Cinemática Y Dinámica De Galaxias Espirales

Total Page:16

File Type:pdf, Size:1020Kb

Cinemática Y Dinámica De Galaxias Espirales CINEMÁTICA Y DINÁMICA DE GALAXIAS ESPIRALES Por María Paz Agüero Presentado ante la Facultad de Matemática, Astronomía y Física como parte de los requerimientos para la obtención del grado de Doctor en Astronomía de la UNIVERSIDAD NACIONAL DE CORDOBA Marzo, 2010 ©FaMAF – UNC 2010 Director: Rubén J. Díaz 98.52.Nr Spiral Galaxias 98.62.Dm Kinematics, dynamics, and rotation 98.62.Hr Spiral arms 98.62.Qz Magnitudes and colors; luminosities 98.62.Ck Masses and mass distribution A mi familia CINEMÁTICA Y DINÁMICA DE GALAXIAS ESPIRALES Uno de los mayores desafíos de la astronomía del siglo XXI es la determinación precisa del origen, naturaleza y distribución de la materia en sus formas visible y oscura. El modelo cosmológico más aceptado en la actualidad, aquel que postula que la masa del Universo está dominada por la materia oscura fría, ha logrado con mucho éxito reproducir la estructura a gran escala del Universo. Sin embargo, las observaciones de la estructura interna de las galaxias presentan algunas dificultades a la hora de ser confrontadas con el modelo. Por ejemplo, el modelo cosmológico predice que los centros de los halos de materia oscura que circundan las galaxias espirales presentan perfiles de masa con fuertes gradientes de densidad de masa hacia el centro, mientras que las observaciones favorecen regiones centrales con perfiles de masa más planos. Para salvar estas diferencias, por un lado, se han postulado teorías alternativas que pueden explicar la distribución de masa en las galaxias espirales pero tienen dificultades para describir las grandes estructuras. Por otro lado, la obtención e interpretación de las observaciones sufren de varias fuentes de incertezas que provocan cambios sustanciales en los resultados que deben tenerse en cuenta para poder realizar una correcta comparación con los modelos. La relación entre cinemática y luminosidad, llámese cociente de masa-luminosidad, y principal tema de estudio en esta tesis, representa el factor observable más importante para poder entender el origen de la estrecha relación que existe entre el subsistema dominante de materia oscura y la cantidad de estrellas que se formaron dentro del mismo. Por lo tanto, las distribuciones de masa en todas sus formas resultan cruciales para poder confrontar los modelos de formación y evolución de las galaxias. Al analizar la relación entre la cinemática y la luminosidad en las galaxias espirales, se puso especial atención en las incertezas involucradas para poder interpretar las observaciones en términos de propiedades físicas intrínsecas de los objetos. En cuanto a la distribución de brillo, la extinción por el polvo presente en las galaxias espirales introduce complicaciones que sólo son minimizadas en las recientes observaciones en el rango infrarrojo, por lo que basamos nuestro análisis fotométrico en la banda K del infrarrojo cercano. Sin duda los sesgos más comunes que debimos analizar se relacionan con el efecto del apartamiento de la velocidad circular producto de las perturbaciones presentes en los discos galácticos (brazos espirales, barras y alabeos). Otro factor que puede modificar sustancialmente la dinámica y distribución de masa en las galaxias son las interacciones y fusiones galácticas. El tratamiento requirió enfocar distintos aspectos. Por un lado, la cinemática y fotometría detalladas de objetos individuales permitió entender el efecto de los sesgos observacionales más comunes, y por otro lado los análisis estadísticos permitieron inferir propiedades generales. En el Capítulo 1 se resume el estado del conocimiento básico acerca de la estructura de las galaxias, especialmente enfocado hacia el estudio de la distribución de luz y masa en las galaxias espirales. El Capítulo 2 introduce al lector en la complejidad tanto física como observacional del estudio de los movimientos internos de las galaxias espirales, y cómo ésta dificulta la determinación de las distribuciones de masa en galaxias. Este resumen será de utilidad para aquellos que se inician en el estudio de la cinemática de galaxias. La última sección de este capítulo se dedica a un análisis propio de los efectos de algunas perturbaciones tales como barras, alabeos y ondas de densidad en las determinaciones de masas. El Capítulo 3 se centra en trabajos específicos sobre cinemática y estructura de algunos estadios evolutivos de galaxias espirales. Se analiza el caso de Messier 83, una galaxia espiral aislada que por su condición de núcleo doble parece haber sufrido una fusión menor con una galaxia satélite enana. También estudiamos la estructura de tres objetos fuertes emisores en el Infrarrojo que se encuentran en distintas etapas de fusión. Estos estudios se realizaron a fin de comprender mejor los sesgos observacionales producto de las interacciones que afectan a la determinación de las distribuciones de masa y luz en las galaxias. El Capítulo 4 presenta el estudio central de la tesis, la determinación de la distribución de masa y luminosidad infrarroja en una muestra final de 22 galaxias espirales cercanas. En la primera parte se discute la selección de la muestra en la cual se han minimizado los sesgos observacionales estudiados en los Capitulos 2 y 3. En la segunda parte se determinan las variaciones del Cociente masa-luminosidad a cada radio y se estudian las correlaciones entre los distintos parámetros estructurales y dinámicos. Finalmente se determina un perfil universal de masa-luminosidad para galaxias espirales, que permitió derivar una ley de densidad para el halo de materia oscura. El Capítulo 5 resume y discute las conclusiones dentro del escenario general que describe la estructura y evolución de las galaxias espirales como sistemas dominados por una componente de materia oscura no bariónica. ÍNDICE Capítulo 1: Introducción 1.1 Las Galaxias. 1 1.1.1 Tipos de Galaxias . 2 1.1.2 Medio Interestelar . 6 1.1.3 Los centros galácticos. 10 1.2 Determinación de Masas . 14 1.2.1 A partir de la Curva de Rotación . 14 1.2.2 A partir de la Fotometría . 17 1.2.3 La perspectiva del Infrarrojo Cercano . 19 Capítulo 2: Cinemática 2.1 Hipótesis de los Movimientos Circulares. 41 2.1.1 Desarrollo Observacional . 45 2.1.2 Técnicas de Muestreo del Campo de Velocidades. 52 2.1.3 La Curva de Rotación . 65 2.2 Movimientos no Circulares. 69 2.2.1 Ondas de Densidad. 77 2.2.2 Barras . 83 2.2.3 Alabeos. 91 2.3 Conclusiones . 101 Apéndice 2.A . 102 Capítulo 3: Estudios Específicos 3.1 La Rotación de M83 de los 50 pc a los 50 Kpc. 107 3.1.1 La Región Nuclear de M83. 107 3.1.2 La Curva de Rotación de M83 . 114 3.2 Galaxias Espirales en Proceso de Fusión . .121 3.1.1 NGC 2623 . 121 3.1.2 NGC 5514. 126 3.1.2 NGC 3256. 128 3.3 Distribuciones Anulares de Materia en las Regiones Centrales. 131 3.3.1 Catálogo. 132 3.3.2 Galaxias de Comparación. 139 3.3.3 Resultados. 143 3.3.4 Conclusiones. 149 Apéndice 3.A: Tablas . 154 Capítulo 4: Relación Masa Luminosidad en Galaxias Espirales 4.1 Relevancia de la Relación Masa-Luminosidad . 163 4.2 Procedimiento . 164 4.2.1 La Muestra . 167 4.2.2 Densidades de Brillo Superficial. 168 4.2.3 Las Curvas de Rotación y Densidades de Masa. 174 4.2.4 Cociente Masa-Luminosidad. 190 4.3 Resultados. 203 4.3.1 Índice de Color. 203 4.3.2 M/L Integrada. 209 4.3.3 Correlaciones . 214 4.3.4 Perfil Universal de M/L . 220 4.4 Componente Oscura de Masa. 223 4.4.1 Densidad Superficial de Masa. 223 4.4.2 Densidad Volumétrica de Masa. 227 4.5 Conclusiones . 229 Apéndice 4.A: La Muestra. 234 Apéndice 4.B: Tablas. 245 Apéndice 4.C: Cocientes M/L . 249 Apéndice 4.D: Ajuste Exponencial. 271 Capítulo 5: Conclusiones y Comentarios Finales . .277 1 Introducción NGC 4321 Las Galaxias 1 1.1 Las Galaxias En 1845, William Parsons utilizó un telescopio con un área colectora de luz sin precedentes (72 pulgadas), el cual le permitió observar las nebulosas catalogadas por William Herschell con mucho mayor detalle de lo que había sido posible anteriormente. El examen de estas nebulosas reveló que la mayoría podía clasificarse en dos categorías: algunas se percibían más homogéneas, con distribuciones de luz elípticas muy regulares; mientras que otras eran menos simétricas, exponiendo una estructura espiral distintiva. La apariencia de torbellino en estas nebulosas dió peso a la sugerencia de Immanuel Kant, a mediados del siglo XIIX, de que estos universos islas eran sistemas rotantes sobre un eje perpendicular al disco. La galaxia en la que vivimos, la Vía Láctea, corresponde a este último grupo, una galaxia cuya apariencia está dominada por brazos con forma de espiral. Nuestra galaxia, al igual que todas las galaxias espirales , presenta la mayoría de sus estrellas viajando en órbitas circulares formando una estructura aplanada y aproximadamente axisimétrica, a la cual llamamos el disco galáctico y que contiene a los brazos espirales. Este disco tiene una extensión aproximada de 10 Kilopársecs (Kpc) y una 10 masa en estrellas de 5 ×10 M ☼. Nuestro Sol se encuentra a una distancia de 8 Kpc del centro de la Galaxia y se está moviendo con una velocidad circular de 220 km/s. En la dirección perpendicular al disco, la densidad de estrellas sigue una distribución 1 exponencial cuya altura típica ( zd) dependerá de la edad de las estrellas que utilicemos como trazadoras. En la vecindad solar esta altura va de ≤ 100 pársecs para las estrellas jóvenes O y B, hasta ~300 pc para las estrellas con edades del orden de 10 Gyr que constituyen el grueso de la masa del disco 2. El disco también contiene gas, mayormente hidrógeno neutro y molecular, concentrado en nubes con un amplio rango de masas y tamaños, así también como pequeñas partículas sólidas (polvo), las cuales hacen que el gas interestelar se vuelva opaco en longitudes de onda visibles a la distancia de varios Kpc.
Recommended publications
  • Southern Arp - AM # Order
    Southern Arp - AM # Order A B C D E F G H I J 1 AM # Constellation Object Name RA DEC Mag. Size Uranom. Uranom. Millenium 2 1st Ed. 2nd Ed. 3 AM 0003-414 Phoenix ESO 293-G034 00h06m19.9s -41d30m00s 13.7 3.2 x 1.0 386 177 430 Vol I 4 AM 0006-340 Sculptor NGC 10 00h08m34.5s -33d51m30s 13.3 2.4 x 1.2 350 159 410 Vol I 5 AM 0007-251 Sculptor NGC 24 00h09m56.5s -24d57m47s 12.4 5.8 x 1.3 305 141 366 Vol I 6 AM 0011-232 Cetus NGC 45 00h14m04.0s -23d10m55s 11.6 8.5 x 5.9 305 141 366 Vol I 7 AM 0027-333 Sculptor NGC 134 00h30m22.0s -33d14m39s 11.4 8.5 x 2.0 351 159 409 Vol I 8 AM 0029-643 Tucana ESO 079- G003 00h32m02.2s -64d15m12s 12.6 2.7 x 0.4 440 204 409 Vol I 9 AM 0031-280B Sculptor NGC 150 00h34m15.5s -27d48m13s 12 3.9 x 1.9 306 141 387 Vol I 10 AM 0031-320 Sculptor NGC 148 00h34m15.5s -31d47m10s 13.3 2 x 0.8 351 159 387 Vol I 11 AM 0033-253 Sculptor IC 1558 00h35m47.1s -25d22m28s 12.6 3.4 x 2.5 306 141 365 Vol I 12 AM 0041-502 Phoenix NGC 238 00h43m25.7s -50d10m58s 13.1 1.9 x 1.6 417 177 449 Vol I 13 AM 0045-314 Sculptor NGC 254 00h47m27.6s -31d25m18s 12.6 2.5 x 1.5 351 176 386 Vol I 14 AM 0050-312 Sculptor NGC 289 00h52m42.3s -31d12m21s 11.7 5.1 x 3.6 351 176 386 Vol I 15 AM 0052-375 Sculptor NGC 300 00h54m53.5s -37d41m04s 9 22 x 16 351 176 408 Vol I 16 AM 0106-803 Hydrus ESO 013- G012 01h07m02.2s -80d18m28s 13.6 2.8 x 0.9 460 214 509 Vol I 17 AM 0105-471 Phoenix IC 1625 01h07m42.6s -46d54m27s 12.9 1.7 x 1.2 387 191 448 Vol I 18 AM 0108-302 Sculptor NGC 418 01h10m35.6s -30d13m17s 13.1 2 x 1.7 352 176 385 Vol I 19 AM 0110-583 Hydrus NGC
    [Show full text]
  • Spiral Galaxy HI Models, Rotation Curves and Kinematic Classifications
    Spiral galaxy HI models, rotation curves and kinematic classifications Theresa B. V. Wiegert A thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfillment of the requirements of the degree of Doctor of Philosophy Department of Physics & Astronomy University of Manitoba Winnipeg, Canada 2010 Copyright (c) 2010 by Theresa B. V. Wiegert Abstract Although galaxy interactions cause dramatic changes, galaxies also continue to form stars and evolve when they are isolated. The dark matter (DM) halo may influence this evolu- tion since it generates the rotational behaviour of galactic disks which could affect local conditions in the gas. Therefore we study neutral hydrogen kinematics of non-interacting, nearby spiral galaxies, characterising their rotation curves (RC) which probe the DM halo; delineating kinematic classes of galaxies; and investigating relations between these classes and galaxy properties such as disk size and star formation rate (SFR). To generate the RCs, we use GalAPAGOS (by J. Fiege). My role was to test and help drive the development of this software, which employs a powerful genetic algorithm, con- straining 23 parameters while using the full 3D data cube as input. The RC is here simply described by a tanh-based function which adequately traces the global RC behaviour. Ex- tensive testing on artificial galaxies show that the kinematic properties of galaxies with inclination > 40 ◦, including edge-on galaxies, are found reliably. Using a hierarchical clustering algorithm on parametrised RCs from 79 galaxies culled from literature generates a preliminary scheme consisting of five classes. These are based on three parameters: maximum rotational velocity, turnover radius and outer slope of the RC.
    [Show full text]
  • Strong Evidence for the Density-Wave Theory of Spiral Structure from a Multi-Wavelength Study of Disk Galaxies Hamed Pour-Imani University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Theses and Dissertations 8-2018 Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies Hamed Pour-Imani University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/etd Part of the Physical Processes Commons, and the Stars, Interstellar Medium and the Galaxy Commons Recommended Citation Pour-Imani, Hamed, "Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies" (2018). Theses and Dissertations. 2864. http://scholarworks.uark.edu/etd/2864 This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Strong Evidence for the Density-wave Theory of Spiral Structure from a Multi-wavelength Study of Disk Galaxies A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics by Hamed Pour-Imani University of Isfahan Bachelor of Science in Physics, 2004 University of Arkansas Master of Science in Physics, 2016 August 2018 University of Arkansas This dissertation is approved for recommendation to the Graduate Council. Daniel Kennefick, Ph.D. Dissertation Director Vincent Chevrier, Ph.D. Claud Lacy, Ph.D. Committee Member Committee Member Julia Kennefick, Ph.D. William Oliver, Ph.D. Committee Member Committee Member ABSTRACT The density-wave theory of spiral structure, though first proposed as long ago as the mid-1960s by C.C.
    [Show full text]
  • The Outermost Hii Regions of Nearby Galaxies
    THE OUTERMOST HII REGIONS OF NEARBY GALAXIES by Jessica K. Werk A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Astronomy and Astrophysics) in The University of Michigan 2010 Doctoral Committee: Professor Mario L. Mateo, Co-Chair Associate Professor Mary E. Putman, Co-Chair, Columbia University Professor Fred C. Adams Professor Lee W. Hartmann Associate Professor Marion S. Oey Professor Gerhardt R. Meurer, University of Western Australia Jessica K. Werk Copyright c 2010 All Rights Reserved To Mom and Dad, for all your love and encouragement while I was taking up space. ii ACKNOWLEDGMENTS I owe a deep debt of gratitude to a long list of individuals, institutions, and substances that have seen me through the last six years of graduate school. My first undergraduate advisor in Astronomy, Kathryn Johnston, was also my first Astronomy Professor. She piqued my interest in the subject from day one with her enthusiasm and knowledge. I don’t doubt that I would be studying something far less interesting if it weren’t for her. John Salzer, my next and last undergraduate advisor, not only taught me so much about observing and organization, but also is responsible for convincing me to go on in Astronomy. Were it not for John, I’d probably be making a lot more money right now doing something totally mind-numbing and soul-crushing. And Laura Chomiuk, a fellow Wesleyan Astronomy Alumnus, has been there for me through everything − problem sets and personal heartbreak alike. To know her as a friend, goat-lover, and scientist has meant so much to me over the last 10 years, that confining my gratitude to these couple sentences just seems wrong.
    [Show full text]
  • Local Galaxy Flows Within 5
    A&A 398, 479–491 (2003) Astronomy DOI: 10.1051/0004-6361:20021566 & c ESO 2003 Astrophysics Local galaxy flows within 5 Mpc?;?? I. D. Karachentsev1,D.I.Makarov1;11,M.E.Sharina1;11,A.E.Dolphin2,E.K.Grebel3, D. Geisler4, P. Guhathakurta5;6, P. W. Hodge7, V. E. Karachentseva8, A. Sarajedini9, and P. Seitzer10 1 Special Astrophysical Observatory, Russian Academy of Sciences, N. Arkhyz, KChR 369167, Russia 2 Kitt Peak National Observatory, National Optical Astronomy Observatories, PO Box 26732, Tucson, AZ 85726, USA 3 Max-Planck-Institut f¨ur Astronomie, K¨onigstuhl 17, 69117 Heidelberg, Germany 4 Departamento de F´ısica, Grupo de Astronom´ıa, Universidad de Concepci´on, Casilla 160-C, Concepci´on, Chile 5 Herzberg Fellow, Herzberg Institute of Astrophysics, 5071 W. Saanich Road, Victoria, B.C. V9E 2E7, Canada 6 Permanent address: UCO/Lick Observatory, University of California at Santa Cruz, Santa Cruz, CA 95064, USA 7 Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA 8 Astronomical Observatory of Kiev University, 04053, Observatorna 3, Kiev, Ukraine 9 Department of Astronomy, University of Florida, Gainesville, FL 32611, USA 10 Department of Astronomy, University of Michigan, 830 Dennison Building, Ann Arbor, MI 48109, USA 11 Isaac Newton Institute, Chile, SAO Branch Received 10 September 2002 / Accepted 22 October 2002 Abstract. We present Hubble Space Telescope/WFPC2 images of sixteen dwarf galaxies as part of our snapshot survey of nearby galaxy candidates. We derive their distances from the luminosity of the tip of the red giant branch stars with a typical accuracy of 12%.
    [Show full text]
  • INVESTIGATING the PRESENCE of 500 Μm SUBMILLIMETER EXCESS EMISSION in LOCAL STAR FORMING GALAXIES
    The Astrophysical Journal, 778:51 (11pp), 2013 November 20 doi:10.1088/0004-637X/778/1/51 C 2013. The American Astronomical Society. All rights reserved. Printed in the U.S.A. INVESTIGATING THE PRESENCE OF 500 μm SUBMILLIMETER EXCESS EMISSION IN LOCAL STAR FORMING GALAXIES Allison Kirkpatrick1, Daniela Calzetti1, Maud Galametz2, Rob Kennicutt, Jr.2, Daniel Dale3, Gonzalo Aniano4, Karin Sandstrom5, Lee Armus6, Alison Crocker7, Joannah Hinz8, Leslie Hunt9, Jin Koda10, and Fabian Walter5 1 Department of Astronomy, University of Massachusetts, Amherst, MA 01002, USA; [email protected] 2 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 3 Department of Physics & Astronomy, University of Wyoming, Laramie, WY 82071, USA 4 Institut d’Astrophysique Spatiale, Universite´ of Paris-Sud, F-91405 Orsay, France 5 Max-Planck Institut fur¨ Astronomie, Konigstuhl¨ 17, D-69117 Heidelberg, Germany 6 Spitzer Science Center, California Institute of Technology, MC 314-6, Pasadena, CA 91125, USA 7 Ritter Astrophysical Observatory, University of Toledo, Toledo, OH 43606, USA 8 MMT Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721, USA 9 INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze, Italy 10 Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794, USA Received 2013 July 15; accepted 2013 September 30; published 2013 November 1 ABSTRACT Submillimeter excess emission has been reported at 500 μm in a handful of local galaxies, and previous studies suggest that it could be correlated with metal abundance. We investigate the presence of an excess submillimeter emission at 500 μm for a sample of 20 galaxies from the Key Insights on Nearby Galaxies: a Far Infrared Survey with Herschel (KINGFISH) that span a range of morphologies and metallicities (12 + log(O/H) = 7.8–8.7).
    [Show full text]
  • Ngc Catalogue Ngc Catalogue
    NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39
    [Show full text]
  • Bio-Bibliography Garth D. Illingworth 1 Bio-Bibliography University
    Bio-Bibliography Garth D. Illingworth 1 Bio-Bibliography University of California, Santa Cruz September 2011 Garth D. Illingworth Astronomer/Professor of Astronomy University of California Observatories and Lick Observatory/ Department of Astronomy and Astrophysics University of California, Santa Cruz, California 95064 Voice: 831.459.2843 Fax: 831.426.3115 [email protected] Citizenship: U.S. ACADEMIC HISTORY 1973 Ph.D. in Astrophysics, Australian National University, Mount Stromlo and Siding Spring Observatory 1968 B.Sc. (Honours) 1st Class, in Physics, University of Western Australia, Perth POSITIONS HELD 1988– Astronomer, University of California Observatories/Lick Observatory and Professor, Department of Astronomy and Astrophysics, University of California, Santa Cruz 1985–1987 Research Professor, Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 1984–1987 Deputy Director, Space Telescope Science Institute, Baltimore, Maryland 1978–1984 Astronomer, Kitt Peak National Observatory, Tucson, Arizona 1976–1977 Miller Fellow, Department of Astronomy, University of California, Berkeley 1974–1975 Postdoctoral Fellow, Kitt Peak National Observatory, Tucson, Arizona HONORS AND AWARDS 2010 Honorary D.Sc., University of Western Australia 1976–1977 Miller Fellowship, University of California, Berkeley 1969–1973 Australian National University Research Scholarship 1965–1968 Australian National Scholarship, University of Western Australia, Perth MAJOR ACTIVITIES/ACHIEVEMENTS 1. Galaxy formation at high redshft (from z ~ 4–8 and now to z ~ 10), plus galaxy evolution at z ~ 1. Graduate students and postdocs plus major Hubble Space Telescope (HST), Spitzer, Bio-Bibliography Garth D. Illingworth 2 Keck, VLT and Magellan collaborations. Numerous talks at international workshops on galaxy evolution in the first 1–2 billion yr. Highly visited “firstgalaxies” website is #1 in Google search.
    [Show full text]
  • Aleksandar Cikota Astromundus Programme
    A STUDY OF THE EFFECT OF HOST GALAXY EXTINCTION ON THE COLORS OF TYPE IA SUPERNOVAE Aleksandar Cikota Submitted to the INSTITUTE FOR ASTRO- AND PARTICLE PHYSICS of the UNIVERSITY OF INNSBRUCK AstroMundus Programme in Partial Fulfillment of the Requirements for the Degree of MAGISTER DER NATURWISSENSCHAFTEN (Master of Science, MSc) in Astronomy & Astrophysics Supervised by: Assoc. Prof. Francine Marleau, Univ. Prof. Dr. Norbert Przybilla Innsbruck, July 2015 Preface The reserch for this Master’s thesis was partially conducted at the Space Telescope Sci- ence Institute in Balimore, MD, USA, during a 15 weeks internship hosted by Dr. Susana Deustua. Also, a manuscript containing the research conducted for this master thesis, enti- tled ”Determining Type Ia Supernovae host galaxy extinction probabilities and a statistical approach to estimating the absorption-to-reddening ratio RV ” by Aleksandar Cikota, Su- sana Deustua, and Francine Marleau, was submitted to The Astrophysical Journal on May 13th, 2015. Aleksandar Cikota Baltimore, June 2015 i Abstract We aim to place limits on the extinction values of Type Ia supernovae to statistically de- termine the most probable color excess, E(B-V), with galactocentric distance, and to use these statistics to determine the absorption-to-reddening ratio, RV , for dust in the host galaxies. We determined pixel-based dust mass surface density maps for 59 galaxies from the Key Insight on Nearby Galaxies: a Far-Infrared Survey with Herschel (KINGFISH, Ken- nicutt et al. (2011)). We use Type Ia supernova spectral templates (Hsiao et al., 2007) to develop a Monte Carlo simulation of color excess E(B-V) with RV =3.1 and investigate the color excess probabilities E(B-V) with projected radial galaxy center distance.
    [Show full text]
  • The Herschel Virgo Cluster Survey XVIII
    A&A 574, A126 (2015) Astronomy DOI: 10.1051/0004-6361/201424866 & c ESO 2015 Astrophysics The Herschel Virgo Cluster Survey XVIII. Star-forming dwarf galaxies in a cluster environment M. Grossi1,2,3,L.K.Hunt4,S.C.Madden5, T. M. Hughes6,R.Auld7, M. Baes6,G.J.Bendo8,S.Bianchi4, L. Bizzocchi1,9, M. Boquien10,A.Boselli11,M.Clemens12,E.Corbelli4,L.Cortese13,J.Davies7, I. De Looze6, S. di Serego Alighieri4, J. Fritz6, C. Pappalardo1,2,3, D. Pierini14, A. Rémy-Ruyer5,M.W.L.Smith7, J. Verstappen6, S. Viaene6, and C. Vlahakis15 1 Centro de Astronomia e Astrofísica da Universidade de Lisboa, OAL, Tapada da Ajuda, 1349-018 Lisbon, Portugal e-mail: [email protected] 2 Instituto de Astrofísica e Ciências do Espaço, Universidade de Lisboa, OAL, Tapada da Ajuda, 1349-018 Lisbon, Portugal 3 Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, Edifício C8, Campo Grande, 1749-016 Lisbon, Portugal 4 INAF – Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy 5 Laboratoire AIM, CEA/DSM – CNRS – Université Paris Diderot, Irfu/Service d’Astrophysique, CEA Saclay, 91191 Gif-sur-Yvette, France 6 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, 9000 Gent, Belgium 7 School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK 8 UK ALMA Regional Centre Node, Jodrell Bank Centre for Astrophysics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, UK 9 Center for Astrochemical Studies, Max-Planck-Institut für extraterrestrische Physik (MPE), Giessenbachstraße, 85748 Garching, Germany 10 Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 11 Laboratoire d’Astrophysique de Marseille, UMR 6110 CNRS, 38 rue F.
    [Show full text]
  • Arxiv:1906.04212V2 [Astro-Ph.GA] 27 Jun 2019
    Ultra light Thomas-Fermi Dark Matter K. Pal,∗ L. V. Sales,y and J. Wudkaz Department of Physics and Astronomy, UC Riverside, Riverside, CA 92521-0413, U.S.A We investigate the viability of a simple dark matter (DM) model consisting of a single fermion in the context of galactic dynamics. We use a consistent approach that does not presume a particular DM density profile but instead requires that the DM+baryon system is in hydrostatic equilibrium. Using a phenomenological baryon density profile, the model then predicts the DM distribution with a core like behavior close to the galactic center. The presence of supermassive black holes (SMBHs) in the center of large galaxies arises naturally in this framework. Using data from a set of large elliptical and spiral galaxies, and from a small set of dwarf galaxies, we find that the model can explain most of the bulk galactic properties, as well as some of the features observed in the rotation curves, provided the DM mass is in the O(50 eV) range. More precise tests of the model require better modeling of the baryon profile and better control on the uncertainties in the data. arXiv:1906.04212v2 [astro-ph.GA] 27 Jun 2019 ∗ [email protected] y [email protected] z [email protected] 2 I. INTRODUCTION The nature of dark matter (DM) remains one of the most pressing questions in modern cosmology and astrophysics; despite enormous theoretical and observational/experimental efforts, no definite DM candidate, or even paradigm for the dark sector, has been generally accepted.
    [Show full text]
  • Discovery of Globular Clusters in the Proto-Spiral NGC2915: Implications
    APJ LETTERS, ACCEPTED Preprint typeset using LATEX style emulateapj v. 11/12/01 DISCOVERY OF GLOBULAR CLUSTERS IN THE PROTO-SPIRAL NGC2915: IMPLICATIONS FOR HIERARCHICAL GALAXY EVOLUTION GERHARDT R. MEURER1, J.P. BLAKESLEE1,M.SIRIANNI1, H.C. FORD1, G.D. ILLINGWORTH2, N. BENÍTEZ1,M.CLAMPIN3, F. MENANTEAU1, H.D. TRAN4, R.A. KIMBLE3, G.F. HARTIG5, D.R. ARDILA1, F. BARTKO6, R.J. BOUWENS1, T.J. BROADHURST7, R.A. BROWN5, C.J. BURROWS5, E.S.CHENG3, N.J.G. CROSS1, P.D. FELDMAN1, D.A. GOLIMOWSKI1,C.GRONWALL8,L.INFANTE9, J.E. KRIST5, M.P. LESSER10, A.R. MARTEL1, G.K. MILEY11,M.POSTMAN5, P.ROSATI12 , W.B. SPARKS5, Z.I.TSVETANOV1, R.L. WHITE1,5,&W.ZHENG1 ApJ Letters, accepted ABSTRACT We have discovered three globular clusters beyond the Holmberg radius in Hubble Space Telescope Advanced Camera for Surveys images of the gas-rich dark matter dominated blue compact dwarf galaxy NGC2915. The clusters, all of which start to resolve into stars, have MV606 = −8.9 to –9.8 mag, significantly brighter than the peak of the luminosity function of Milky Way globular clusters. Their colors suggest a metallicity [Fe/H] ≈ −1.9 dex, typical of metal-poor Galactic globular clusters. The specific frequency of clusters is at a minimum normal, compared to spiral galaxies. However, since only a small portion of the system has been surveyed it is more likely that the luminosity and mass normalized cluster content is higher, like that seen in elliptical galaxies and galaxy clusters. This suggests that NGC2915 resembles a key phase in the early hierarchical assembly of galaxies - the epoch when much of the old stellar population has formed, but little of the stellar disk.
    [Show full text]