A History of the Lightning Launch Commit Criteria and the Lightning Advisory Panel for America’S Space Program

Total Page:16

File Type:pdf, Size:1020Kb

A History of the Lightning Launch Commit Criteria and the Lightning Advisory Panel for America’S Space Program https://ntrs.nasa.gov/search.jsp?R=20110000675 2019-08-30T13:44:50+00:00Z NASA/SP—2010–216283 A History of the Lightning Launch Commit Criteria and the Lightning Advisory Panel for America’s Space Program Francis J. Merceret, Editor NASA, John F. Kennedy Space Center John C. Willett, Editor Air Force Research Laboratory (Retired) Hugh J. Christian University of Alabama in Huntsville James E. Dye National Center for Atmospheric Research, Boulder, Colorado E. Phillip Krider University of Arizona, Department of Atmospheric Sciences John T. Madura NASA, John F. Kennedy Space Center T. Paul O’Brien Aerospace Corporation, El Segundo, California W. David Rust National Severe Storms Laboratory Richard L. Walterscheid Aerospace Corporation, Space Sciences Department, El Segundo, California National Aeronautics and Space Administration John F. Kennedy Space Center Kennedy Space Center, FL 32899 August 2010 Executive Summary Since natural and artificially-initiated (or ‘triggered’) lightning are demonstrated hazards to the launch of space vehicles, the American space program has responded by establishing a set of Lightning Launch Commit Criteria (LLCC) and Definitions to mitigate the risk. The LLCC apply to all Federal Government ranges and have been adopted by the Federal Aviation Administration for application at state-operated and private spaceports. The LLCC and their associated definitions have been developed, reviewed, and approved over the years of the American space program starting from relatively simple rules in the mid-twentieth century (that were not adequate) to a complex suite for launch operations in the early 21st century. During this evolutionary process, a “Lightning Advisory Panel (LAP)” of top American scientists in the field of atmospheric electricity was established to guide it. This history document provides a context for and explanation of the evolution of the LLCC and the LAP. A companion document on the rationale is currently being prepared by the LAP to provide the physical, mathematical, and operational justification for the current LLCC. Lightning that takes place naturally in thunderstorms was recognized as a threat to spaceflight early in the space age, and the early launch rules prohibited flight through thunderstorms. What had not been recognized until Apollo XII was launched in 1969, was that an ascending rocket could “trigger” lightning if it flew into highly electrified clouds, even in the absence of natural lightning. Apollo XII was struck twice by triggered lightning, and as a result, additional rules were added to forbid flying within 5 NM of thunderstorms or through certain non-thunderstorm clouds that experience showed had the potential of being electrified. During the time between Apollo XII and the beginning of the Space Shuttle Program, several important research programs were carried out to learn more about lightning and cloud electricity in Florida, and additional instrumentation was installed at the KSC and Eastern Range (ER). The LLCC were modified for the Skylab program in 1973 and again for the Apollo-Soyuz Test Project in 1975. Expendable launch vehicles (ELV) had their own separate but similar rules. In 1979 the nascent Shuttle program adopted a set of LLCC that included constraints and waivers that were based on surface electric field mill measurements. The ELV rules did not adopt the field mill criteria. In 1987, triggered lightning caused the loss of Atlas/Centaur 67 (AC 67) and its Fleetsatcom payload. A major cause of this accident was the failure of the ELV rules to include a field mill criterion. The Shuttle rules would have prohibited the launch of AC 67. In the aftermath of several investigations and a Congressional Hearing, a lightning “Peer Review Committee”, a predecessor of the LAP, was established to guide NASA and the Air Force in the drafting of LLCC and the conduct of associated research. Several major research projects were undertaken, including the first “Airborne Field Mill Program” (ABFM I, 1990-1992) in which direct measurements of electric fields in Florida clouds were made from a specially instrumented aircraft. ABFM I resulted in several improvements to the LLCC, and the lessons learned ultimately led to an even more successful ABFM II campaign a decade later. As new knowledge and additional operational experience has been gained, the LLCC have been updated to preserve or increase their safety and increase launch availability. All launches of ELV and manned vehicles now use the same rules, which simplifies their understanding and application and minimizes the cost of the weather infrastructure to support them. In the future, the processes and procedures that have evolved can be used to facilitate further improvements in both launch availability and safety as new research findings become available. i Preface Natural and triggered lightning is a demonstrated hazard to the launch of space vehicles, and the American space program has responded by establishing the “Lightning Launch Commit Criteria (LLCC)” to mitigate the risk. These LLCC are a complex set of rules with associated Definitions which must be satisfied before the launch of a space vehicle is permitted. The Definitions are an integral part of the LLCC and the term LLCC as used in this History is explicitly intended to include those Definitions. They apply to all Federal Government ranges including not only the well-known Eastern Range at Cape Canaveral, Florida and the Western Range at Vandenberg AFB, California, but also to smaller ranges such as the NASA range at Wallops Island, Virginia and the Air Force range at Kwajalein Atoll in the Pacific Ocean and others. In addition, these same LLCC have been adopted by the Federal Aviation Administration for application at state-operated and private spaceports. The LLCC are developed and approved through a complex process, but the core science and recommendations for precise wording of the operative parts of the rules are provided by a “Lightning Advisory Panel (LAP)” consisting of American scientists working in atmospheric electricity and related disciplines including cloud physics and statistics. The LAP works closely with the operational personnel who must implement the LLCC in practice to assure that the rules are not only scientifically sound, but also realistic and practical. The LLCC have evolved over the history of the American space program from relatively simple mid-twentieth century rules that proved inadequate to the complex suite that governs launch operations in the early part of the 21st century. Following the destruction of an Atlas-Centaur launch vehicle by triggered lightning in 1987, the LAP was established to guide the process. Expert guidance is required because there is always a tension between the essential need to fly safely by avoiding lightning strikes and the need to fly economically by avoiding unnecessary launch delays and scrubs. The LLCC have become complex because increased knowledge has permitted exceptions under certain conditions from what are otherwise broad prohibitions to flight. These exceptions reduce the number of occasions under which a launch will be scrubbed for violation of the LLCC when, in fact, it would have been safe to fly. As the LLCC have become more complex, launch vehicle operators, range managers, and safety personnel have continuously requested briefings and discussions on the origin of the rules and the rationale behind them. This history document is designed to provide a historical context and explanation for the origin of the LLCC and the LAP. A companion rationale document is being prepared by the LAP to provide the scientific, mathematical, and operational basis for the current LLCC. Acknowledgements Reconstructing more than 50 years of the history of weather support required a substantial effort not only by the authors and editors of this document, but also by colleagues and associates. Much of the history has not been formally documented before, and much of what existed at one time has now apparently been lost. This task would not have been possible without the assistance of many people who took time away from their busy workloads and deadlines to help us track down important events that are shrouded in the mists of the past. We especially appreciate and recognize the contributions and assistance of the USAF 45th Weather Squadron at Cape Canaveral Air Force Station (CCAFS) and Patrick AFB in Florida and the NOAA Spaceflight Meteorology Group (SMG) at Johnson Spaceflight Center in Houston, Texas. We thank Bill Roeder and Billie Boyd of the 45th Weather Squadron and Michael Maier and David Chapman of the Eastern Range Technical Services Contractor (Computer Sciences Raytheon) for providing the history of lightning-related and other instrumentation at Kennedy Space Center (KSC) and CCAFS. We thank Tim Oram of SMG for his insights on weather support during the early years of manned spaceflight. Bill Bihner and Jack Ernst (retired) at NASA headquarters provided recollections of the formation of the Peer Review Committee and its evolution into the modern Lightning Advisory Panel. Launa Maier of the KSC Safety and Mission Assurance Directorate provided valuable recollections of the research programs and lightning infrastructure development during the years immediately following the AC 67 accident. In addition to providing a figure and some references for the document, Jennifer Wilson of the KSC Weather Office handled the logistics of several face-to-face meetings of the LAP at KSC. Without these meetings dedicated to this History’s organization and production, it could not have been completed. Jennifer Rosenberger of the KSC Launch Processing Directorate did extensive reformatting and copy editing to prepare the original manuscript for public release in this NASA Special Publication series. We appreciate her diligence and attention to detail that substantially reduced the number of errors and inconsistencies in the presentation of the material. Funding for the project was provided by the NASA Office of Safety and Mission Assurance (OSMA) Assurance Management Office (AMO). The authors and editors appreciate OSMA/AMO reviews of the final draft of this paper by Launa Maier and Tony Willingham.
Recommended publications
  • NASA Manned Launch Vehicle Lightning Protection Development
    https://ntrs.nasa.gov/search.jsp?R=20090037586 2019-08-30T08:05:42+00:00Z View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by NASA Technical Reports Server NASA Manned Launch Vehicle Lightning Protection Development Matthew B. McCollum NASA Marshall Space Flight Center, Huntsville, Alabama, USA Steven R. Jones NASA Marshall Space Flight Center, Huntsville, Alabama, USA Jonathan D. Mack NASA Marshall Space Flight Center, Huntsville, Alabama, USA ABSTRACT understanding of the lightning environment has highlighted the vulnerability of the protection Historically, the National Aeronautics and Space schemes and associated risk to the vehicle, which Administration (NASA) relied heavily on lightning has resulted in lost launch opportunities and avoidance to protect launch vehicles and crew from increased expenditures in manpower to assess lightning effects. As NASA transitions from the Space Shuttle vehicle health and safety after Space Shuttle to the new Constellation family of lightning events at the launch pad. launch vehicles and spacecraft, NASA engineers are imposing design and construction standards on the Because of high-percentage launch availability and spacecraft and launch vehicles to withstand both the long-term on-pad requirements, LCC constraints are direct and indirect effects of lightning. no longer considered feasible.[5] The Constellation vehicles must be designed to withstand direct and A review of current Space Shuttle lightning indirect effects of lightning. A review of the vehicle constraints and protection methodology will be design and potential concerns will be presented as presented, as well as a historical review of Space well as the new catenary lightning protection system Shuttle lightning requirements and design.
    [Show full text]
  • A Quantitative Human Spacecraft Design Evaluation Model For
    A QUANTITATIVE HUMAN SPACECRAFT DESIGN EVALUATION MODEL FOR ASSESSING CREW ACCOMMODATION AND UTILIZATION by CHRISTINE FANCHIANG B.S., Massachusetts Institute of Technology, 2007 M.S., University of Colorado Boulder, 2010 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Doctor of Philosophy Department of Aerospace Engineering Sciences 2017 i This thesis entitled: A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization written by Christine Fanchiang has been approved for the Department of Aerospace Engineering Sciences Dr. David M. Klaus Dr. Jessica J. Marquez Dr. Nisar R. Ahmed Dr. Daniel J. Szafir Dr. Jennifer A. Mindock Dr. James A. Nabity Date: 13 March 2017 The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. ii Fanchiang, Christine (Ph.D., Aerospace Engineering Sciences) A Quantitative Human Spacecraft Design Evaluation Model for Assessing Crew Accommodation and Utilization Thesis directed by Professor David M. Klaus Crew performance, including both accommodation and utilization factors, is an integral part of every human spaceflight mission from commercial space tourism, to the demanding journey to Mars and beyond. Spacecraft were historically built by engineers and technologists trying to adapt the vehicle into cutting edge rocketry with the assumption that the astronauts could be trained and will adapt to the design. By and large, that is still the current state of the art. It is recognized, however, that poor human-machine design integration can lead to catastrophic and deadly mishaps.
    [Show full text]
  • Delta II Icesat-2 Mission Booklet
    A United Launch Alliance (ULA) Delta II 7420-10 photon-counting laser altimeter that advances MISSION rocket will deliver the Ice, Cloud and land Eleva- technology from the first ICESat mission tion Satellite-2 (ICESat-2) spacecraft to a 250 nmi launched on a Delta II in 2003 and operated until (463 km), near-circular polar orbit. Liftoff will 2009. Our planet’s frozen and icy areas, called occur from Space Launch Complex-2 at Vanden- the cryosphere, are a key focus of NASA’s Earth berg Air Force Base, California. science research. ICESat-2 will help scientists MISSION investigate why, and how much, our cryosphere ICESat-2, with its single instrument, the is changing in a warming climate, while also Advanced Topographic Laser Altimeter System measuring heights across Earth’s temperate OVERVIEW (ATLAS), will provide scientists with height and tropical regions and take stock of the vege- measurements to create a global portrait of tation in forests worldwide. The ICESat-2 mission Earth’s third dimension, gathering data that can is implemented by NASA’s Goddard Space Flight precisely track changes of terrain including Center (GSFC). Northrop Grumman built the glaciers, sea ice, forests and more. ATLAS is a spacecraft. NASA’s Launch Services Program at Kennedy Space Center is responsible for launch management. In addition to ICESat-2, this mission includes four CubeSats which will launch from dispens- ers mounted to the Delta II second stage. The CubeSats were designed and built by UCLA, University of Central Florida, and Cal Poly. The miniaturized satellites will conduct research DELTA II For nearly 30 years, the reliable in space weather, changing electric potential Delta II rocket has been an industry and resulting discharge events on spacecraft workhorse, launching critical and damping behavior of tungsten powder in a capabilities for NASA, the Air Force Image Credit NASA’s Goddard Space Flight Center zero-gravity environment.
    [Show full text]
  • FY2009 NRO Congressional Budget Justification Book
    NATIONAL RECONNAISSANCE OFFICE 14675 Lee Road Chantilly, VA 20151-1715 6 July 2009 Mr. Steven Aftergood Senior Research Analyst Federation of American Scientists 1725 DeSales St NW, 6th Floor Washington, D.C. 20036 Dear Mr. Aftergood: This is in response to your faxed letter, dated 5 March 2008, received in the Information Management Services Center of the National Reconnaissance Office (NRO) on 7 March 2008. Pursuant to the Freedom of Information Act (FOIA), you requested "a copy of all unclassified portions of the NRO Congressional Budget Justification Book (CBJB) for Fiscal Year 2009.° Your request was processed in accordance with the Freedom of Information Act, 5 U.S.C. § 552, as amended. A thorough search of our files and databases located one record, consisting of 465 pages that is responsive to your request. This record is being released to you in part. Material withheld is denied pursuant to FOIA exemption(b) (3) which applies to information specifically exempt by statute, 50 U.S.C. § 403-1(i) which protects intelligence sources and methods from unauthorized disclosure. AS you are aware, the FOIA authorizes federal agencies to assess fees for record services. Based upon the information provided, you have been placed in the "other" category of requesters, which means that a requester is responsible for charges incurred for the cost of search time exceeding two hours and duplication in excess of the first 100 pages of document reproduction in the processing of this request. In your request, you expressed a willingness to pay fees up to the amount of $50.00.
    [Show full text]
  • The International Space Station and the Space Shuttle
    Order Code RL33568 The International Space Station and the Space Shuttle Updated November 9, 2007 Carl E. Behrens Specialist in Energy Policy Resources, Science, and Industry Division The International Space Station and the Space Shuttle Summary The International Space Station (ISS) program began in 1993, with Russia joining the United States, Europe, Japan, and Canada. Crews have occupied ISS on a 4-6 month rotating basis since November 2000. The U.S. Space Shuttle, which first flew in April 1981, has been the major vehicle taking crews and cargo back and forth to ISS, but the shuttle system has encountered difficulties since the Columbia disaster in 2003. Russian Soyuz spacecraft are also used to take crews to and from ISS, and Russian Progress spacecraft deliver cargo, but cannot return anything to Earth, since they are not designed to survive reentry into the Earth’s atmosphere. A Soyuz is always attached to the station as a lifeboat in case of an emergency. President Bush, prompted in part by the Columbia tragedy, made a major space policy address on January 14, 2004, directing NASA to focus its activities on returning humans to the Moon and someday sending them to Mars. Included in this “Vision for Space Exploration” is a plan to retire the space shuttle in 2010. The President said the United States would fulfill its commitments to its space station partners, but the details of how to accomplish that without the shuttle were not announced. The shuttle Discovery was launched on July 4, 2006, and returned safely to Earth on July 17.
    [Show full text]
  • Gateway Program Acquisition Strategy Overview
    70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. Copyright ©2019 by the International Astronautical Federation (IAF). All rights reserved. IAC-19,E3,6,5,x53831 GATEWAY PROGRAM ACQUISITION STRATEGY OVERVIEW Emma Lehnhardta, Christopher Zavrelb, Nicole Herrmannc a National Aeronautics and Space Administration, Johnson Space Center, United States, [email protected] b Stellar Solutions Inc, United States, [email protected] c National Aeronautics and Space Administration, Headquarters, United States, [email protected] Abstract This paper will provide an overview of the acquisition strategy for the Gateway Program. The Gateway will be an outpost orbiting the Moon that provides vital support for a sustainable, long-term human return to the lunar surface, as well as a staging point for further deep space exploration. The Gateway will foster U.S. industry and international partnerships and enable multi-discipline utilization. The National Aeronautics and Space Administration (NASA) will lead this next step and will serve as the integrator of the spaceflight capabilities and contributions of U.S. commercial partners and international partners to develop the Gateway. The Gateway will be developed in a manner that will also allow future capabilities and collaborations with U.S. Government, private sector companies, and international partners. Gateway is embracing innovation and flexibility; both in system architecture and in procurement approach. The Gateway’s agile acquisition strategy will shape the entire system life cycle, from design and analysis through production, verification, launch, logistics and operations. This strategy will encourage new ways of doing business to accommodate new techniques, technologies and approaches; improving affordability and maximizing Gateway utility.
    [Show full text]
  • Minotaur I User's Guide
    This page left intentionally blank. Minotaur I User’s Guide Revision Summary TM-14025, Rev. D REVISION SUMMARY VERSION DOCUMENT DATE CHANGE PAGE 1.0 TM-14025 Mar 2002 Initial Release All 2.0 TM-14025A Oct 2004 Changes throughout. Major updates include All · Performance plots · Environments · Payload accommodations · Added 61 inch fairing option 3.0 TM-14025B Mar 2014 Extensively Revised All 3.1 TM-14025C Sep 2015 Updated to current Orbital ATK naming. All 3.2 TM-14025D Sep 2018 Branding update to Northrop Grumman. All 3.3 TM-14025D Sep 2020 Branding update. All Updated contact information. Release 3.3 September 2020 i Minotaur I User’s Guide Revision Summary TM-14025, Rev. D This page left intentionally blank. Release 3.3 September 2020 ii Minotaur I User’s Guide Preface TM-14025, Rev. D PREFACE This Minotaur I User's Guide is intended to familiarize potential space launch vehicle users with the Mino- taur I launch system, its capabilities and its associated services. All data provided herein is for reference purposes only and should not be used for mission specific analyses. Detailed analyses will be performed based on the requirements and characteristics of each specific mission. The launch services described herein are available for US Government sponsored missions via the United States Air Force (USAF) Space and Missile Systems Center (SMC), Advanced Systems and Development Directorate (SMC/AD), Rocket Systems Launch Program (SMC/ADSL). For technical information and additional copies of this User’s Guide, contact: Northrop Grumman
    [Show full text]
  • Three Events Occurred During This Period Which Together Constitute a Major Milestone in the Way Meteorological Data Are Pr
    6.1 DESIGNING WEATHER SUPPORT FOR FUTURE RANGES – RESULTS FROM THE ADVANCED RANGE TECHNOLOGY WORKING GROUP WEATHER SUBGROUP William P. Roeder1 and John T. Madura2 145th Weather Squadron, Patrick Air Force Base, FL 2Weather Office, Kennedy Space Center, FL 1. INTRODUCTION 2. ARTWG WEATHER TECHNOLOGY ROADMAP The Advanced Range Technology Working Group The ARTWG Weather Subgroup, which included (ARTWG) was formed to identify the technologies government, industry and university participants, prepared required for the best performing, most cost-effective future a technology roadmap summarizing desired major space launch and test Ranges, and the R&D required to capabilities for optimal meteorological support to space achieve those technologies. The ARTWG resulted from a ranges for 25 years into the future. The 25-year planning White House Office of Science and Technology Policy time was further divided into three sub-periods (Table-2). (2000) report on the future of America’s space program. The near term requirements can be met with technology The White House tasked NASA and the U.S. Air Force to that is currently available and implementation can begin cooperatively identify the R&D requirements necessary to immediately. The mid term requirements are those that ensure the future competitiveness of U.S. ranges. Two will likely be available in 5-10 years or will require a small parallel initiatives resulted, the ARTWG (2004) co-chaired amount of development. The far term requirements are by NASA and the Air Force, and the companion Advanced advanced capabilities that will require considerable time Spaceport Technology Working Group (ASTWG) (2003), for research and development.
    [Show full text]
  • Columbia and Challenger: Organizational Failure at NASA
    ARTICLE IN PRESS Space Policy 19 (2003) 239–247 Columbia and Challenger: organizational failure at NASA Joseph Lorenzo Hall* Astronomy Department/School of Information Management and Systems, Astronomy Department, University of California at Berkeley, 601 Campbell Hall, Berkeley, CA 94720-3411, USA Abstract The National Aeronautics and Space Administration (NASA)—as the global leader in all areas of spaceflight and space science— is a unique organization in terms of size, mission, constraints, complexity and motivations. NASA’s flagship endeavor—human spaceflight—is extremely risky and one of the most complicated tasks undertaken by man. It is well accepted that the tragic destruction of the Space Shuttle Challenger on 28 January 1986 was the result of organizational failure. The surprising disintegration of the Space Shuttle Columbia in February 2003—nearly 17 years to the day after Challenger—was a shocking reminder of how seemingly innocuous details play important roles in risky systems and organizations. NASA as an organization has changed considerably over the 42 years of its existence. If it is serious about minimizing failure and promoting its mission, perhaps the most intense period of organizational change lies in its immediate future. This paper outlines some of the critical features of NASA’s organization and organizational change, namely path dependence and ‘‘normalization of deviance’’. Subsequently, it reviews the rationale behind calling the Challenger tragedy an organizational failure. Finally, it argues that the recent Columbia accident displays characteristics of organizational failure and proposes recommendations for the future. r 2003 Elsevier Ltd. All rights reserved. 1. Introduction in 1967 are examples of failure at NASA that cost a total of 17 astronaut lives.
    [Show full text]
  • Space Planes and Space Tourism: the Industry and the Regulation of Its Safety
    Space Planes and Space Tourism: The Industry and the Regulation of its Safety A Research Study Prepared by Dr. Joseph N. Pelton Director, Space & Advanced Communications Research Institute George Washington University George Washington University SACRI Research Study 1 Table of Contents Executive Summary…………………………………………………… p 4-14 1.0 Introduction…………………………………………………………………….. p 16-26 2.0 Methodology…………………………………………………………………….. p 26-28 3.0 Background and History……………………………………………………….. p 28-34 4.0 US Regulations and Government Programs………………………………….. p 34-35 4.1 NASA’s Legislative Mandate and the New Space Vision………….……. p 35-36 4.2 NASA Safety Practices in Comparison to the FAA……….…………….. p 36-37 4.3 New US Legislation to Regulate and Control Private Space Ventures… p 37 4.3.1 Status of Legislation and Pending FAA Draft Regulations……….. p 37-38 4.3.2 The New Role of Prizes in Space Development…………………….. p 38-40 4.3.3 Implications of Private Space Ventures…………………………….. p 41-42 4.4 International Efforts to Regulate Private Space Systems………………… p 42 4.4.1 International Association for the Advancement of Space Safety… p 42-43 4.4.2 The International Telecommunications Union (ITU)…………….. p 43-44 4.4.3 The Committee on the Peaceful Uses of Outer Space (COPUOS).. p 44 4.4.4 The European Aviation Safety Agency…………………………….. p 44-45 4.4.5 Review of International Treaties Involving Space………………… p 45 4.4.6 The ICAO -The Best Way Forward for International Regulation.. p 45-47 5.0 Key Efforts to Estimate the Size of a Private Space Tourism Business……… p 47 5.1.
    [Show full text]
  • Lightning Really DOES Strike Twice! the True Story of Apollo 12’S Near Abort Less Than a Minute After Launch
    In This Issue Lightning Really DOES Strike Twice! The True Story of Apollo 12’s Near Abort Less Than a Minute After Launch Cover Photo: Madcow Rocketry’s Torrent Kit Get one now at: http://www.apogeerockets.com/madcow_torrent.asp Apogee Components, Inc. — Your Source For Rocket Supplies That Will Take You To The “Peak-of-Flight” 3355 Fillmore Ridge Heights Colorado Springs, Colorado 80907-9024 USA www.ApogeeRockets.com e-mail: [email protected] ISSUE 295 SEPTEMBER 13, 2011 Lightning Really DOES Strike Twice! The True Story of Apollo 12’s Near Abort Less Than a Minute After Launch By Bart Hennin November 14, 1969 11:23:33 am EST (Mission Time T plus 1 min. 33 sec.) Moments after launch... How things had gone to hell so quickly was anyone’s guess. Mission rules said Apollo 12 should have already aborted. Pete Conrad, mission Commander (and veteran test pilot) continued to hold his hand firmly on the spacecraft’s ‘abort handle’. His mind raced. How could an electrical “short” have caused such widespread failures of so many systems so quickly? The spacecraft’s interior had fallen into darkness for lack of power, save the illumination provided by the myriad of flashing alarm lights! The 3 man astronaut crew couldn’t even tell in which direction their rapidly accelerating machine was heading. They had lost all their “8 balls” - the gyroscopes that track the spacecraft’s position. Yet Conrad resisted flicking his wrist the 1/4 turn that would abort the mission. That small snap of the wrist would instantly set off a series of violent events.
    [Show full text]
  • CHAPTER 9: the Flight of Apollo
    CHAPTER 9: The Flight of Apollo The design and engineering of machines capable of taking humans into space evolved over time, and so too did the philosophy and procedures for operating those machines in a space environment. MSC personnel not only managed the design and construction of space- craft, but the operation of those craft as well. Through the Mission Control Center, a mission control team with electronic tentacles linked the Apollo spacecraft and its three astronauts with components throughout the MSC, NASA, and the world. Through the flights of Apollo, MSC became a much more visible component of the NASA organization, and oper- ations seemingly became a dominant focus of its energies. Successful flight operations required having instant access to all of the engineering expertise that went into the design and fabrication of the spacecraft and the ability to draw upon a host of supporting groups and activities. N. Wayne Hale, Jr., who became a flight director for the later Space Transportation System (STS), or Space Shuttle, missions, compared the flights of Apollo and the Shuttle as equivalent to operating a very large and very complex battleship. Apollo had a flight crew of only three while the Shuttle had seven. Instead of the thousands on board being physically involved in operating the battleship, the thousands who helped the astronauts fly Apollo were on the ground and tied to the command and lunar modules by the very sophisticated and advanced electronic and computer apparatus housed in Mission Control.1 The flights of Apollo for the first time in history brought humans from Earth to walk upon another celes- tial body.
    [Show full text]