Iteration Trees
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Set-Theoretic Geology, the Ultimate Inner Model, and New Axioms
Set-theoretic Geology, the Ultimate Inner Model, and New Axioms Justin William Henry Cavitt (860) 949-5686 [email protected] Advisor: W. Hugh Woodin Harvard University March 20, 2017 Submitted in partial fulfillment of the requirements for the degree of Bachelor of Arts in Mathematics and Philosophy Contents 1 Introduction 2 1.1 Author’s Note . .4 1.2 Acknowledgements . .4 2 The Independence Problem 5 2.1 Gödelian Independence and Consistency Strength . .5 2.2 Forcing and Natural Independence . .7 2.2.1 Basics of Forcing . .8 2.2.2 Forcing Facts . 11 2.2.3 The Space of All Forcing Extensions: The Generic Multiverse 15 2.3 Recap . 16 3 Approaches to New Axioms 17 3.1 Large Cardinals . 17 3.2 Inner Model Theory . 25 3.2.1 Basic Facts . 26 3.2.2 The Constructible Universe . 30 3.2.3 Other Inner Models . 35 3.2.4 Relative Constructibility . 38 3.3 Recap . 39 4 Ultimate L 40 4.1 The Axiom V = Ultimate L ..................... 41 4.2 Central Features of Ultimate L .................... 42 4.3 Further Philosophical Considerations . 47 4.4 Recap . 51 1 5 Set-theoretic Geology 52 5.1 Preliminaries . 52 5.2 The Downward Directed Grounds Hypothesis . 54 5.2.1 Bukovský’s Theorem . 54 5.2.2 The Main Argument . 61 5.3 Main Results . 65 5.4 Recap . 74 6 Conclusion 74 7 Appendix 75 7.1 Notation . 75 7.2 The ZFC Axioms . 76 7.3 The Ordinals . 77 7.4 The Universe of Sets . 77 7.5 Transitive Models and Absoluteness . -
Are Large Cardinal Axioms Restrictive?
Are Large Cardinal Axioms Restrictive? Neil Barton∗ 24 June 2020y Abstract The independence phenomenon in set theory, while perva- sive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper, I argue that whether or not large cardinal axioms count as maximality prin- ciples depends on prior commitments concerning the richness of the subset forming operation. In particular I argue that there is a conception of maximality through absoluteness, on which large cardinal axioms are restrictive. I argue, however, that large cardi- nals are still important axioms of set theory and can play many of their usual foundational roles. Introduction Large cardinal axioms are widely viewed as some of the best candi- dates for new axioms of set theory. They are (apparently) linearly ordered by consistency strength, have substantial mathematical con- sequences for questions independent from ZFC (such as consistency statements and Projective Determinacy1), and appear natural to the ∗Fachbereich Philosophie, University of Konstanz. E-mail: neil.barton@uni- konstanz.de. yI would like to thank David Aspero,´ David Fernandez-Bret´ on,´ Monroe Eskew, Sy-David Friedman, Victoria Gitman, Luca Incurvati, Michael Potter, Chris Scam- bler, Giorgio Venturi, Matteo Viale, Kameryn Williams and audiences in Cambridge, New York, Konstanz, and Sao˜ Paulo for helpful discussion. Two anonymous ref- erees also provided helpful comments, and I am grateful for their input. I am also very grateful for the generous support of the FWF (Austrian Science Fund) through Project P 28420 (The Hyperuniverse Programme) and the VolkswagenStiftung through the project Forcing: Conceptual Change in the Foundations of Mathematics. -
UC Irvine UC Irvine Electronic Theses and Dissertations
UC Irvine UC Irvine Electronic Theses and Dissertations Title Axiom Selection by Maximization: V = Ultimate L vs Forcing Axioms Permalink https://escholarship.org/uc/item/9875g511 Author Schatz, Jeffrey Robert Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Axiom Selection by Maximization: V = Ultimate L vs Forcing Axioms DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Philosophy by Jeffrey Robert Schatz Dissertation Committee: Distinguished Professor Penelope Maddy, Chair Professor Toby Meadows Dean’s Professor Kai Wehmeier Professor Jeremy Heis 2019 All materials c 2019 Jeffrey Robert Schatz DEDICATION To Mike and Lori Schatz for always encouraging me to pursue my goals AND In memory of Jackie, a true and honest friend. ii TABLE OF CONTENTS Page ACKNOWLEDGMENTS iv CURRICULUM VITAE vi ABSTRACT OF THE DISSERTATION vii CHAPTER 1: Two Contemporary Candidates for A Strong Theory of Sets 1 1 The Axiomatization of Set Theory and The Question of Axiom Selection 2 1.1 The Inner Model Program 14 1.2 The Forcing Axiom Program 27 1.3 How to Settle This Dispute? 36 1.4 CHAPTER 2: Axiom Selection and the Maxim of ‘Maximize’ 38 2 ‘Maximize’ as a Methodological Maxim 39 2.1 Two Notions of Maximize 43 2.2 Re-characterizing M-Max for Extensions of ZFC 50 2.3 CHAPTER 3: Applying ‘Maximize’ to Contemporary Axiom Candidates 53 3 Towards a Theory for Ultimate L 54 3.1 S-Max: -
A New Order Theory of Set Systems and Better Quasi-Orderings
03 Progress in Informatics, No. 9, pp.9–18, (2012) 9 Special issue: Theoretical computer science and discrete mathematics Research Paper A new order theory of set systems and better quasi-orderings Yohji AKAMA1 1Mathematical Institute, Tohoku University ABSTRACT By reformulating a learning process of a set system L as a game between Teacher (presenter of data) and Learner (updater of abstract independent set), we define the order type dim L of L to be the order type of the game tree. The theory of this new order type and continuous, monotone function between set systems corresponds to the theory of well quasi-orderings (WQOs). As Nash-Williams developed the theory of WQOs to the theory of better quasi- orderings (BQOs), we introduce a set system that has order type and corresponds to a BQO. We prove that the class of set systems corresponding to BQOs is closed by any monotone function. In (Shinohara and Arimura. “Inductive inference of unbounded unions of pattern languages from positive data.” Theoretical Computer Science, pp. 191–209, 2000), for any set system L, they considered the class of arbitrary (finite) unions of members of L.Fromview- point of WQOs and BQOs, we characterize the set systems L such that the class of arbitrary (finite) unions of members of L has order type. The characterization shows that the order structure of the set system L with respect to the set inclusion is not important for the result- ing set system having order type. We point out continuous, monotone function of set systems is similar to positive reduction to Jockusch-Owings’ weakly semirecursive sets. -
Normal Tree Orders for Infinite Graphs
Normal tree orders for infinite graphs J.-M. Brochet and R. Diestel A well-founded tree T defined on the vertex set of a graph G is called normal if the endvertices of any edge of G are comparable in T . We study how normal trees can be used to describe the structure of infinite graphs. In particular, we extend Jung’s classical existence theorem for trees of height ω to trees of arbitrary height. Applications include a structure theorem for graphs without large complete topological minors. A number of open problems are suggested. 1. Introduction: normal spanning trees The aim of this paper is to see how a classical and powerful structural device for the study of countable graphs, the notion of a normal spanning tree, can be made available more generally. The existence of such spanning trees, while trivial in the finite case (where they are better known as depth-first search trees), is in general limited to countable graphs. By generalizing the graph theoretical trees involved to order theoretical trees, a concept better suited to express uncountably long ‘ends’, we shall be able to extend the classical existence theorems for normal trees to arbitrary cardinalities, while retaining much of their original strength. Throughout the paper, G will denote an arbitrary connected graph. Con- sider a tree T ⊆ G, with a root r, say. If T spans G, the choice of r imposes a partial order on the vertex set V (G) of G: write x 6 y if x lies on the unique r–y path in T . -
BETTER QUASI-ORDERS for UNCOUNTABLE CARDINALS T
Sh:110 ISRAEL JOURNAL OF MATHEMATICS, Vol. 42, No. 3, 1982 BETTER QUASI-ORDERS FOR UNCOUNTABLE CARDINALS t BY SAHARON SHELAH ABSTRACT We generalize the theory of Nash-Williams on well quasi-orders and better quasi-orders and later results to uncountable cardinals. We find that the first cardinal K for which some natural quasi-orders are K-well-ordered, is a (specific) mild large cardinal. Such quasi-orders are ~ (the class of orders which are the union of <- A scattered orders) ordered by embeddability and the (graph theoretic) trees under embeddings taking edges to edges (rather than to passes). CONTENTS §0. Introduction ................................................................................................................. 178 ]Notation, including basic definitions and claims on barriers.] §1. The basic generalization ............................................................................................... 186 [We define K-X-bqo, and prove it is preserved by ~a (Q).] §2. Existence theorem and a stronger notion suitable for powers ....................................... 193 [We define the relevant large cardinals, and prove the existence of non-trivially K-X-bqos, prove that the narrowness cardinal of a Q is some large cardinal and introduce e.g. "[K]-X-bqo" which is preserved by products.] §3. Examples ...................................................................................................................... 201 §4. More information ........................................................................................................ -
Deconstructing Inner Model Theory
Deconstructing inner model theory Ralf-Dieter Schindler John Steel Martin Zeman October 17, 2000 1 Introduction In this paper we shall repair some errors and fill some gaps in the inner model theory of [2]. The problems we shall address affect some quite basic definitions and proofs. We shall be concerned with condensation properties of canonical inner models constructed from coherent sequences E~ of extenders as in [2]. Con- densation results have the general form: if x is definable in a certain way E~ E~ E~ over a level Jα , then either x ∈ Jα , or else from x we can reconstruct Jα in a simple way. The first condensation property considered in [2] is the initial segment condition, or ISC. In section 1 we show that the version of this condition described in [2] is too strong, in that no coherent E~ in which the extenders are indexed in the manner of [2], and which is such that L[E~ ] satisfies the mild large cardinal hypothesis that there is a cardinal which is strong past a measurable, can satisfy the full ISC of [2]. It follows that the coherent sequences constructed in [2] do not satisfy the ISC of [2]. We shall describe the weaker ISC which these sequences do satisfy, and indicate the small changes in the arguments of [2] this new condition requires. In section 2, we fill a gap in the proof that the standard parameters of a sufficiently iterable premouse are solid. This is Theorem 8.1 of [2], one of its central fine structural results. -
Inner Model Theoretic Geology∗
Inner model theoretic geology∗ Gunter Fuchsy Ralf Schindler November 4, 2015 Abstract One of the basic concepts of set theoretic geology is the mantle of a model of set theory V: it is the intersection of all grounds of V, that is, of all inner models M of V such that V is a set-forcing extension of M. The main theme of the present paper is to identify situations in which the mantle turns out to be a fine structural extender model. The first main result is that this is the case when the universe is constructible from a set and there is an inner model with a Woodin cardinal. The second situation like that arises if L[E] is an extender model that is iterable in V but not internally iterable, as guided by P -constructions, L[E] has no strong cardinal, and the extender sequence E is ordinal definable in L[E] and its forcing extensions by collapsing a cutpoint to ! (in an appropriate sense). The third main result concerns the Solid Core of a model of set theory. This is the union of all sets that are constructible from a set of ordinals that cannot be added by set-forcing to an inner model. The main result here is that if there is an inner model with a Woodin cardinal, then the solid core is a fine-structural extender model. 1 Introduction In [3], the authors introduced several types of inner models which are defined following the paradigm of \undoing" forcing. Thus, the mantle M of a model of set theory V is the intersection of all of its ground models (i.e., the intersection of all ∗AMS MSC 2010: 03E35, 03E40, 03E45, 03E47, 03E55. -
Inner Models from Extended Logics: Part 1*
Inner Models from Extended Logics: Part 1* Juliette Kennedy† Menachem Magidor‡ Helsinki Jerusalem Jouko Va¨an¨ anen¨ § Helsinki and Amsterdam December 15, 2020 Abstract If we replace first order logic by second order logic in the original def- inition of Godel’s¨ inner model L, we obtain HOD ([33]). In this paper we consider inner models that arise if we replace first order logic by a logic that has some, but not all, of the strength of second order logic. Typical examples are the extensions of first order logic by generalized quantifiers, such as the Magidor-Malitz quantifier ([24]), the cofinality quantifier ([35]), or station- ary logic ([6]). Our first set of results show that both L and HOD manifest some amount of formalism freeness in the sense that they are not very sen- sitive to the choice of the underlying logic. Our second set of results shows that the cofinality quantifier gives rise to a new robust inner model between L and HOD. We show, among other things, that assuming a proper class of Woodin cardinals the regular cardinals > @1 of V are weakly compact in the inner model arising from the cofinality quantifier and the theory of that model is (set) forcing absolute and independent of the cofinality in question. *The authors would like to thank the Isaac Newton Institute for Mathematical Sciences for its hospitality during the programme Mathematical, Foundational and Computational Aspects of the Higher Infinite supported by EPSRC Grant Number EP/K032208/1. The authors are grateful to John Steel, Philip Welch and Hugh Woodin for comments on the results presented here. -
1. the Zermelo Fraenkel Axioms of Set Theory
1. The Zermelo Fraenkel Axioms of Set Theory The naive definition of a set as a collection of objects is unsatisfactory: The objects within a set may themselves be sets, whose elements are also sets, etc. This leads to an infinite regression. Should this be allowed? If the answer is “yes”, then such a set certainly would not meet our intuitive expectations of a set. In particular, a set for which A A holds contradicts our intuition about a set. This could be formulated as a first∈ axiom towards a formal approach towards sets. It will be a later, and not very essential axiom. Not essential because A A will not lead to a logical contradiction. This is different from Russel’s paradox:∈ Let us assume that there is something like a universe of all sets. Given the property A/ A it should define a set R of all sets for which this property holds. Thus R = A∈ A/ A . Is R such a set A? Of course, we must be able to ask this { | ∈ } question. Notice, if R is one of the A0s it must satisfy the condition R/ R. But by the very definition of R, namely R = A A/ A we get R R iff R/∈ R. Of course, this is a logical contradiction. But{ how| can∈ } we resolve it?∈ The answer∈ will be given by an axiom that restricts the definition of sets by properties. The scope of a property P (A), like P (A) A/ A, must itself be a set, say B. Thus, instead of R = A A/ A we define≡ for any∈ set B the set R(B) = A A B, A / A . -
SET THEORY 1. the Suslin Problem 1.1. the Suslin Hypothesis. Recall
SET THEORY MOSHE KAMENSKY Abstract. Notes on set theory, mainly forcing. The first four sections closely follow the lecture notes Williams [8] and the book Kunen [4]. The last section covers topics from various sources, as indicated there. Hopefully, all errors are mine. 1. The Suslin problem 1.1. The Suslin hypothesis. Recall that R is the unique dense, complete and separable order without endpoints (up to isomorphism). It follows from the sepa- rability that any collection of pairwise disjoint open intervals is countable. Definition 1.1.1. A linear order satisfies the countable chain condition (ccc) if any collection of pairwise disjoint open intervals is countable. Hypothesis 1.1.2 (The Suslin hypothesis). (R; <) is the unique complete dense linear order without endpoints that satisfies the countable chain condition. We will not prove the Suslin hypothesis (this is a theorem). Instead, we will reformulate it in various ways. First, we have the following apparent generalisation of the Suslin hypothesis. Theorem 1.1.3. The following are equivalent: (1) The Suslin hypothesis (2) Any ccc linear order is separable Proof. Let (X; <) be a ccc linear order that is not separable. Assume first that it is dense. Then we may assume it has no end points (by dropping them). The completion again has the ccc, so by the Suslin hypothesis is isomorphic to R. Hence we may assume that X ⊆ R, but then X is separable. It remains to produce a dense counterexample from a general one. Define x ∼ y if both (x; y) and (y; x) are separable. This is clearly a convex equivalence relation, so the quotient Y is again a linear order satisfying the ccc. -
Large Cardinals and the Iterative Conception of Set
Large cardinals and the iterative conception of set Neil Barton∗ 4 December 2017y Abstract The independence phenomenon in set theory, while pervasive, can be par- tially addressed through the use of large cardinal axioms. One idea sometimes alluded to is that maximality considerations speak in favour of large cardinal ax- ioms consistent with ZFC, since it appears to be ‘possible’ (in some sense) to continue the hierarchy far enough to generate the relevant transfinite number. In this paper, we argue against this idea based on a priority of subset formation under the iterative conception. In particular, we argue that there are several con- ceptions of maximality that justify the consistency but falsity of large cardinal axioms. We argue that the arguments we provide are illuminating for the debate concerning the justification of new axioms in iteratively-founded set theory. Introduction Large cardinal axioms (discussed in detail below) are widely viewed as some of the best candidates for new axioms of set theory. They are (apparently) linearly ordered by consistency strength, have substantial mathematical consequences for indepen- dence results (both as a tool for generating new models and for consequences within the models in which they reside), and often appear natural to the working set theo- rist, providing fine-grained information about different properties of transfinite sets. They are considered mathematically interesting and central for the study of set the- ory and its philosophy. In this paper, we do not deny any of the above views. We will, however, argue that the status of large cardinal axioms as maximality principles is questionable.