Sweet Chestnut Coppice Silviculture on Former Ancient, Broadleaved Woodland Sites in South-East England English Nature Research Reports

Total Page:16

File Type:pdf, Size:1020Kb

Sweet Chestnut Coppice Silviculture on Former Ancient, Broadleaved Woodland Sites in South-East England English Nature Research Reports Report Number 627 The ecological impact of sweet chestnut coppice silviculture on former ancient, broadleaved woodland sites in south-east England English Nature Research Reports working today for nature tomorrow English Nature Research Reports Number 627 The ecological impact of sweet chestnut coppice silviculture on former ancient, broadleaved woodland sites in south-east England Peter Buckley and Ruth Howell Imperial College, Wye College, Ashford, Kent You may reproduce as many additional copies of this report as you like, provided such copies stipulate that copyright remains with English Nature, Northminster House, Peterborough PE1 1UA ISSN 0967-876X © Copyright English Nature 2004 Preface Sweet chestnut Castanea sativa is treated as an “honorary native” in some woods and as an undesirable alien in others. A considered view of its impact on nature conservation values has been hampered by the lack of an up-to-date review of its ecology. English Nature is grateful to the authors and sponsors of this report for permission to reproduce it in our research report series. Keith Kirby English Nature, Peterborough Acknowledgements We would like to acknowledge our two sponsors, Kent County Council and Gallagher Aggregates Limited1, whose joint financial support enabled this review. Particular thanks are due to their representatives, respectively Debbie Bartlett (Kent County Council) and Tom La Dell (Tom La Dell Landscape Architects) for their valuable advice, contributions and suggestions. Thanks must also go to the delegates who attended and contributed to the workshop held at Department of Agricultural Sciences campus of Imperial College in February 2003, particularly our invited speakers and workshop facilitators. We are grateful for contributions to our review report from Debbie Bartlett, David Rossney (ESUS Forestry & Woodlands Ltd), Ralph Harmer (Forestry Commission), Graham Bull (Forestry Commission), Keith Kirby (English Nature), John Badmin (Kent Field Club), David Gardner and Mark Parsons (Butterfly Conservation). We would also like to thank the Bat Conservation Trust for granting us permission to include four bat distribution maps, Nigel Braden and Karen Russell for their sweet chestnut distribution map and Pamela Howell for the title page and interleaf illustrations. 1 Gallagher Aggregates Ltd, Hermitage Quarry, Hermitage Lane, Maidstone, Kent ME16 9NT email: [email protected] Summary Sweet chestnut Castanea sativa was probably introduced into Britain over two millennia ago, since when its range has expanded steadily across southern England as a result of increasing domestication and naturalization. Initially valued for its nuts and timber properties, planting of pure chestnut stands for coppice accelerated sharply in the nineteenth century in response to strong hop-growing and fencing markets. These plantations were often located on sites of semi-natural, broadleaved woodlands that were comprehensively cleared of competing woody species. Current woodland census data underestimates the area of chestnut in Britain at c.19,000 ha, while the true area of chestnut-dominated woodland could be twice this extent. Chestnut is well adapted to a wide range of site and soil conditions normally occupied by mixed broadleaved woodland communities characterised by oak, hazel, birch and ash. Its ecological impact on these communities is reviewed according to the main taxonomic groups: vegetation, fungi, invertebrates, birds and mammals. An overall conclusion is that few, if any species recorded so far within these major groups are directly dependent on chestnut as a host. While chestnut does support a number of species that also occur on trees and shrubs comprising the equivalent native broadleaved community, the number and variety associated with the former appears to be lower, especially in monoculture stands. On the other hand, the maintenance of the coppice cycle in commercially viable chestnut crops can be beneficial to some notable species that are dependent upon young growth stages, such as fritillary butterflies and migrant birds, while the system of relatively small coupe sizes and extensive ride networks present in worked coppice adds diversity at the whole forest scale. However, as the uncertain future of markets for chestnut shows, there is no guarantee of consistent or continued working, except perhaps on sites already in nature conservation ownership. Where management incentives are available to diversify chestnut sites, alternatives include varying the rotation length, reducing the dominance of the chestnut canopy by stool removal and/or thinning, reintroducing native species, promoting stands to high forest and practising minimum intervention. These techniques are most appropriate on sites where chestnut substitution is recent, rather than where historical accounts and evidence on the ground confirm a long and continuous presence of the species. Apart from the effects of market uncertainty, the future status of chestnut will be determined by its resilience to new challenges from disease and climate change. The recent advance of chestnut blight Cryphonectria parasitica in northern Europe suggests strongly that it will extend its range into Britain; the impact could be to reduce the dominance of chestnut in woodlands in southern England. Conversely, scenarios predicted for climate warming during the remainder of the 21st century indicate that conditions favouring chestnut will be enhanced, causing it to become a more invasive and aggressive component of ancient woodland. A number of recommendations are made for further research and study. Contents Preface Acknowledgements Summary Part I – History, distribution and management ........................................................................13 1. Introduction..................................................................................................................15 1.1 Aim ..................................................................................................................15 1.2 Scope................................................................................................................15 2. History of sweet chestnut in the UK............................................................................16 2.1 Introduction of sweet chestnut into Britain......................................................16 2.2 How much sweet chestnut was planted?..........................................................17 2.3 Pre-twentieth century use and management of chestnut..................................18 3. The chestnut habitat .....................................................................................................19 3.1 Native distribution of chestnut.........................................................................19 3.2 Climatic tolerances...........................................................................................20 3.3 Ecological tolerance of chestnut in Britain......................................................20 3.4 Plant species richness of the chestnut communities ........................................25 4. Range and extent of sweet chestnut in Britain.............................................................25 5. Silviculture and management.......................................................................................29 5.1 Coppice management.......................................................................................29 5.1.1 Establishment and restocking ..............................................................29 5.1.2 Regrowth and cutting...........................................................................30 5.2 Coppice yield and markets...............................................................................31 5.3 Storing coppice................................................................................................34 5.4 High forest and timber .....................................................................................35 5.5 Other markets...................................................................................................35 5.5.1 Nuts......................................................................................................35 5.5.2 Edible fungi..........................................................................................36 5.6 Potential markets..............................................................................................36 Part II – Ecological effects of planting sweet chestnut............................................................37 6. Vegetation....................................................................................................................39 6.1 Plant species richness.......................................................................................39 6.2 Lichens.............................................................................................................40 7. Fungi ............................................................................................................................42 7.1 Fungal species diversity...................................................................................42 7.2 Fungal species of conservation concern in south-east England.......................44 7.2.1 Diversity...............................................................................................44 7.2.2 Summary..............................................................................................47 7.3 Ecology
Recommended publications
  • Catathelasma
    CATATHELASMA No. 4 December 2003 BIODIVERSITY of FUNGI in SLOVAKIA Coprinus atramentarius and C. micaceus in BRA Ján Červenka and Milan Zelenay 3 Macrofungi of the Abrod reserve Slavomír Adamčík and Ladislav Hagara 9 NEW FUNGI for SLOVAKIA Galeropsis lateritia Ladislav Hagara 19 Hyphodontia tuberculata Ladislav Hagara 21 Waxcaps, Hygrocybe omitted in the checklist of Slovak fungi in the collections of the Slovak National Museum Ivona Kautmanová 23 Boletopsis grisea Slavomír Adamčík and Soňa Ripková 31 MYCOLOGICAL NEWS Book notices Pavel Lizoň 18, 22 21st European Cortinarius Foray Pavel Lizoň 30 Editor's acknowledgements 35 Instructions to authors 35 ISSN 1335-7670 Catathelasma 4: 1-36 (2003) Grid cells are bounded with geographical coordinates (longitude and latitude). Boundaries of basic grid cells (squares) represent 10’ long. (west to east) x 6’ lat. (north to south), an area of ca 12 x 11.1 km which covers ca 133 km². The square code consists of four-digit number, a combination of two-digit designator of horizontal line and two-digit designator for vertical row. Each square can be divided (for more detailed mapping) to four quadrants 5’ x 3’ which are coded by letters a (NW), b (NE), c (SW), d (SE). The quadrant code consists of four- digit number (square code) and the letter of particular quadrant December 2003 Catathelasma 4 3 COPRINUS ATRAMENTARIUS AND C. MICACEUS IN BRA 1 2 JÁN ČERVENKA & MILAN ZELENAY Key words: collections, Slovak National Museum, taxonomy, misidentifications Last summer (July/August 2003) we have critically studied all available specimens of two common Coprinus species, C.
    [Show full text]
  • Zoological Philosophy
    ZOOLOGICAL PHILOSOPHY AN EXPOSITION WITH REGARD TO THE NATURAL HISTORY OF ANIMALS THE DIVERSITY OF THEIR ORGANISATION AND THE FACULTIES WHICH THEY DERIVE FROM IT; THE PHYSICAL CAUSES WHICH MAINTAIN LIFE WITHIr-i THEM AND GIVE RISE TO THEIR VARIOUS MOVEMENTS; LASTLY, THOSE WHICH PRODUCE FEELING AND INTELLIGENCE IN SOME AMONG THEM ;/:vVVNu. BY y;..~~ .9 I J. B. LAMARCK MACMILLAN AND CO., LIMITED LONDON' BOMBAY' CALCUTTA MELBOURNE THE MACMILLAN COMPANY TRANSLATED, WITH AN INTRODUCTION, BY NEW YORK • BOSTON . CHICAGO DALLAS • SAN FRANCISCO HUGH ELLIOT THE MACMILLAN CO. OF CANADA, LTD. AUTHOR OF "MODERN SCIENC\-<: AND THE ILLUSIONS OF PROFESSOR BRRGSON" TORONTO EDITOR OF H THE LETTERS OF JOHN STUART MILL," ETC., ETC. MACMILLAN AND CO., LIMITED ST. MARTIN'S STREET, LONDON TABLE OF CONTENTS P.4.GE INTRODUCTION xvii Life-The Philo8ophie Zoologique-Zoology-Evolution-In. heritance of acquired characters-Classification-Physiology­ Psychology-Conclusion. PREFACE· 1 Object of the work, and general observations on the subjects COPYRIGHT dealt with in it. PRELIMINARY DISCOURSE 9 Some general considerations on the interest of the study of animals and their organisation, especially among the most imperfect. PART I. CONSIDERATIONS ON THE NATURAL HISTORY OF ANIMALS, THEIR CHARACTERS, AFFINITIES, ORGANISATION, CLASSIFICATION AND SPECIES. CHAP. I. ON ARTIFICIAL DEVICES IN DEALING WITH THE PRO- DUCTIONS OF NATURE 19 How schematic classifications, classes, orders, families, genera and nomenclature are only artificial devices. Il. IMPORTANCE OF THE CONSIDERATION OF AFFINITIES 29 How a knowledge of the affinities between the known natural productions lies at the base of natural science, and is the funda- mental factor in a general classification of animals.
    [Show full text]
  • Zeitschrift Für Naturforschung / C / 42 (1987)
    1352 Notes (Z)-3-TetradecenyI Acetate as a Sex-Attractant species feed on Picea, Rumex and Rubus, respective­ Component in Gelechiinae and Anomologinae ly, and their relative trap captures greatly varied (Lepidoptera: Gelechiidae) between test sites, depending on host abundance; Ernst Priesner which may explain why one species (A. micella) was missing from the test by Willemse et al. Max-Planek-Institut für Verhaltensphysiologie. D-8131 Seewiesen The outstanding effectiveness of the Z3-14:Ac for Z. Naturforsch. 42c, 1352—1355 (1987); males of these gelechiid species was supported by received August 25, 1987 electroantennogram measurements. These were Sex-Attractant, Attraction-Inhibitor, J3-Alkenyl made from males newly taken in Z3-14:Ac baited A cetates, Chionodes, Monochroa, Argolamprotes, traps (with antennae not yet glued to the adhesive), Aproaerema, Gelechiidae using technical procedures as in other Microlepido- The title compound, unreported as an insect pheromone ptera [3, 4], In the series of (Z)- and (£)-alkenyl ace­ component, effectively attracted certain male Gelechiidae tates, varied for chain length and double bond posi­ (genera Chionodes, Monochroa, Argolamprotes) as a sin­ gle chemical. Trap captures with this chemical decreased tion, the Z3-14:Ac, at the test amount of 1 |ig, elic­ on addition of either (E)-3-dodecenyl acetate, (£)-3-tetra- ited the greatest EAG response. This was followed decenyl acetate or (Z)-3-tetradecen-l-ol, the sexual attrac- by the geometric isomer (.O-MiAc), the corre­ tants of other, closely related species. Results on an Aproaerem a test species showing a synergistic attraction sponding alcohol analogue (Z3-14:OH) and some response to combinations of (Z)-3-tetradecenyl acetate positional isomers and shorter-chain homologues with its homologue (Z)-3-dodecenyl acetate are included.
    [Show full text]
  • Fungal Diversity in the Mediterranean Area
    Fungal Diversity in the Mediterranean Area • Giuseppe Venturella Fungal Diversity in the Mediterranean Area Edited by Giuseppe Venturella Printed Edition of the Special Issue Published in Diversity www.mdpi.com/journal/diversity Fungal Diversity in the Mediterranean Area Fungal Diversity in the Mediterranean Area Editor Giuseppe Venturella MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Giuseppe Venturella University of Palermo Italy Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Diversity (ISSN 1424-2818) (available at: https://www.mdpi.com/journal/diversity/special issues/ fungal diversity). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03936-978-2 (Hbk) ISBN 978-3-03936-979-9 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Giuseppe Venturella Fungal Diversity in the Mediterranean Area Reprinted from: Diversity 2020, 12, 253, doi:10.3390/d12060253 .................... 1 Elias Polemis, Vassiliki Fryssouli, Vassileios Daskalopoulos and Georgios I.
    [Show full text]
  • Preliminary Classification of Leotiomycetes
    Mycosphere 10(1): 310–489 (2019) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/10/1/7 Preliminary classification of Leotiomycetes Ekanayaka AH1,2, Hyde KD1,2, Gentekaki E2,3, McKenzie EHC4, Zhao Q1,*, Bulgakov TS5, Camporesi E6,7 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand 3School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand 4Landcare Research Manaaki Whenua, Private Bag 92170, Auckland, New Zealand 5Russian Research Institute of Floriculture and Subtropical Crops, 2/28 Yana Fabritsiusa Street, Sochi 354002, Krasnodar region, Russia 6A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy. 7A.M.B. Circolo Micologico “Giovanni Carini”, C.P. 314 Brescia, Italy. Ekanayaka AH, Hyde KD, Gentekaki E, McKenzie EHC, Zhao Q, Bulgakov TS, Camporesi E 2019 – Preliminary classification of Leotiomycetes. Mycosphere 10(1), 310–489, Doi 10.5943/mycosphere/10/1/7 Abstract Leotiomycetes is regarded as the inoperculate class of discomycetes within the phylum Ascomycota. Taxa are mainly characterized by asci with a simple pore blueing in Melzer’s reagent, although some taxa have lost this character. The monophyly of this class has been verified in several recent molecular studies. However, circumscription of the orders, families and generic level delimitation are still unsettled. This paper provides a modified backbone tree for the class Leotiomycetes based on phylogenetic analysis of combined ITS, LSU, SSU, TEF, and RPB2 loci. In the phylogenetic analysis, Leotiomycetes separates into 19 clades, which can be recognized as orders and order-level clades.
    [Show full text]
  • Bulletin UASVM Agriculture 69(2)/2012
    Bulletin UASVM serie Agriculture 69(2)/2012 Print ISSN 1843-5246; Electronic ISSN 1843-5386 Parameters Researches Regarding the Structural Parameters of the Populations of Rhynchitidae and Attelabidae in Romania Iuliana ANTONIE “Lucian Blaga” University, The Faculty of Agricultural Sciences, Food Industry and the Protection of the Environment, Sibiu, 7-9 Dr. Ion Raţiu, 550012, Sibiu, Romania: [email protected] Abstract. The study of the two families took into account the economic factor, because there are not few species of Rhynchitidae and Attelabidae that produced important damages in the vine, orchard, and forest areas as well as in the agricultural cultures. The researches took place during 1996-2006. The fauna material was collected during the travels to different localities in the country. In some investigated localities the collecting and the observations in the field were extended for at least 2-3 days and for the vine ecosystems with a great attack of Byctiscus betulae the researches lasted for 3-4 years, at regulated intervals of 3-4 weeks. In order to establish the structural parameters there was processed a rich material of over 1300 adult samples belonging to 17 species from a total of 29, which are to be found in Romania. The material comes from 42 localities. The way of collecting was: directly with the hand, with the entomologic net, by drillings in the soil and by using the device of obtaining the zoophagous parasites. Keywords: Ecology, structural parameters, Rhynchitidae and Attelabidae INTRODUCTION The species Rhynchitidae and Attelabidae (Coleoptera, Curculionoidea) are a relatively small group of insects, whose research represents both a scientific and practical interest (Becker, 1954).
    [Show full text]
  • Biological Diversity and Conservation ISSN
    www.biodicon.com Biological Diversity and Conservation ISSN 1308-8084 Online; ISSN 1308-5301 Print 10/2 (2017) 17-25 Research article/Araştırma makalesi Macrofungi of Kazdağı National Park (Turkey) and its close environs Deniz ALTUNTAŞ1, Hakan Allı1, Ilgaz AKATA *2 1 Muğla Sıtkı Koçman University, Faculty of Science, Department of Biology, Kötekli, 48000, Muğla, Turkey 2 Ankara University, Faculty of Science, Department of Biology, 06100, Tandoğan, Ankara, Turkey Abstract This study was based on macrofungi samples collected from Kazdağı National Park and its close environs between 2014 and 2016. As a result of field and laboratory studies, 207 species belonging to 50 families within the 2 divisions were determined. Among them, 14 species belong to Ascomycota and 193 to Basidiomycota. All determined species were given with their localities, habitats, collecting dates, fungarium numbers and they are listed in the text. Key words: macrofungi, biodiversity, Kazdağı National Park, Turkey ---------- ---------- Kazdağı Milli Parkı ve yakın çevresinin makrofungusları Özet Bu çalışma, Kazdağı Milli Parkı ve yakın çevresinden 2014-2016 yılları arasında toplanan makrofungus örneklerine dayanılarak yapılmıştır. Arazi ve laboratuvar çalışmaları sonucunda, 2 bölüm içerisinde yer alan 50 familyaya ait 207 tür tespit edilmiştir. Belirlenen türlerden 14’ü Ascomycota ve 193’ü ise Basidiomycota içerisinde yer alır. Tespit edilen bütün türler, lokaliteleri, habitatları, toplanma tarihleri, fungaryum numaraları ile birlikte verilmiş ve metin içinde listelenmiştir. Anahtar kelimeler: makrofunguslar, biyoçeşitlilik, Kazdağı Milli Parkı, Türkiye 1. Introduction Kazdağı National Park is situated in Aegean Regions of Turkey within the Edremit district (Balıkesir). (Küçükkaykı et al., 2013). The national park covers an area of 21.463 hectares and it is located in a transitional zone of Euro-Siberian and Mediterranean phytogeographical regions (Table 1).
    [Show full text]
  • A Systematic Study of the Family Rhynchitidae of Japan(Coleoptera
    Humans and Nature. No. 2, 1 ―93, March 1993 A Systematic Study of the Family Rhynchitidae of Japan (Coleoptera, Curculionoidea) * Yoshihisa Sawada Division of Phylogenetics, Museum of Nature and Human Activities, Hyogo, Yayoi~ga~oka 6, Sanda, 669~ 13 fapan Abstract Japanese RHYNCHITIDAE are systematically reviewed and revised. Four tribes, 17 genera and 62 species are recognized. Original and additional descriptions are given, with illustrations of and keys to their taxa. The generic and subgeneric names of Voss' system are reviewed from the viewpoint of nomenclature. At the species level, 12 new species Auletobius planifrons, Notocyrtus caeligenus, Involvulus flavus, I. subtilis, I. comix, I. aes, I. lupulus, Deporaus tigris, D. insularis, D. eumegacephalus, D. septemtrionalis and D. rhynchitoides are described and 1 species Engnamptus sauteri are newly recorded from Japan. Six species and subspecies names Auletes carvus, A. testaceus and A. irkutensis japonicus, Auletobius okinatuaensis, Aderorhinus pedicellaris nigricollis and Rhynchites cupreus purpuleoviolaceus are synonymized under Auletobius puberulus, A. jumigatus, A. uniformis, Ad. crioceroides and I. cylindricollis, respectively. One new name Deporaus vossi is given as the replacement name of the primally junior homonym D. pallidiventris Voss, 1957 (nec Voss, 1924). Generic and subgeneric classification is revised in the following points. The genus Notocyrtus is revived as an independent genus including subgenera Notocyrtus s. str., Exochorrhynchites and Heterorhynchites. Clinorhynckites and Habrorhynchites are newly treated as each independent genera. Caenorhinus is newly treated as a valid subgenus of the genus Deporaus. The genera Neocoenorrhinus and Piazorhynckites are newly synonymized under Notocyrtus and Agilaus, respectively, in generic and subgeneric rank. A subgeneric name, Aphlorhynehites subgen.
    [Show full text]
  • Bemerkenswerte Russula-Funde Aus Ostösterreich 9: Die Neue Art Russula Flavoides Remarkable Russula-Findings from East Austria 9: the New Species Russula Flavoides
    ©Österreichische Mykologische Gesellschaft, Austria, download unter www.biologiezentrum.at Österr. Z. Pilzk. 21 (2012) 17 Bemerkenswerte Russula-Funde aus Ostösterreich 9: Die neue Art Russula flavoides Remarkable Russula-findings from East Austria 9: the new species Russula flavoides HELMUT PIDLICH-AIGNER Hoschweg 8 A-8046 Graz, Österreich Email: [email protected] Angenommen am 25. 6. 2012 Key words: Basidiomycota, Russulales, Russula flavoides, spec. nova. – New species, taxonomy. – Mycobiota of Austria. Abstract: In the course of investigation of the genus Russula in East Austria the new species Russula flavoides is described macro- and microscopically. Microscopical drawings and colour plates are given. Zusammenfassung: Im Rahmen der Erforschung der Gattung Russula in Ostösterreich wird die neue Art Russula flavoides beschrieben, makro- und mikroskopisch dokumentiert und farbig abgebildet. Für eine umfassende Veröffentlichung über die Morphologie, Ökologie und Verbrei- tung der Gattung Russula in Ostösterreich sind bereits acht Vorarbeiten (PIDLICH- AIGNER 2004-2011) erschienen. Hier wird als weitere Vorstudie eine bislang unbe- kannte Art aus der Sektion Tenellae Subsektion Puellarinae neu beschrieben. Das Ma- terial stammt aus eigenen Aufsammlungen, wobei alle Bestimmungen anhand von Frischmaterial vorgenommen wurden. Zur Methodik wird auf die Ausführungen im ersten Teil (PIDLICH-AIGNER 2004) verwiesen. Die Nomenklatur wie auch die syste- matische Gliederung folgt SARNARI (1998, 2005). Russula flavoides PIDLICH-AIGNER, spec. nova
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • 9B Taxonomy to Genus
    Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella
    [Show full text]
  • New Records of Polypores from Iran, with a Checklist of Polypores for Gilan Province
    CZECH MYCOLOGY 68(2): 139–148, SEPTEMBER 27, 2016 (ONLINE VERSION, ISSN 1805-1421) New records of polypores from Iran, with a checklist of polypores for Gilan Province 1 2 MOHAMMAD AMOOPOUR ,MASOOMEH GHOBAD-NEJHAD *, 1 SEYED AKBAR KHODAPARAST 1 Department of Plant Protection, Faculty of Agricultural Sciences, University of Gilan, P.O. Box 41635-1314, Rasht 4188958643, Iran. 2 Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P.O. Box 3353-5111, Tehran 3353136846, Iran; [email protected] *corresponding author Amoopour M., Ghobad-Nejhad M., Khodaparast S.A. (2016): New records of polypores from Iran, with a checklist of polypores for Gilan Province. – Czech Mycol. 68(2): 139–148. As a result of a survey of poroid basidiomycetes in Gilan Province, Antrodiella fragrans, Ceriporia aurantiocarnescens, Oligoporus tephroleucus, Polyporus udus,andTyromyces kmetii are newly reported from Iran, and the following seven species are reported as new to this province: Coriolopsis gallica, Fomitiporia punctata, Hapalopilus nidulans, Inonotus cuticularis, Oligo- porus hibernicus, Phylloporia ribis,andPolyporus tuberaster. An updated checklist of polypores for Gilan Province is provided. Altogether, 66 polypores are known from Gilan up to now. Key words: fungi, hyrcanian forests, poroid basidiomycetes. Article history: received 28 July 2016, revised 13 September 2016, accepted 14 September 2016, published online 27 September 2016. Amoopour M., Ghobad-Nejhad M., Khodaparast S.A. (2016): Nové nálezy chorošů pro Írán a checklist chorošů provincie Gilan. – Czech Mycol. 68(2): 139–148. Jako výsledek systematického výzkumu chorošotvarých hub v provincii Gilan jsou publikovány nové druhy pro Írán: Antrodiella fragrans, Ceriporia aurantiocarnescens, Oligoporus tephroleu- cus, Polyporus udus a Tyromyces kmetii.
    [Show full text]