Findings from Get with the Guidelines–Stroke Registry

Total Page:16

File Type:pdf, Size:1020Kb

Findings from Get with the Guidelines–Stroke Registry THE IMPACT OF THE MEDICARE SHARED SAVINGS PROGRAM ON STROKE OUTCOMES: FINDINGS FROM GET WITH THE GUIDELINES–STROKE REGISTRY Brystana G. Kaufman A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Health Policy and Management in the Gillings School of Global Public Health. Chapel Hill 2018 Approved By: Sally Stearns Emily O’Brien Ying Xian Morris Weinberger Mark Holmes © 2018 Brystana G. Kaufman ALL RIGHTS RESERVED ii ABSTRACT Brystana G. Kaufman: The Impact of the Medicare Shared Savings Program on Stroke Outcomes: Findings from Get With the Guidelines–Stroke Registry (Under the direction of Sally Stearns) Background: Over 900 Accountable Care Organizations (ACOs) have been created since 2010, and projections estimate that ACOs will manage the care for about one-third of Americans by 2025, however the impact of the MSSP on quality of care and patient outcomes is unclear. Objective: This study compared outcomes before and after MSSP implementation for patients who were either (1) discharged from hospitals that chose to participate (N=273) versus not participate(N=1,490) in MSSP or (2) assigned by Centers for Medicare & Medicaid Services (CMS) to a MSSP ACO versus not. I hypothesized that MSSP ACO participation would be associated with reduced inpatient utilization and improved outcomes of care. Methods: Using a difference-in-difference (DD) design, I evaluated outcomes associated with MSSP in a national inpatient stroke registry, Get With The Guidelines (GWTG)–Stroke, linked with Medicare claims for 2010–2015. Usage outcomes of discharge to home, number of hospital admissions, and Days Alive and Out of Hospital (DAOH) were modeled using negative binomial models with a log link and offset. Outcomes of all-cause rehospitalization, recurrent stroke, and all-cause mortality were modeled using Cox proportional hazards models. Outcomes of CMO or hospice enrollment within two weeks, hospice use within one year of hospitalization, hospice enrollment within seven days of death, and live discharge from hospice were modeled iii using logistic regression. Except for discharge destination, all outcomes were followed for up to one year following discharge, with appropriate adjustment for death. Key Findings: I found no evidence that hospital participation in the MSSP decreased inpatient use among stroke patients in the year following discharge, however beneficiary ACO alignment was associated with increases in subsequent admissions. Among patients most likely to benefit from palliative care, MSSP increased hospice enrollment and inpatient comfort measures without increasing rates of live discharge. Conclusion: Except for increased use of palliative care among stroke patients, current quality metrics and incentives in MSSP contracts may not be sufficient to generate changes in post-stroke care. iv ACKNOWLEDGEMENTS This dissertation is dedicated to my children, through whose births I became aware of the opportunity for improvement in the value of the care provided in the United States healthcare system, and my husband, who supported my leap into the strange world known as academia. He never doubted I would emerge successful, and the reason I did is largely due to his confidence when mine wavered. I owe the completion of this work to the many mentors, colleagues, and funders who supported this project and my development as a researcher. First I thank my dissertation committee: Sally Stearns, Emily O’Brien, Morris Weinberger, Mark Holmes, and Ying Xian. Each of them has played a remarkable role in my progression to this stage. Before I knew where I wanted to be in the public health labyrinth, Morris advised me, wisely, to enter the Master’s program where I gained insight and confidence. Before I had a curriculum vitae, Mark gave me an opportunity to practice and learn from the best researchers who of course worked at the North Carolina Rural Health Research Center (shout out to George Pink). Sally has been in the trenches with me as I struggled through my first complex claims analyses in my Master’s project, and she supported my vision for this dissertation work and made it better every step of the way. Emily was a key contributor to the design of my study, encouraging me to be ambitious and connecting me with the people and data that made my ideas come to life. Ying has provided essential clinical perspective and data knowledge and, in addition, I appreciate his encouragement and support in my transition into the next stage of my research career. v Additionally, I must thank Donald Taylor, Jeff Clough, Roland Matsouaka, Steven Spivack, Paula Song, and the Get With The Guidelines leadership and statistical teams who served as a consultants on this project and provided valuable feedback. This dissertation benefitted from their generosity of time and expertise immensely. In addition to direct project support, Don has provided mentorship and strategic direction for my long-term career goals. I appreciate the generous funding that provided the resources and time for me to complete this study. First, the Duke-Margolis center funded the hospice data that were needed for Aim 3. Supplemental funding for consulting, administration, and travel was provided through the Executive Director Pathway Award at the Duke Clinical Research Institute. The DCRI pre- doctoral fellowship program gave me access to all of these resources, and I cannot thank Asheley Skinner enough for her role in establishing this program. Finally, the many therapy sessions and random escapist conversations with Ruchir and Mihaela, as fellows at the DCRI, made the process nearly enjoyable at times. All the HPM students and my cohort in particular provided wonderful support, and I am excited to see what they will accomplish in the future. “Knowing is not enough; we must apply. Willing is not enough; we must do.” —Goethe vi PREFACE This dissertation is organized in a non-traditional format. The first chapter provides a brief introduction to the topic and the specific aims of the dissertation. Chapter 2 includes the conceptual model and an overview of the approach taken in each study aim. Chapters 3, 4, and 5 are manuscripts for the three study aims, intended to stand alone as publishable manuscripts and thus have redundancies with other chapters. Chapter 6 provides a summary of findings and policy implications and suggestions for future research. The Get With The Guidelines®–Stroke (GWTG–Stroke) program is provided by the American Heart Association/American Stroke Association. GWTG–Stroke is sponsored, in part, by Medtronic and has been funded in the past through support from Boeringher-Ingelheim, Merck, Bristol-Myers Squib/Sanofi Pharmaceutical Partnership, Janseen Pharmaceutical Companies of Johnson & Johnson and the AHA Pharmaceutical Roundtable. vii TABLE OF CONTENTS LIST OF TABLES ......................................................................................................................... xi LIST OF FIGURES ...................................................................................................................... xii LIST OF ABBREVIATIONS ...................................................................................................... xiii CHAPTER 1. INTRODUCTION ................................................................................................... 1 1.1 Background ................................................................................................................... 1 1.2 Study Purpose and Specific Aims ................................................................................. 2 1.3 Study Significance ........................................................................................................ 3 1.4 Research Question and Hypotheses .............................................................................. 4 1.5 Conceptual Model ......................................................................................................... 4 CHAPTER 2. APPROACH ............................................................................................................ 8 2.1 Overview and Rationale ................................................................................................ 8 2.2 Innovation ..................................................................................................................... 9 2.3 Data Sources ............................................................................................................... 11 2.4 Sample Size and Power ............................................................................................... 11 Sample Identification .................................................................................................. 11 Limited Life Expectancy Subgroup ............................................................................ 14 Power .......................................................................................................................... 18 2.5 Selection Bias.............................................................................................................. 19 CMS MSSP Assignment Methodology ...................................................................... 19 MSSP Immortal Time Bias ......................................................................................... 21 2.6 Key Variables and Measures .....................................................................................
Recommended publications
  • Prescriptions for Excellence in Health Care a Collaboration Between Jefferson School of Population Health and Lilly Usa, Llc
    PRESCRIPTIONS FOR EXCELLENCE IN HEALTH CARE A COLLABORATION BETWEEN JEFFERSON SCHOOL OF POPULATION HEALTH AND LILLY USA, LLC ISSUE 23 | WINTER 2015 EDITORIAL TABLE OF CONTENTS ACOs Due for Their Annual Checkup David B. Nash, MD, MBA A Message from Lilly: Opportunities, Uncertainty Loom in 2015 for the Editor-in-Chief Health Exchange Marketplace Ryan Urgo, MPP ....................................................2 As 2013 drew to a close, Premier with more than 190,000 physicians Healthcare Alliance predicted and other health care professionals Biography of a New ACO Joel Port, FACHE .............................................4 that participation in accountable participating.2 Although the care organizations (ACOs) would number of Medicare ACOs has Evolving Health Care Models and double in 2014 as a result of more grown more rapidly than the the Impact on Value and Quality providers developing core ACO number of non-Medicare ACOs, Bruce Perkins ...................................................6 capabilities.1 Premier’s forecast 46-52 million Americans (15%- Employers and Accountable Care was made on the basis of its 18% of the total population) are Organizations: A Good Marriage? survey of 115 senior executives patients in organizations with ACO Laurel Pickering, MPH .....................................9 that revealed a growing trend in arrangements with at least 1 payer.2 high-risk population management, coupled with reductions in cost The next question is, are ACOs and increases in health care quality doing what they are designed to do and patient satisfaction. Of those (ie, improving quality and lowering who responded: costs)? Although it is far too early to draw conclusions, the Centers • More than 75% reported for Medicare & Medicaid Services Prescriptions for Excellence in Health that they were integrating (CMS) has begun to release Care is brought to Population Health clinical and claims data to financial and quality outcomes.
    [Show full text]
  • Rideshare and the Orbital Maneuvering Vehicle: the Key to Low-Cost Lagrange-Point Missions
    SSC15-II-5 Rideshare and the Orbital Maneuvering Vehicle: the Key to Low-cost Lagrange-point Missions Chris Pearson, Marissa Stender, Christopher Loghry, Joe Maly, Valentin Ivanitski Moog Integrated Systems 1113 Washington Avenue, Suite 300, Golden, CO, 80401; 303 216 9777, extension 204 [email protected] Mina Cappuccio, Darin Foreman, Ken Galal, David Mauro NASA Ames Research Center PO Box 1000, M/S 213-4, Moffett Field, CA 94035-1000; 650 604 1313 [email protected] Keats Wilkie, Paul Speth, Trevor Jackson, Will Scott NASA Langley Research Center 4 West Taylor Street, Mail Stop 230, Hampton, VA, 23681; 757 864 420 [email protected] ABSTRACT Rideshare is a well proven approach, in both LEO and GEO, enabling low-cost space access through splitting of launch charges between multiple passengers. Demand exists from users to operate payloads at Lagrange points, but a lack of regular rides results in a deficiency in rideshare opportunities. As a result, such mission architectures currently rely on a costly dedicated launch. NASA and Moog have jointly studied the technical feasibility, risk and cost of using an Orbital Maneuvering Vehicle (OMV) to offer Lagrange point rideshare opportunities. This OMV would be launched as a secondary passenger on a commercial rocket into Geostationary Transfer Orbit (GTO) and utilize the Moog ESPA secondary launch adapter. The OMV is effectively a free flying spacecraft comprising a full suite of avionics and a propulsion system capable of performing GTO to Lagrange point transfer via a weak stability boundary orbit. In addition to traditional OMV ’tug’ functionality, scenarios using the OMV to host payloads for operation at the Lagrange points have also been analyzed.
    [Show full text]
  • Space Isotopic Power Systems
    Space isotopiC power systems With the technology sound and growing, and units already built for missions ranging from 120 days to 5 years, the designer can and should plan appropriate space application of isotopic systems BY CAPT. R. T. CARPENTER, USAF U.S. Atomic Energy Commission A new space power system technology technology, and aerospace nuclear Concurrently, the terrestrial appli­ -isotopic power-has developed to safety technology contributed by the cations-the Snap-7 programs-sus­ the point where it can and should be program and used as a foundation for tained the isotopic power development considered by the space-vehicle de­ follow-on space isotopic power-system program and promoted the fission­ signer for use in many types of mis­ developments. product separations and processing sions. Because of this sound technical capability that exists within the Com­ The' Atomic Energy Commission's basis, the Commission's space-oriented mission today! The interest among isotopic space power program dates isotopic power development program terrestrial power users-the Navy, back to several years before Sputnik has made a steady, although some­ Weather Bureau, and Coast Guard­ I, but the program suffered a severe times slow, comeback through a series was sufficiently strong to sup:port this setback in 1959 when the Snap-1A of events since 1959, so that today a . fuels production program, whe:r:eas the generator development program was program technically comparable to interest in Snap-1A had been inade­ cancelled.' This pioneer program was Snap-1A could once more be under­ quate. At the same time, significant not completed because it may have taken with a high probability of suc­ quantities of the long-lived alpha­ been tt;lO ambitious for its day.
    [Show full text]
  • Indication, from Pioneer 10/11, Galileo and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration”
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Comment on \Indication, from Pioneer 10/11, Galileo and Ulysses Data, of an Apparent Anomalous, Weak, Long-Range Acceleration" J. I. Katz Department of Physics and McDonnell Center for the Space Sciences Washington U., St. Louis, Mo. 63130 [email protected] (December 4, 1998) Pacs numbers: 04.80.-y, 95.10.Eg, 95.55.Pe Typeset using REVTEX 1 This paper [1] may have underestimated the acceleration resulting from the radiation of waste heat by the Pioneer spacecraft RTG. These generators are not very efficient; theoretical efficiencies may be as high as 20% [2] but RTG used in spacecraft more typically have electrical efficiencies of about 6% when new [3], which decline slowly as the thermoelectric material degrades and radioactive decay reduces the Carnot efficiency. Specific parameters and detailed design information for Pioneer are difficult to obtain so I adopt an initial electrical efficiency of 6%. Then the electric power at launch of 160 W [1] implied a thermal power of 2.67 kW and a waste heat of 2.51 kW. In 1997 the thermal power, decaying with thehalflifeofPu238 of 87.74 y, was 2.19 kW and the electrical power of 80 W [1] implied a waste heat of 2.11 kW. The power of a collimated beam sufficient to explain the reported anomalous acceleration aP is 85 W [1]. The same force can be obtained from the present rejected waste heat if it is radiated with cos θ =0:040, where θ is the angle between the direction of radiation and a ray from the Sun.h Ifi the 72 W of dissipated electrical power (allowing for 8 W radiated by the antenna) are radiated from the back of the spacecraft according to Lambert’s law the RTG waste heat need only give the thrust of a 37 W collimated beam, requiring cos θ =0:018.
    [Show full text]
  • NASA and Planetary Exploration
    **EU5 Chap 2(263-300) 2/20/03 1:16 PM Page 263 Chapter Two NASA and Planetary Exploration by Amy Paige Snyder Prelude to NASA’s Planetary Exploration Program Four and a half billion years ago, a rotating cloud of gaseous and dusty material on the fringes of the Milky Way galaxy flattened into a disk, forming a star from the inner- most matter. Collisions among dust particles orbiting the newly-formed star, which humans call the Sun, formed kilometer-sized bodies called planetesimals which in turn aggregated to form the present-day planets.1 On the third planet from the Sun, several billions of years of evolution gave rise to a species of living beings equipped with the intel- lectual capacity to speculate about the nature of the heavens above them. Long before the era of interplanetary travel using robotic spacecraft, Greeks observing the night skies with their eyes alone noticed that five objects above failed to move with the other pinpoints of light, and thus named them planets, for “wan- derers.”2 For the next six thousand years, humans living in regions of the Mediterranean and Europe strove to make sense of the physical characteristics of the enigmatic planets.3 Building on the work of the Babylonians, Chaldeans, and Hellenistic Greeks who had developed mathematical methods to predict planetary motion, Claudius Ptolemy of Alexandria put forth a theory in the second century A.D. that the planets moved in small circles, or epicycles, around a larger circle centered on Earth.4 Only partially explaining the planets’ motions, this theory dominated until Nicolaus Copernicus of present-day Poland became dissatisfied with the inadequacies of epicycle theory in the mid-sixteenth century; a more logical explanation of the observed motions, he found, was to consider the Sun the pivot of planetary orbits.5 1.
    [Show full text]
  • Lessons from the Pioneer Venus Program
    https://ntrs.nasa.gov/search.jsp?R=20070014676 2019-08-29T18:39:07+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server LESSONS FROM THE PIONEER VENUS PROGRAM Steven D. Dorfman Boeing Satellite Systems, P.O. Box 92919, Los Angeles, CA 90009-2919 Good evening. It is indeed a pleasure to address a than my six years heading up the Pioneer Venus pro- group of scientists and engineers who share my enthu- gram for Hughes. siasm for space exploration. When Bernie Bienstock, tonight’s host from Boeing, first asked me to be a key- My planetary exploration experience began in the early note speaker tonight he suggested I tell war stories 70’s with the Outer Planets Grand Tour. At that time, about Pioneer Venus. Well, for a veteran like me, that’s the alignment of the outer planets presented a unique a tempting offer. And it’s a temptation I don’t intend to opportunity to fly a single spacecraft to Jupiter, Saturn, resist. So my remarks tonight will be more of a per- Uranus, Neptune and Pluto. In fact, this opportunity sonal Pioneer Venus memoir then a program history. was singled out by President Nixon as a major national As the Hughes Program Manager for the Pioneer Ve- objective, in much the same way President Bush has nus project, I gained a perspective on what it takes to announced the missions to the Moon, Mars and beyond design, build, test, launch and fly planetary missions.
    [Show full text]
  • Voyage to Jupiter. INSTITUTION National Aeronautics and Space Administration, Washington, DC
    DOCUMENT RESUME ED 312 131 SE 050 900 AUTHOR Morrison, David; Samz, Jane TITLE Voyage to Jupiter. INSTITUTION National Aeronautics and Space Administration, Washington, DC. Scientific and Technical Information Branch. REPORT NO NASA-SP-439 PUB DATE 80 NOTE 208p.; Colored photographs and drawings may not reproduce well. AVAILABLE FROMSuperintendent of Documents, U.S. Government Printing Office, Washington, DC 20402 ($9.00). PUB TYPE Reports - Descriptive (141) EDRS PRICE MF01/PC09 Plus Postage. DESCRIPTORS Aerospace Technology; *Astronomy; Satellites (Aerospace); Science Materials; *Science Programs; *Scientific Research; Scientists; *Space Exploration; *Space Sciences IDENTIFIERS *Jupiter; National Aeronautics and Space Administration; *Voyager Mission ABSTRACT This publication illustrates the features of Jupiter and its family of satellites pictured by the Pioneer and the Voyager missions. Chapters included are:(1) "The Jovian System" (describing the history of astronomy);(2) "Pioneers to Jupiter" (outlining the Pioneer Mission); (3) "The Voyager Mission"; (4) "Science and Scientsts" (listing 11 science investigations and the scientists in the Voyager Mission);.(5) "The Voyage to Jupiter--Cetting There" (describing the launch and encounter phase);(6) 'The First Encounter" (showing pictures of Io and Callisto); (7) "The Second Encounter: More Surprises from the 'Land' of the Giant" (including pictures of Ganymede and Europa); (8) "Jupiter--King of the Planets" (describing the weather, magnetosphere, and rings of Jupiter); (9) "Four New Worlds" (discussing the nature of the four satellites); and (10) "Return to Jupiter" (providing future plans for Jupiter exploration). Pictorial maps of the Galilean satellites, a list of Voyager science teams, and a list of the Voyager management team are appended. Eight technical and 12 non-technical references are provided as additional readings.
    [Show full text]
  • Plasma Transport Into the Duskside Magnetopause Caused by Kelvin
    https://doi.org/10.5194/angeo-2019-103 Preprint. Discussion started: 19 July 2019 c Author(s) 2019. CC BY 4.0 License. 1 Plasma transport into the duskside magnetopause caused by 2 Kelvin-Helmholtz vortices in response to the northward turning of 3 the interplanetary magnetic field observed by THEMIS 4 Guang Qing Yan1, George K. Parks2, Chun Lin Cai1, Tao. Chen1, James P. McFadden2, 5 Yong Ren1,3 6 1 State Key Laboratory of Space Weather, National Space Science Center, Chinese 7 Academy of Sciences, Beijing, China, 100190 8 2 Space Science Laboratory, University of California, Berkeley, California, USA, 9 CA94720 10 3 University of Chinese Academy of Sciences, Beijing, China, 100049 11 12 Abstract: A train of Kelvin-Helmholtz (K-H) vortices with plasma transport 13 across the magnetopause has been observed by the Time History of Events and 14 Macroscale Interactions during Substorms (THEMIS) when the interplanetary 15 magnetic field (IMF) abruptly turns northward. This unique event occurred 16 without pre-existing denser boundary layer to facilitate the instability. Two 17 THEMIS spacecraft, TH-A and TH-E, separated by 3 Re, periodically 18 encountered the duskside magnetopause and the low-latitude boundary layer 19 (LLBL) with a period of 2 minutes and tailward propagation of 194 km/s. There 20 was no high-velocity low-density feature, but the rotations in the bulk velocity 21 observation, distorted magnetopause with plasma parameter fluctuations and 22 the magnetic field line stretching, indicate the formation of rolled-up K-H 23 vortices at the duskside magnetopause. A mixture of magnetosheath ions with 24 magnetospheric ions and enhanced energy flux of hot electrons is identified in 25 the K-H vortices.
    [Show full text]
  • Lessons from the Pioneer Venus Program
    LESSONS FROM THE PIONEER VENUS PROGRAM Steven D. Dorfman Boeing Satellite Systems, P.O. Box 92919, Los Angeles, CA 90009-2919 Good evening. It is indeed a pleasure to address a than my six years heading up the Pioneer Venus pro- group of scientists and engineers who share my enthu- gram for Hughes. siasm for space exploration. When Bernie Bienstock, tonight’s host from Boeing, first asked me to be a key- My planetary exploration experience began in the early note speaker tonight he suggested I tell war stories 70’s with the Outer Planets Grand Tour. At that time, about Pioneer Venus. Well, for a veteran like me, that’s the alignment of the outer planets presented a unique a tempting offer. And it’s a temptation I don’t intend to opportunity to fly a single spacecraft to Jupiter, Saturn, resist. So my remarks tonight will be more of a per- Uranus, Neptune and Pluto. In fact, this opportunity sonal Pioneer Venus memoir then a program history. was singled out by President Nixon as a major national As the Hughes Program Manager for the Pioneer Ve- objective, in much the same way President Bush has nus project, I gained a perspective on what it takes to announced the missions to the Moon, Mars and beyond design, build, test, launch and fly planetary missions. as part of his Vision for Space Exploration in February, 2004. In response to Nixon’s announcement, JPL Before beginning, let me extract a few lessons from my planned to begin a major contract procurement.
    [Show full text]
  • Pioneer News Omar Ramos Maya John
    I S S U E 7 / / 2 0 2 0 PIONEER NEWS OMAR RAMOS MAYA JOHN Introducing Pioneer A very complex Girls Can Tap Dance, Admission Officers | p. 05 dance | p. 09 Too! | p. 12 CONTENTS SEE WHAT HAPPENED IN PIONEER 02 LETTER FROM THE DIRECTOR Pioneer believes curiosity and commitment are unstoppable! 04 PIONEER NEWS Supporting alumni transition to college and beyond Mastering the research and writing processes 05 TODAY! PIONEER OPEN INTRODUCING 03 SUMMER STUDY PIONEER ADMISSION OFFICERS 08 STATISTICS 2019 Pioneer Research Program university acceptance statistics 16 PIONEER FACULTY SEMINAR 09 12 Reimagining community building in education in the time of COVID-19 OMAR RAMOS MAYA JOHN A very complex dance Girls can tap dance, Too! 19 A CREDIT-BEARING COLLEGE COURSE Pioneer scholars can list the Pioneer Research Program not as another activity but instead as a credit-bearing college course on college applications 30 S 15th St 15th floor Philadelphia, PA 19102, USA 1-855-572- 8863 [email protected] A FORMER COLLEGE www.pioneeracademics.com 07 ADMISSIONS DIRECTOR TALKS Pioneer Academics Magazine, Issue7 Copyright 2020 by Pioneer Academics © All rights reserved Letter from the Director Pioneer believes curiosity and commitment are unstoppable! Dear educators and students, Because of the novel coronavirus, we all faced a time of Pioneer therefore put together a new program -- the Pioneer unprecedented challenge. Life in so many ways came to a near Open Summer Study (POSS) -- for every student who was halt. Students nearing college, however, couldn’t stop working interested and committed. We launched three exciting topics towards their academic goals, and educators had to continue to that Pioneer faculty hosted through workshops and which guide them in spite of the hardships and difficulties the virus students could take on as independent summer projects.
    [Show full text]
  • + Charles F. Hall
    Charles F. Hall NASA Ames Hall of Fame Almost seven billion miles from Earth and moving at a speed of over 27,000 miles per hour is a remarkable device, humankind's first emissary to cross the threshold into interstellar space: Pioneer 10. That fact alone would be amazing enough, but Pioneer 10 and its brethren in the illustrious Pioneer series have done much more than trailblaze humanity's path into the universe. Under the direction of Charles F. Hall, the Pioneer projects have provided our first close-up glimpses of new worlds and opened our eyes to previously unimagined wonders. His leadership has placed Ames firmly in the forefront of planetary exploration. Hall managed the Pioneer program with a "faster, better, cheaper" philosophy long before those words became NASA's official 90's mantra. It was a formidable task, because the Pioneer spacecraft were intended to travel farther and provide more hard scientific data than any previous space probes. Pioneers 6 through 9 would probe the secrets of our Sun's atmosphere in various solar orbits; Pioneer Venus would provide humankind's first truly detailed look at Earth's sister planet; and Pioneers 10 and 11 were set to penetrate past Mars into the outer Solar System, farther than any man-made craft had ever traveled. Considering the unique engineering and scientific challenges posed by such ambitious plans, it might seem a foregone conclusion that the project would exceed its allotted budget and fail to meet its schedule. Yet Charles Hall managed to not only keep the program within budget and on schedule, but did so without compromising its ultimate scientific objectives.
    [Show full text]
  • 2009 the Offi Cial Visitor Guide to Lassen Volcanic National Park
    National Park Service Visitor Guide U.S. Department of the Interior Lassen Volcanic National Park Peak Experiences June - November 2009 The offi cial visitor guide to Lassen Volcanic National Park Welcome Welcome to Lassen Volcanic National What Do You Have to Gain? Park. As many of you may already know, It seems like just another routine hike to harvesting to reduce the need for artifi cial light, the park has received press coverage as a top vacation destination. We are thrilled Bumpass Hell when suddenly everything the use of ultra long-lasting and energy-effi cient the word is spreading, and even happier changes. You feel a tap on your shoulder, and LED lamps in the exhibit area, partial heating that you came to visit. Here you will fi nd then hear a voice whisper, “Psst, hey buddy, you and cooling using a ground loop heat pump opportunities to visit over 50 tranquil mountain lakes, explore active hydrothermal want some free money?” As you turn around, system, and the orientation of the building’s areas, camp under the brilliant night sky, a million thoughts race around in your head: overhangs to generate shade in the summer and fi sh slow-rolling mountain streams, and hike Is this for real? What’s the catch? The person let more sun in during the winter. Parkwide trails that have sweeping vistas or go deep into old-growth forests. I invite you to read behind the voice comes into view. It is a park energy saving improvements we have made this visitor guide, talk to a ranger, or use our ranger.
    [Show full text]