Impact of AHR Ligand TCDD on Human Embryonic Stem Cells and Early Differentiation

Total Page:16

File Type:pdf, Size:1020Kb

Impact of AHR Ligand TCDD on Human Embryonic Stem Cells and Early Differentiation International Journal of Molecular Sciences Article Impact of AHR Ligand TCDD on Human Embryonic Stem Cells and Early Differentiation Indrek Teino 1,* , Antti Matvere 1 , Martin Pook 1, Inge Varik 1, Laura Pajusaar 1, 1 1 1 1 2,3, Keyt Uudeküll , Helen Vaher , Annika Trei , Arnold Kristjuhan ,Tõnis Org y 1, and Toivo Maimets y 1 Chair of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; [email protected] (A.M.); [email protected] (M.P.); [email protected] (I.V.); [email protected] (L.P.); [email protected] (K.U.); [email protected] (H.V.); [email protected] (A.T.); [email protected] (A.K.); [email protected] (T.M.) 2 Chair of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia; [email protected] 3 Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia * Correspondence: [email protected]; Tel.: +372-737-5023 These authors contributed equally. y Received: 6 November 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: Aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, which mediates the effects of a variety of environmental stimuli in multiple tissues. Recent advances in AHR biology have underlined its importance in cells with high developmental potency, including pluripotent stem cells. Nonetheless, there is little data on AHR expression and its role during the initial stages of stem cell differentiation. The purpose of this study was to investigate the temporal pattern of AHR expression during directed differentiation of human embryonic stem cells (hESC) into neural progenitor, early mesoderm and definitive endoderm cells. Additionally, we investigated the effect of the AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on the gene expression profile in hESCs and differentiated cells by RNA-seq, accompanied by identification of AHR binding sites by ChIP-seq and epigenetic landscape analysis by ATAC-seq. We showed that AHR is differentially regulated in distinct lineages. We provided evidence that TCDD alters gene expression patterns in hESCs and during early differentiation. Additionally, we identified novel potential AHR target genes, which expand our understanding on the role of this protein in different cell types. Keywords: aryl hydrocarbon receptor; human embryonic stem cells; neural progenitors; early mesoderm; definitive endoderm; TCDD; RNA-seq; ChIP-seq; ATAC-seq 1. Introduction Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor belonging to the bHLH/PAS family of proteins. The unliganded AHR resides in the cytoplasm in complex with HSP90, AIP and p23. Upon activation by an agonist, AHR translocates to the nucleus where it is released from its cytoplasmic chaperones and dimerises with its nuclear partner ARNT (AHR nuclear translocator) [1,2]. This heterodimeric complex recognises and binds response elements in regulatory regions of its target genes, recruits cofactors and thereby modulates gene expression. Initially, AHR was identified as the mediator of toxic effects of various environmental contaminants, like polycyclic and halogenated aromatic hydrocarbons, including the most potent agonist, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [3]. Activation of AHR by these chemicals leads to induction of various xenobiotic metabolising enzymes such as CYP1A1 and CYP1B1, which are responsible for the degradation and elimination of Int. J. Mol. Sci. 2020, 21, 9052; doi:10.3390/ijms21239052 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, 9052 2 of 24 these compounds from the cells. Later studies, however, have established that AHR can be activated by various endogenous and natural ligands, ascribing it an important role in cellular homeostasis, including regulation of the cell cycle, apoptosis, etc. The significance of AHR has been underscored, among others, in reproduction, liver homeostasis and the immune system [4–6]. In addition, recent advances in the field have emphasised the role of AHR in cells with high developmental potential i.e., stem cells. Several studies have investigated the role of AHR in adult stem cells using known antagonists or agonists such as TCDD. Hematopoietic stem cells (HSC), which descend from the mesoderm, have high therapeutic value but are limited in expansion capacities in vitro. Advances in this field, however, have shown that the AHR antagonist StemRegenin1 promotes expansion of HSC, retaining their developmental potential [7]. In addition, the RNA-binding protein Musashi-2 (MSI2) was shown to induce HSC self-renewal [8]. It was later established that MSI-2 exerts its effect through silencing of AHR signalling, with reduction of CYP1B1 expression being the key mechanism [9]. In addition, differentiation of mouse embryonic stem cells into cardiomyocytes has been shown to be interfered with by TCDD [10,11]. Accordingly, it was recently established that TCDD also disrupts differentiation of human embryonic stem cells (hESCs) into cardiomyocytes [12]. Interestingly, it was shown that the most profound effects appeared when TCDD-treatment was performed on hESCs rather than later during differentiation. Studies investigating the role of AHR in neural differentiation have revealed that activation of Ahr by TCDD suppresses neural precursor cell proliferation in a mouse model [13]. The mechanism included impaired G1/S cell cycle transition, downregulation of cyclin D1 and upregulation of p27 (CDKN1B) protein levels. The impact of TCDD on neuronal differentiation has been further elucidated during differentiation of human embryonic stem cells. It was shown that temporal exposure to TCDD increases neural rosette formation and the number of cells positive for MAP2 and TH, the latter being a key enzyme in dopamine synthesis. Additional studies have investigated AHR during endodermal differentiation. TCDD was found to impair hESC differentiation into the pancreatic lineage and alter DNA methylation [14]. Importantly, hypermethylation of PRKAG1, a regulator of insulin secretion, was observed. Embryonic stem cells (ESCs) are derived from the inner cell mass of a blastocyst. They are pluripotent, meaning that they can differentiate into three primordial lineages—ectoderm, endoderm and mesoderm—and give rise to every cell type of the body. Pluripotency is governed by specific transcription factors centred on OCT4, SOX2 and NANOG that enhance their own expression and suppress genes essential for differentiation. During differentiation of ESCs, pluripotency genes are generally downregulated, enabling upregulation of lineage-specific genes and thus lineage-specification. Differentiation of ESCs can be induced chemically, using small molecule compounds, as well as with growth factors, being also used in various combinations in commercially available differentiation media. In addition, formation of embryoid bodies (EBs), 3D structures that mimic in vivo differentiation, has been applied. Previous publications investigating AHR during the first steps of development have established that mouse Ahr is expressed at the 1-cell stage, downregulated at 2- and 8-cell stages followed by upregulation at later stages [15,16]. In mouse embryonic stem cells (mESCs), Ahr is repressed and upregulated during differentiation into EBs [17]. Importantly, Oct4, Sox2 and Nanog were shown to bind the distal promoter of Ahr, suppressing its expression and thereby promoting mESC mitotic progression and maintenance of pluripotency [18]. In human, AHR is expressed from the 1-cell stage throughout the blastocyst stage. AHR expression has been detected in various human embryonic stem cell (hESC) lines [19]. Importantly, AHR was reported to maintain the pluripotent state of hESCs and induce proliferation via kynurenine, an endogenous ligand of AHR, generated from tryptophan by IDO1 and TDO2 [19,20]. Consistent with this, AHR expression was downregulated following induction of ectodermal differentiation, ascribing AHR an important role in pluripotent hESCs as well as during differentiation [19]. There is little data about the temporal pattern of AHR during hESC differentiation. Considering this, our aims were to characterise AHR expression during induced differentiation of hESCs into neural Int. J. Mol. Sci. 2020, 21, 9052 3 of 24 Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 3 of 25 progenitor,impact of TCDD definitive on the endoderm transcriptome and early of hESCs mesoderm as well cells. as Additionally,early differentiation we evaluated events theby RNA impact-seq, of TCDDcoupled on with the transcriptome identification of of hESCs genome as well-wide as earlyAHR di ffbindingerentiation sites events by ChIP by RNA-seq,-seq and coupled analysis with of identificationchromatin accessibility of genome-wide by ATAC AHR-seq. binding We expand sites by the ChIP-seq knowledge and on analysis the role of of chromatin AHR in stem accessibility cells by byidentifying ATAC-seq. its Wenovel expand potential the knowledgetarget genes on by the ChIP role-seq of AHRcoupled in stem with cells changes by identifying in gene expression its novel potentialdetermined target by RNA genes-seq. by ChIP-seq coupled with changes in gene expression determined by RNA-seq. 2.2. Results 2.1.2.1. AHR Is Downregulated during Non-DirectedNon-Directed DiDifferentiationfferentiation intointo EmbryoidEmbryoid BodiesBodies (EBs)(EBs) ToTo gaingain first first insight insight into into the regulationthe regulation of AHR of duringAHR earlyduring di ffearlyerentiation, differentiation,
Recommended publications
  • The Rise and Fall of the Bovine Corpus Luteum
    University of Nebraska Medical Center DigitalCommons@UNMC Theses & Dissertations Graduate Studies Spring 5-6-2017 The Rise and Fall of the Bovine Corpus Luteum Heather Talbott University of Nebraska Medical Center Follow this and additional works at: https://digitalcommons.unmc.edu/etd Part of the Biochemistry Commons, Molecular Biology Commons, and the Obstetrics and Gynecology Commons Recommended Citation Talbott, Heather, "The Rise and Fall of the Bovine Corpus Luteum" (2017). Theses & Dissertations. 207. https://digitalcommons.unmc.edu/etd/207 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@UNMC. It has been accepted for inclusion in Theses & Dissertations by an authorized administrator of DigitalCommons@UNMC. For more information, please contact [email protected]. THE RISE AND FALL OF THE BOVINE CORPUS LUTEUM by Heather Talbott A DISSERTATION Presented to the Faculty of the University of Nebraska Graduate College in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Biochemistry and Molecular Biology Graduate Program Under the Supervision of Professor John S. Davis University of Nebraska Medical Center Omaha, Nebraska May, 2017 Supervisory Committee: Carol A. Casey, Ph.D. Andrea S. Cupp, Ph.D. Parmender P. Mehta, Ph.D. Justin L. Mott, Ph.D. i ACKNOWLEDGEMENTS This dissertation was supported by the Agriculture and Food Research Initiative from the USDA National Institute of Food and Agriculture (NIFA) Pre-doctoral award; University of Nebraska Medical Center Graduate Student Assistantship; University of Nebraska Medical Center Exceptional Incoming Graduate Student Award; the VA Nebraska-Western Iowa Health Care System Department of Veterans Affairs; and The Olson Center for Women’s Health, Department of Obstetrics and Gynecology, Nebraska Medical Center.
    [Show full text]
  • Supplemental Figure 1. Vimentin
    Double mutant specific genes Transcript gene_assignment Gene Symbol RefSeq FDR Fold- FDR Fold- FDR Fold- ID (single vs. Change (double Change (double Change wt) (single vs. wt) (double vs. single) (double vs. wt) vs. wt) vs. single) 10485013 BC085239 // 1110051M20Rik // RIKEN cDNA 1110051M20 gene // 2 E1 // 228356 /// NM 1110051M20Ri BC085239 0.164013 -1.38517 0.0345128 -2.24228 0.154535 -1.61877 k 10358717 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 /// BC 1700025G04Rik NM_197990 0.142593 -1.37878 0.0212926 -3.13385 0.093068 -2.27291 10358713 NM_197990 // 1700025G04Rik // RIKEN cDNA 1700025G04 gene // 1 G2 // 69399 1700025G04Rik NM_197990 0.0655213 -1.71563 0.0222468 -2.32498 0.166843 -1.35517 10481312 NM_027283 // 1700026L06Rik // RIKEN cDNA 1700026L06 gene // 2 A3 // 69987 /// EN 1700026L06Rik NM_027283 0.0503754 -1.46385 0.0140999 -2.19537 0.0825609 -1.49972 10351465 BC150846 // 1700084C01Rik // RIKEN cDNA 1700084C01 gene // 1 H3 // 78465 /// NM_ 1700084C01Rik BC150846 0.107391 -1.5916 0.0385418 -2.05801 0.295457 -1.29305 10569654 AK007416 // 1810010D01Rik // RIKEN cDNA 1810010D01 gene // 7 F5 // 381935 /// XR 1810010D01Rik AK007416 0.145576 1.69432 0.0476957 2.51662 0.288571 1.48533 10508883 NM_001083916 // 1810019J16Rik // RIKEN cDNA 1810019J16 gene // 4 D2.3 // 69073 / 1810019J16Rik NM_001083916 0.0533206 1.57139 0.0145433 2.56417 0.0836674 1.63179 10585282 ENSMUST00000050829 // 2010007H06Rik // RIKEN cDNA 2010007H06 gene // --- // 6984 2010007H06Rik ENSMUST00000050829 0.129914 -1.71998 0.0434862 -2.51672
    [Show full text]
  • Genome-Wide Association Identifies Candidate Genes That Influence The
    Genome-wide association identifies candidate genes that influence the human electroencephalogram Colin A. Hodgkinsona,1, Mary-Anne Enocha, Vibhuti Srivastavaa, Justine S. Cummins-Omana, Cherisse Ferriera, Polina Iarikovaa, Sriram Sankararamanb, Goli Yaminia, Qiaoping Yuana, Zhifeng Zhoua, Bernard Albaughc, Kenneth V. Whitea, Pei-Hong Shena, and David Goldmana aLaboratory of Neurogenetics, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852; bComputer Science Department, University of California, Berkeley, CA 94720; and cCenter for Human Behavior Studies, Weatherford, OK 73096 Edited* by Raymond L. White, University of California, Emeryville, CA, and approved March 31, 2010 (received for review July 23, 2009) Complex psychiatric disorders are resistant to whole-genome reflects rhythmic electrical activity of the brain. EEG patterns analysis due to genetic and etiological heterogeneity. Variation in dynamically and quantitatively index cortical activation, cognitive resting electroencephalogram (EEG) is associated with common, function, and state of consciousness. EEG traits were among the complex psychiatric diseases including alcoholism, schizophrenia, original intermediate phenotypes in neuropsychiatry, having been and anxiety disorders, although not diagnostic for any of them. EEG first recorded in humans in 1924 by Hans Berger, who documented traits for an individual are stable, variable between individuals, and the α rhythm, seen maximally during states of relaxation with eyes moderately to highly heritable. Such intermediate phenotypes closed, and supplanted by faster β waves during mental activity. appear to be closer to underlying molecular processes than are EEG can be used clinically for the evaluation and differential di- clinical symptoms, and represent an alternative approach for the agnosis of epilepsy and sleep disorders, differentiation of en- identification of genetic variation that underlies complex psychiat- cephalopathy from catatonia, assessment of depth of anesthesia, ric disorders.
    [Show full text]
  • Systematic Comparison of Sea Urchin and Sea Star Developmental Gene Regulatory Networks Explains How Novelty Is Incorporated in Early Development
    ARTICLE https://doi.org/10.1038/s41467-020-20023-4 OPEN Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development Gregory A. Cary 1,3,5, Brenna S. McCauley1,4,5, Olga Zueva1, Joseph Pattinato1, William Longabaugh2 & ✉ Veronica F. Hinman 1 1234567890():,; The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in under- standing the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmar1, the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions. 1 Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
    [Show full text]
  • The Expression of the Human Apolipoprotein Genes and Their Regulation by Ppars
    CORE Metadata, citation and similar papers at core.ac.uk Provided by UEF Electronic Publications The expression of the human apolipoprotein genes and their regulation by PPARs Juuso Uski M.Sc. Thesis Biochemistry Department of Biosciences University of Kuopio June 2008 Abstract The expression of the human apolipoprotein genes and their regulation by PPARs. UNIVERSITY OF KUOPIO, the Faculty of Natural and Environmental Sciences, Curriculum of Biochemistry USKI Juuso Oskari Thesis for Master of Science degree Supervisors Prof. Carsten Carlberg, Ph.D. Merja Heinäniemi, Ph.D. June 2008 Keywords: nuclear receptors; peroxisome proliferator-activated receptor; PPAR response element; apolipoprotein; lipid metabolism; high density lipoprotein; low density lipoprotein. Lipids are any fat-soluble, naturally-occurring molecules and one of their main biological functions is energy storage. Lipoproteins carry hydrophobic lipids in the water and salt-based blood environment for processing and energy supply in liver and other organs. In this study, the genomic area around the apolipoprotein genes was scanned in silico for PPAR response elements (PPREs) using the in vitro data-based computer program. Several new putative REs were found in surroundings of multiple lipoprotein genes. The responsiveness of those apolipoprotein genes to the PPAR ligands GW501516, rosiglitazone and GW7647 in the HepG2, HEK293 and THP-1 cell lines were tested with real-time PCR. The APOA1, APOA2, APOB, APOD, APOE, APOF, APOL1, APOL3, APOL5 and APOL6 genes were found to be regulated by PPARs in direct or secondary manners. Those results provide new insights in the understanding of lipid metabolism and so many lifestyle diseases like atherosclerosis, type 2 diabetes, heart disease and stroke.
    [Show full text]
  • Variations in Microrna-25 Expression Influence the Severity of Diabetic
    BASIC RESEARCH www.jasn.org Variations in MicroRNA-25 Expression Influence the Severity of Diabetic Kidney Disease † † † Yunshuang Liu,* Hongzhi Li,* Jieting Liu,* Pengfei Han, Xuefeng Li, He Bai,* Chunlei Zhang,* Xuelian Sun,* Yanjie Teng,* Yufei Zhang,* Xiaohuan Yuan,* Yanhui Chu,* and Binghai Zhao* *Heilongjiang Key Laboratory of Anti-Fibrosis Biotherapy, Medical Research Center, Heilongjiang, People’s Republic of China; and †Clinical Laboratory of Hong Qi Hospital, Mudanjiang Medical University, Heilongjiang, People’s Republic of China ABSTRACT Diabetic nephropathy is characterized by persistent albuminuria, progressive decline in GFR, and second- ary hypertension. MicroRNAs are dysregulated in diabetic nephropathy, but identification of the specific microRNAs involved remains incomplete. Here, we show that the peripheral blood from patients with diabetes and the kidneys of animals with type 1 or 2 diabetes have low levels of microRNA-25 (miR-25) compared with those of their nondiabetic counterparts. Furthermore, treatment with high glucose decreased the expression of miR-25 in cultured kidney cells. In db/db mice, systemic administration of an miR-25 agomir repressed glomerular fibrosis and reduced high BP. Notably, knockdown of miR-25 in normal mice by systemic administration of an miR-25 antagomir resulted in increased proteinuria, extracellular matrix accumulation, podocyte foot process effacement, and hypertension with renin-angiotensin system activation. However, excessive miR-25 did not cause kidney dysfunction in wild-type mice. RNA sequencing showed the alteration of miR-25 target genes in antagomir-treated mice, including the Ras-related gene CDC42. In vitro,cotrans- fection with the miR-25 antagomir repressed luciferase activity from a reporter construct containing the CDC42 39 untranslated region.
    [Show full text]
  • Open Dogan Phdthesis Final.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Transcription Profiles of Age-At-Maturity-Associated Genes Suggest Cell Fate Commitment Regulation As a Key Factor in the Atlant
    INVESTIGATION Transcription Profiles of Age-at-Maturity- Associated Genes Suggest Cell Fate Commitment Regulation as a Key Factor in the Atlantic Salmon Maturation Process Johanna Kurko,*,† Paul V. Debes,*,† Andrew H. House,*,† Tutku Aykanat,*,† Jaakko Erkinaro,‡ and Craig R. Primmer*,†,1 *Organismal and Evolutionary Biology Research Programme, University of Helsinki, Helsinki, Finland, 00014, †Institute of Biotechnology, University of Helsinki, Helsinki, Finland, 00014, and ‡Natural Resources Institute Finland (Luke), Oulu, Finland, 90014 ORCID IDs: 0000-0002-4598-116X (J.K.); 0000-0003-4491-9564 (P.V.D.); 0000-0001-8705-0358 (A.H.H.); 0000-0002-4825-0231 (T.A.); 0000-0002-7843-0364 (J.E.); 0000-0002-3687-8435 (C.R.P.) ABSTRACT Despite recent taxonomic diversification in studies linking genotype with phenotype, KEYWORDS follow-up studies aimed at understanding the molecular processes of such genotype-phenotype Atlantic salmon associations remain rare. The age at which an individual reaches sexual maturity is an important fitness maturation trait in many wild species. However, the molecular mechanisms regulating maturation timing process processes remain obscure. A recent genome-wide association study in Atlantic salmon (Salmo salar) vgll3 identified large-effect age-at-maturity-associated chromosomal regions including genes vgll3, akap11 mRNA and six6, which have roles in adipogenesis, spermatogenesis and the hypothalamic-pituitary-gonadal expression (HPG) axis, respectively. Here, we determine expression patterns of these genes during salmon de- cell fate velopment and their potential molecular partners and pathways. Using Nanostring transcription pro- regulation filing technology, we show development- and tissue-specific mRNA expression patterns for vgll3, akap11 and six6. Correlated expression levels of vgll3 and akap11, which have adjacent chromosomal location, suggests they may have shared regulation.
    [Show full text]
  • A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules Natasha L
    www.nature.com/scientificreports OPEN A Multi-Omics Interpretable Machine Learning Model Reveals Modes of Action of Small Molecules Natasha L. Patel-Murray1, Miriam Adam2, Nhan Huynh2, Brook T. Wassie2, Pamela Milani2 & Ernest Fraenkel 2,3* High-throughput screening and gene signature analyses frequently identify lead therapeutic compounds with unknown modes of action (MoAs), and the resulting uncertainties can lead to the failure of clinical trials. We developed an approach for uncovering MoAs through an interpretable machine learning model of transcriptomics, epigenomics, metabolomics, and proteomics. Examining compounds with benefcial efects in models of Huntington’s Disease, we found common MoAs for compounds with unrelated structures, connectivity scores, and binding targets. The approach also predicted highly divergent MoAs for two FDA-approved antihistamines. We experimentally validated these efects, demonstrating that one antihistamine activates autophagy, while the other targets bioenergetics. The use of multiple omics was essential, as some MoAs were virtually undetectable in specifc assays. Our approach does not require reference compounds or large databases of experimental data in related systems and thus can be applied to the study of agents with uncharacterized MoAs and to rare or understudied diseases. Unknown modes of action of drug candidates can lead to unpredicted consequences on efectiveness and safety. Computational methods, such as the analysis of gene signatures, and high-throughput experimental methods have accelerated the discovery of lead compounds that afect a specifc target or phenotype1–3. However, these advances have not dramatically changed the rate of drug approvals. Between 2000 and 2015, 86% of drug can- didates failed to earn FDA approval, with toxicity or a lack of efcacy being common reasons for their clinical trial termination4,5.
    [Show full text]
  • ONLINE SUPPLEMENTARY TABLE Table 2. Differentially Expressed
    ONLINE SUPPLEMENTARY TABLE Table 2. Differentially Expressed Probe Sets in Livers of GK Rats. A. Immune/Inflammatory (67 probe sets, 63 genes) Age Strain Probe ID Gene Name Symbol Accession Gene Function 5 WKY 1398390_at small inducible cytokine B13 precursor Cxcl13 AA892854 chemokine activity; lymph node development 5 WKY 1389581_at interleukin 33 Il33 BF390510 cytokine activity 5 WKY *1373970_at interleukin 33 Il33 AI716248 cytokine activity 5 WKY 1369171_at macrophage stimulating 1 (hepatocyte growth factor-like) Mst1; E2F2 NM_024352 serine-throenine kinase; tumor suppression 5 WKY 1388071_x_at major histocompatability antigen Mhc M24024 antigen processing and presentation 5 WKY 1385465_at sialic acid binding Ig-like lectin 5 Siglec5 BG379188 sialic acid-recognizing receptor 5 WKY 1393108_at major histocompatability antigen Mhc BM387813 antigen processing and presentation 5 WKY 1388202_at major histocompatability antigen Mhc BI395698 antigen processing and presentation 5 WKY 1371171_at major histocompatability antigen Mhc M10094 antigen processing and presentation 5 WKY 1370382_at major histocompatability antigen Mhc BI279526 antigen processing and presentation 5 WKY 1371033_at major histocompatability antigen Mhc AI715202 antigen processing and presentation 5 WKY 1383991_at leucine rich repeat containing 8 family, member E Lrrc8e BE096426 proliferation and activation of lymphocytes and monocytes. 5 WKY 1383046_at complement component factor H Cfh; Fh AA957258 regulation of complement cascade 4 WKY 1369522_a_at CD244 natural killer
    [Show full text]
  • Role of Coiled-Coil Registry Shifts in Activation of Human Bicaudal D2 for Dynein Recruitment Upon Cargo-Binding
    bioRxiv preprint doi: https://doi.org/10.1101/638536; this version posted May 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Role of coiled-coil registry shifts in activation of human Bicaudal D2 for dynein recruitment upon cargo-binding Crystal R. Noell,1,4 Jia Ying Loh, 1,4 Erik W. Debler,2 Kyle M. Loftus,1 Heying Cui,1 Blaine B. Russ,1 Puja Goyal,1,* Sozanne R. Solmaz1,3,* 1Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902 2Department of Biochemistry & Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107. 3Lead contact. 4First author equally contributed *To whom the correspondence should be addressed: Sozanne R Solmaz Department of Chemistry, State University of New York at Binghamton PO Box 6000 Binghamton NY 13902 [email protected] +1 607 777 2089 Puja Goyal Department of Chemistry, State University of New York at Binghamton PO Box 6000 Binghamton NY 13902 [email protected] +1 607 777 4308 1 bioRxiv preprint doi: https://doi.org/10.1101/638536; this version posted May 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Highlights • Stable, bona fide BicD2 coiled-coils with distinct registries can be formed. • We provide evidence that a human disease mutation causes a coiled-coil registry shift. • A coiled-coil registry shift could relieve BicD2-autoinhibition upon cargo-binding. • The ability to undergo registry shifts may be an inherent property of coiled-coils.
    [Show full text]