lowery, R.; Wilson, J. salts had no detrimental impact on fasting blood safety metrics, bone density, happiness, emotional in- The Effect of Exogenous Beta-Hydroxybutyrate Salt telligence, or blood pressure.
    [Show full text]
  • Thesis-Hayden White
    EVALUATION OF A KETOGENIC FORMULATION FOR TREATING PATIENTS WITH ACUTE BRAIN INJURY Hayden Thomas Wesley White MBBCH MMED (Wits) FCICM FRACP A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 Faculty of Medicine Evaluation of a Ketogenic Formulation for Treating Patients with Acute Brain Injury Abstract Acute brain injury (ABI), including cerebral vascular accidents (CVA) and traumatic brain injury (TBI), are relatively common diseases which may lead to death, significant morbidity and place a heaving burden on health care systems globally, both in suffering and cost. Evidence has emerged from basic science research that ketones (beta-hydroxybutyrate and acetoacetate) which are water-soluble molecules produced by the liver during times of starvation, may have neuroprotective effects. It is therefore theoretically possible that increasing plasma ketone concentrations via intravenous or oral supplementation, may lead to improved outcomes following ABI. This thesis documents a systematic investigation into the possibility that ketone supplementation may lead to benefits in patients with a variety of chronic and acute neurological conditions. While the main emphasis is on ABI, other conditions where ketones may be useful are also reviewed. Beginning with a review of ketones, their potential mechanisms of action and likely neuroprotective roles in disease, this thesis examines the effects of a novel hypertonic intravenous ketone solution on plasma, cerebrospinal fluid (CSF) and brain ketone concentrations in animals, then looks at the hurdles in producing such an intravenous solution as opposed to enteral formulations for humans, before investigating baseline ketone concentrations in patients with ABI and finally culminating in an interventional study where a modified enteral ketone supplement is administered to patients with ABI to determine whether adequate plasma ketone concentrations are attainable.
    [Show full text]
  • Alcohol Use Disorder
    Alcohol use disorder Description Alcohol use disorder is a diagnosis made when an individual has severe problems related to drinking alcohol. Alcohol use disorder can cause major health, social, and economic problems, and can endanger affected individuals and others through behaviors prompted by impaired decision-making and lowered inhibitions, such as aggression, unprotected sex, or driving while intoxicated. Alcohol use disorder is a broad diagnosis that encompasses several commonly used terms describing problems with drinking. It includes alcoholism, also called alcohol addiction, which is a long-lasting (chronic) condition characterized by a powerful, compulsive urge to drink alcohol and the inability to stop drinking after starting. In addition to alcoholism, alcohol use disorder includes alcohol abuse, which involves problem drinking without addiction. Habitual excessive use of alcohol changes the chemistry of the brain and leads to tolerance, which means that over time the amount of alcohol ingested needs to be increased to achieve the same effect. Long-term excessive use of alcohol may also produce dependence, which means that when people stop drinking, they have physical and psychological symptoms of withdrawal, such as sleep problems, irritability, jumpiness, shakiness, restlessness, headache, nausea, sweating, anxiety, and depression. In severe cases, agitation, fever, seizures, and hallucinations can occur; this pattern of severe withdrawal symptoms is called delirium tremens. The heavy drinking that often occurs in alcohol use disorder, and can also occur in short- term episodes called binge drinking, can lead to a life-threatening overdose known as alcohol poisoning. Alcohol poisoning occurs when a large quantity of alcohol consumed over a short time causes problems with breathing, heart rate, body temperature, and the gag reflex.
    [Show full text]