Computational Characterization of Chromatin Domain Boundary-Associated Genomic Elements Seungpyo Hong and Dongsup Kim*

Total Page:16

File Type:pdf, Size:1020Kb

Computational Characterization of Chromatin Domain Boundary-Associated Genomic Elements Seungpyo Hong and Dongsup Kim* Published online 23 August 2017 Nucleic Acids Research, 2017, Vol. 45, No. 18 10403–10414 doi: 10.1093/nar/gkx738 Computational characterization of chromatin domain boundary-associated genomic elements Seungpyo Hong and Dongsup Kim* Department of Bio and Brain Engineering, KAIST, Daejeon, Republic of Korea Received January 03, 2017; Revised July 18, 2017; Editorial Decision August 10, 2017; Accepted August 14, 2017 ABSTRACT units of chromatin interact with each other to form larger units (4). The basic structural units of chromatin are nucle- Topologically associated domains (TADs) are 3D ge- osomes, which have a 10-nm fiber structure; their dynamic nomic structures with high internal interactions that interaction leads to the formation of larger-scale chromatin play important roles in genome compaction and gene domains characterized by high intra-domain and low inter- regulation. Their genomic locations and their asso- domain interactions (5). Two classes of chromatin domain ciation with CCCTC-binding factor (CTCF)-binding have been described; the smaller of these, which are referred sites and transcription start sites (TSSs) were re- to as physical or contact domains, constitute about 185 000 cently reported. However, the relationship between bp (6) and interact with each other to form larger topolog- TADs and other genomic elements has not been ically associated domains (TADs) of ∼1 million bp (7). systematically evaluated. This was addressed in the Although the existence of various genomic structures has present study, with a focus on the enrichment of been experimentally demonstrated, how they are formed is largely unknown; TADs are of particular interest given these genomic elements and their ability to predict that they are implicated in gene regulation (8,9). It is the TAD boundary region. We found that consensus thought that particular genomic elements are located at the CTCF-binding sites were strongly associated with boundaries of TADs and are involved in their formation. TAD boundaries as well as with the transcription CCCTC-binding factors (CTCFs) are more frequently ob- factors (TFs) Zinc finger protein (ZNF)143 and Yin served at TAD boundaries than in other regions, as are Yang (YY)1. TAD boundary-associated genomic ele- transcription starting sites (TSSs) of housekeeping (HK) ments include DNase I-hypersensitive sites, H3K36 genes and histone modifications such as H3K36 trimethy- trimethylation, TSSs, RNA polymerase II, and TFs lation (H3K36me3) (10). In fact, CTCF-binding sites are such as Specificity protein 1, ZNF274 and SIX home- key features of TAD boundaries since they can interact with obox 5. Computational modeling with these genomic CTCF-binding sites of another TAD boundary and thereby elements suggests that they have distinct roles in segregate the activities of adjacent TADs in association with cohesin complexes (6). However, given that CTCF- TAD boundary formation. We propose a structural binding sites are frequently found outside the TAD bound- model of TAD boundaries based on these findings ary, these sites are not in themselves sufficient to demar- that provides a basis for studying the mechanism of cate TADs. Hence, in one of previous studies, histone mod- chromatin structure formation and gene regulation. ification marks were incorporated into the prediction of TAD boundaries along with CTCF-binding sites (11). One INTRODUCTION other previous study examining the association between 76 The human genome is tightly packed into the cell nucleus, DNA-binding proteins and chromatin loop anchors located and yet is readily accessible to other cellular components at the ends of contact domains found that the transcrip- for the maintenance of cellular activity and response to ex- tion factors (TFs) Zinc finger protein (ZNF)143 and Yin ternal signals. The physical structure of the genome respon- Yang (YY)1 were enriched at TADs (6); the enrichment of sible for this apparent paradox has been sought for a long ZNF143 at TADs was later confirmed by another group time. Biochemical and microscopic studies revealed that the (12). However, these studies did not systematically search genome has different levels of organization, including nu- for genomic elements associated with TAD boundaries nor cleosomes, chromatin domains, and chromosome territories did they evaluate their predictive power. The predictabil- (1–3). Recent advances in chromatin conformation capture ity measure could clarify the association between genomic techniques have enabled detailed examination of genomic elements and TAD boundaries, since it takes into account structures; it was suggested that the human genome has a both coverage and data enrichment. For example, TSSs of fractal-like architecture in which the small local structural HK genes are the most highly enriched genomic element *To whom correspondence should be addressed. Tel: +82 42 350 4317; Fax: +82 42 350 4310; Email: [email protected] C The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected] 10404 Nucleic Acids Research, 2017, Vol. 45, No. 18 at TAD boundaries, but have weak predictive power since transcription factor binding site peaks from multiple exper- they are present in only a small fraction of TAD boundaries. iments in various cell lines (wgEncodeRegTfbsClusteredV3 Conversely, CTCF binding sites are good predictors of the table). TF signals obtained from the H1-human embry- boundaries though they are not particularly enriched at the onic stem cell (hESC) cell line were separately considered boundaries than other genomic elements. in order to evaluate the cell type dependency of the TAD In the present study, we investigated the association be- structure. Non-TFBS signals such as locations of DNase I- tween TAD boundaries and various genomic elements in- hypersensitive sites and TSSs were also retrieved from the cluding TF-binding sites (TFBSs), TSSs, histone modifi- UCSC Genome Browser (13) and were tagged as ‘Other’. cations, and DNase I-hypersensitive sites. We first identi- The full list of data used in this study is shown in Sup- fied genomic elements that are enriched at TAD bound- plementary Table S3. TSSs were divided into three groups: aries. We then employed machine-learning methodology to TSSs of mRNA (TSS), TSSs of mRNA and non-coding determine those that are important for accurately predict- RNAs (TSS-ALL), and TSSs of HK genes (TSS-HK). HK ing TAD boundaries (Figure 1). We confirmed that con- genes were identified from a previously published list (15). sensus CTCF-binding sites present in multiple cell lines The center of each signal was taken as its genomic location; were better predictors of TAD boundaries, and were as- for example, a CTCF peak located at 16 110–16 390 on chro- sociated with TFs such as ZNF143. We also searched for mosome 1 was assumed to be at 16 250. genomic elements that represent the structural characteris- tic of TAD boundaries by measuring their enrichment at Analysis of consensus CTCF-binding sites and their ability to predict these boundaries, and identi- fied TAD boundary-associated genomic elements such as We found that genomic elements associated with consen- ZNF143, YY1, MYC complexes, Specificity protein (SP)1, sus CTCF-binding sites occupied a narrower region, and we ± ZNF274 and SIX homeobox (SIX)5 as well as DNase I- therefore reduced the range of analysis to 15 kb. Consen- hypersensitive sites, H3K36me3 and TSSs. We generated a sus CTCF-binding sites were defined as signals with a peak ≥ predictive model based on these genomic elements and ana- score 600 and supported by 60 or more experiments. lyzed their localization at specific sites in the TAD. Our find- ings reveal a number of novel TAD boundary-associated Position-specific linear model (PSLM) genomic elements whose functions can provide insight into To evaluate the predictive power of each genomic element, the mechanisms of gene regulation. we devised a computational model, PSLM, that considers both position and density of genomic elements in genomic MATERIALS AND METHODS segments and classifies them into boundaries or TADs. In the model, the analyzed segments––of boundaries or TADs and boundaries TADs––were divided into 11 bins and the number of each A total of 2994 TADs with a length >200 kb were selected genomic element in each bin was counted, which are used as from 3062 previously defined TADs (10). The meeting ends 11D feature vectors that represent the positional preference of two adjacent TADs were designated as a boundary.When of the genomic element around the boundary or the TAD. there was a gap between the two ends, these were merged For each genomic element, boundary and TAD segments into a boundary if the spacing was <100 kb. There were were converted into feature vectors, and a predictive model 1254 gapped cases, of which 718 were merged. Ultimately, that segregated boundary and TAD feature vectors was gen- 3586 boundaries were analyzed in this study. The genomic erated. A linear model was developed using the Bayesian locations of TADs and boundaries are shown in Supple- Ridge method (16), which resembles linear regression but mentary Tables S1 and S2. eliminates abnormally
Recommended publications
  • 2017.08.28 Anne Barry-Reidy Thesis Final.Pdf
    REGULATION OF BOVINE β-DEFENSIN EXPRESSION THIS THESIS IS SUBMITTED TO THE UNIVERSITY OF DUBLIN FOR THE DEGREE OF DOCTOR OF PHILOSOPHY 2017 ANNE BARRY-REIDY SCHOOL OF BIOCHEMISTRY & IMMUNOLOGY TRINITY COLLEGE DUBLIN SUPERVISORS: PROF. CLIONA O’FARRELLY & DR. KIERAN MEADE TABLE OF CONTENTS DECLARATION ................................................................................................................................. vii ACKNOWLEDGEMENTS ................................................................................................................... viii ABBREVIATIONS ................................................................................................................................ix LIST OF FIGURES............................................................................................................................. xiii LIST OF TABLES .............................................................................................................................. xvii ABSTRACT ........................................................................................................................................xix Chapter 1 Introduction ........................................................................................................ 1 1.1 Antimicrobial/Host-defence peptides ..................................................................... 1 1.2 Defensins................................................................................................................. 1 1.3 β-defensins .............................................................................................................
    [Show full text]
  • Genome-Wide Inference of Natural Selection on Human Transcription Factor Binding Sites
    ANALYSIS Genome-wide inference of natural selection on human transcription factor binding sites Leonardo Arbiza1, Ilan Gronau1, Bulent A Aksoy2, Melissa J Hubisz1, Brad Gulko3, Alon Keinan1–3 & Adam Siepel1–3 For decades, it has been hypothesized that gene regulation persistence in humans7,8. In addition, some genome-wide analyses has had a central role in human evolution, yet much remains have found bulk statistical evidence of natural selection in noncoding unknown about the genome-wide impact of regulatory regions near genes, presumably due to cis-regulatory elements9–12. mutations. Here we use whole-genome sequences and genome- Nevertheless, evidence in support of the overall prominence of wide chromatin immunoprecipitation and sequencing data to cis-regulatory mutations in evolutionary adaptation remains largely demonstrate that natural selection has profoundly influenced anecdotal and indirect, and there is continuing controversy about the human transcription factor binding sites since the divergence relative roles of regulatory and protein-coding sequences in evolu- of humans from chimpanzees 4–6 million years ago. Our tion8. Large-scale genomic studies of the evolution of transcription analysis uses a new probabilistic method, called INSIGHT, for factor binding sites have the potential to advance this debate, but a measuring the influence of selection on collections of short, major limitation of such studies so far has been a lack of precisely interspersed noncoding elements. We find that, on average, annotated binding sites across the genome. The analysis of con- transcription factor binding sites have experienced somewhat served noncoding sequences and/or promoter regions rather than weaker selection than protein-coding genes.
    [Show full text]
  • Accompanies CD8 T Cell Effector Function Global DNA Methylation
    Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer, Benjamin G. Barwick, Benjamin A. Youngblood, Rafi Ahmed and Jeremy M. Boss This information is current as of October 1, 2021. J Immunol 2013; 191:3419-3429; Prepublished online 16 August 2013; doi: 10.4049/jimmunol.1301395 http://www.jimmunol.org/content/191/6/3419 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130139 Material 5.DC1 References This article cites 81 articles, 25 of which you can access for free at: http://www.jimmunol.org/content/191/6/3419.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on October 1, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Global DNA Methylation Remodeling Accompanies CD8 T Cell Effector Function Christopher D. Scharer,* Benjamin G. Barwick,* Benjamin A. Youngblood,*,† Rafi Ahmed,*,† and Jeremy M.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Supplementary Data
    SUPPLEMENTARY DATA A cyclin D1-dependent transcriptional program predicts clinical outcome in mantle cell lymphoma Santiago Demajo et al. 1 SUPPLEMENTARY DATA INDEX Supplementary Methods p. 3 Supplementary References p. 8 Supplementary Tables (S1 to S5) p. 9 Supplementary Figures (S1 to S15) p. 17 2 SUPPLEMENTARY METHODS Western blot, immunoprecipitation, and qRT-PCR Western blot (WB) analysis was performed as previously described (1), using cyclin D1 (Santa Cruz Biotechnology, sc-753, RRID:AB_2070433) and tubulin (Sigma-Aldrich, T5168, RRID:AB_477579) antibodies. Co-immunoprecipitation assays were performed as described before (2), using cyclin D1 antibody (Santa Cruz Biotechnology, sc-8396, RRID:AB_627344) or control IgG (Santa Cruz Biotechnology, sc-2025, RRID:AB_737182) followed by protein G- magnetic beads (Invitrogen) incubation and elution with Glycine 100mM pH=2.5. Co-IP experiments were performed within five weeks after cell thawing. Cyclin D1 (Santa Cruz Biotechnology, sc-753), E2F4 (Bethyl, A302-134A, RRID:AB_1720353), FOXM1 (Santa Cruz Biotechnology, sc-502, RRID:AB_631523), and CBP (Santa Cruz Biotechnology, sc-7300, RRID:AB_626817) antibodies were used for WB detection. In figure 1A and supplementary figure S2A, the same blot was probed with cyclin D1 and tubulin antibodies by cutting the membrane. In figure 2H, cyclin D1 and CBP blots correspond to the same membrane while E2F4 and FOXM1 blots correspond to an independent membrane. Image acquisition was performed with ImageQuant LAS 4000 mini (GE Healthcare). Image processing and quantification were performed with Multi Gauge software (Fujifilm). For qRT-PCR analysis, cDNA was generated from 1 µg RNA with qScript cDNA Synthesis kit (Quantabio). qRT–PCR reaction was performed using SYBR green (Roche).
    [Show full text]
  • Detecting Global in Uence of Transcription
    Detecting global inuence of transcription factor interactions on gene expression in lymphoblastoid cells using neural network models Neel Patel Case Western Reserve University William S. Bush ( [email protected] ) Case Western Reserve University Research Article Keywords: Transcription factors, Gene expression, Machine learning, Neural network, Chromatin-looping, Regulatory module, Multi-omics Posted Date: April 15th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-406028/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Detecting global influence of transcription factor interactions on gene expression in lymphoblastoid cells using neural network models. Neel Patel1,2 and William S. Bush2* 1Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA. 2Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.*-corresponding author(email:[email protected]) Abstract Background Transcription factor(TF) interactions are known to regulate target gene(TG) expression in eukaryotes via TF regulatory modules(TRMs). Such interactions can be formed due to co- localizing TFs binding proximally to each other in the DNA sequence or over long distances between distally binding TFs via chromatin looping. While the former type of interaction has been characterized extensively, long distance TF interactions are still largely understudied. Furthermore, most prior approaches have focused on characterizing physical TF interactions without accounting for their effects on TG expression regulation. Understanding TRM based TG expression regulation could aid in understanding diseases caused by disruptions to these mechanisms. In this paper, we present a novel neural network based TRM detection approach that consists of using multi-omics TF based regulatory mechanism information to generate features for building non-linear multilayer perceptron TG expression prediction models in the GM12878 immortalized lymphoblastoid cells.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Transcriptome Analysis of Complex I-Deficient Patients Reveals Distinct
    van der Lee et al. BMC Genomics (2015) 16:691 DOI 10.1186/s12864-015-1883-8 RESEARCH ARTICLE Open Access Transcriptome analysis of complex I-deficient patients reveals distinct expression programs for subunits and assembly factors of the oxidative phosphorylation system Robin van der Lee1†, Radek Szklarczyk1,2†, Jan Smeitink3,HubertJMSmeets4, Martijn A. Huynen1 and Rutger Vogel3* Abstract Background: Transcriptional control of mitochondrial metabolism is essential for cellular function. A better understanding of this process will aid the elucidation of mitochondrial disorders, in particular of the many genetically unsolved cases of oxidative phosphorylation (OXPHOS) deficiency. Yet, to date only few studies have investigated nuclear gene regulation in the context of OXPHOS deficiency. In this study we performed RNA sequencing of two control and two complex I-deficient patient cell lines cultured in the presence of compounds that perturb mitochondrial metabolism: chloramphenicol, AICAR, or resveratrol. We combined this with a comprehensive analysis of mitochondrial and nuclear gene expression patterns, co-expression calculations and transcription factor binding sites. Results: Our analyses show that subsets of mitochondrial OXPHOS genes respond opposingly to chloramphenicol and AICAR, whereas the response of nuclear OXPHOS genes is less consistent between cell lines and treatments. Across all samples nuclear OXPHOS genes have a significantly higher co-expression with each other than with other genes, including those encoding mitochondrial proteins. We found no evidence for complex-specific mRNA expression regulation: subunits of different OXPHOS complexes are similarly (co-)expressed and regulated by a common set of transcription factors. However, we did observe significant differences between the expression of nuclear genes for OXPHOS subunits versus assembly factors, suggesting divergent transcription programs.
    [Show full text]
  • Supporting Information
    Supporting Information Rangel et al. 10.1073/pnas.1613859113 SI Materials and Methods genes were identified, and the microarray data were used to Tumor Xenograft Studies. Female 6- to 7-wk-old Crl:NU(NCr)- determine the closest intrinsic subtype centroid for each sample, Foxn1nu mice were purchased from Charles River Laboratories. based on Spearman correlation using logged mean-centered Mammary fat pad injections into athymic nude mice were per- expression data. To estimate cellular proliferation, a “gene formed using 3 × 106 cells (HCC70, HCC1954, MDA-MB-468, and proliferation signature” (32) was used to generate a proliferation MDA-MB-231). The human cancer cells were resuspended in score for each sample. Briefly, using the logged expression data 100 μL of a 1:1 mix of PBS and matrigel (TREVIGEN). For for a subset of proliferation-related genes, singular value de- HCC1569 human breast cancer cells, we injected 4 × 106 cells in composition was used to produce a “proliferation metagene,” 100 μL of a 1:1 mix of PBS and matrigel. Injections were done which was then scaled to generate a score between 0 and 1, with into the fourth mammary gland. Tumors were measured using a a higher score denoting an increased level of proliferation rela- digital caliper, and the tumor volume was calculated using the tive to samples with lower scores. following formula: volume (mm3) = width × length/2. At the end of the experiment, tumor tissues were sectioned for fixation Human Data. Data from a combined cohort of 2,116 breast tumors (10% formalin or 4% paraformaldehyde) and RNA isolation.
    [Show full text]
  • Integration of 198 Chip-Seq Datasets Reveals Human Cis-Regulatory Regions
    Integration of 198 ChIP-seq datasets reveals human cis-regulatory regions Hamid Bolouri & Larry Ruzzo Thanks to Stephen Tapscott, Steven Henikoff & Zizhen Yao Slides will be available from: http://labs.fhcrc.org/bolouri/ Email [email protected] for manuscript (Bolouri & Ruzzo, submitted) Kleinjan & van Heyningen, Am. J. Hum. Genet., 2005, (76)8–32 Epstein, Briefings in Func. Genom. & Protemoics, 2009, 8(4)310-16 Regulation of SPi1 (Sfpi1, PU.1 protein) expression – part 1 miR155*, miR569# ~750nt promoter ~250nt promoter The antisense RNA • causes translational stalling • has its own promoter • requires distal SPI1 enhancer • is transcribed with/without SPI1. # Hikami et al, Arthritis & Rheumatism, 2011, 63(3):755–763 * Vigorito et al, 2007, Immunity 27, 847–859 Ebralidze et al, Genes & Development, 2008, 22: 2085-2092. Regulation of SPi1 expression – part 2 (mouse coordinates) Bidirectional ncRNA transcription proportional to PU.1 expression PU.1/ELF1/FLI1/GLI1 GATA1 GATA1 Sox4/TCF/LEF PU.1 RUNX1 SP1 RUNX1 RUNX1 SP1 ELF1 NF-kB SATB1 IKAROS PU.1 cJun/CEBP OCT1 cJun/CEBP 500b 500b 500b 500b 500b 750b 500b -18Kb -14Kb -12Kb -10Kb -9Kb Chou et al, Blood, 2009, 114: 983-994 Hoogenkamp et al, Molecular & Cellular Biology, 2007, 27(21):7425-7438 Zarnegar & Rothenberg, 2010, Mol. & cell Biol. 4922-4939 An NF-kB binding-site variant in the SPI1 URE reduces PU.1 expression & is GGGCCTCCCC correlated with AML GGGTCTTCCC Bonadies et al, Oncogene, 2009, 29(7):1062-72. SATB1 binding site A distal single nucleotide polymorphism alters long- range regulation of the PU.1 gene in acute myeloid leukemia Steidl et al, J Clin Invest.
    [Show full text]
  • Transcriptional and Post-Transcriptional Regulation of ATP-Binding Cassette Transporter Expression
    Transcriptional and Post-transcriptional Regulation of ATP-binding Cassette Transporter Expression by Aparna Chhibber DISSERTATION Submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Pharmaceutical Sciences and Pbarmacogenomies in the Copyright 2014 by Aparna Chhibber ii Acknowledgements First and foremost, I would like to thank my advisor, Dr. Deanna Kroetz. More than just a research advisor, Deanna has clearly made it a priority to guide her students to become better scientists, and I am grateful for the countless hours she has spent editing papers, developing presentations, discussing research, and so much more. I would not have made it this far without her support and guidance. My thesis committee has provided valuable advice through the years. Dr. Nadav Ahituv in particular has been a source of support from my first year in the graduate program as my academic advisor, qualifying exam committee chair, and finally thesis committee member. Dr. Kathy Giacomini graciously stepped in as a member of my thesis committee in my 3rd year, and Dr. Steven Brenner provided valuable input as thesis committee member in my 2nd year. My labmates over the past five years have been incredible colleagues and friends. Dr. Svetlana Markova first welcomed me into the lab and taught me numerous laboratory techniques, and has always been willing to act as a sounding board. Michael Martin has been my partner-in-crime in the lab from the beginning, and has made my days in lab fly by. Dr. Yingmei Lui has made the lab run smoothly, and has always been willing to jump in to help me at a moment’s notice.
    [Show full text]
  • Virtual Chip-Seq: Predicting Transcription Factor Binding
    bioRxiv preprint doi: https://doi.org/10.1101/168419; this version posted March 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Virtual ChIP-seq: predicting transcription factor binding 2 by learning from the transcriptome 1,2,3 1,2,3,4,5 3 Mehran Karimzadeh and Michael M. Hoffman 1 4 Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada 2 5 Princess Margaret Cancer Centre, Toronto, ON, Canada 3 6 Vector Institute, Toronto, ON, Canada 4 7 Department of Computer Science, University of Toronto, Toronto, ON, Canada 5 8 Lead contact: michael.hoff[email protected] 9 March 8, 2019 10 Abstract 11 Motivation: 12 Identifying transcription factor binding sites is the first step in pinpointing non-coding mutations 13 that disrupt the regulatory function of transcription factors and promote disease. ChIP-seq is 14 the most common method for identifying binding sites, but performing it on patient samples is 15 hampered by the amount of available biological material and the cost of the experiment. Existing 16 methods for computational prediction of regulatory elements primarily predict binding in genomic 17 regions with sequence similarity to known transcription factor sequence preferences. This has limited 18 efficacy since most binding sites do not resemble known transcription factor sequence motifs, and 19 many transcription factors are not even sequence-specific. 20 Results: 21 We developed Virtual ChIP-seq, which predicts binding of individual transcription factors in new 22 cell types using an artificial neural network that integrates ChIP-seq results from other cell types 23 and chromatin accessibility data in the new cell type.
    [Show full text]