Identification and Evaluation of Biomarkers for the Detection of Bladder Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calcium-Induced Conformational Changes in the Regulatory Domain of the Human Mitochondrial ATP-Mg/Pi Carrier
Biochimica et Biophysica Acta 1847 (2015) 1245–1253 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Calcium-induced conformational changes in the regulatory domain of the human mitochondrial ATP-Mg/Pi carrier Steven P.D. Harborne, Jonathan J. Ruprecht, Edmund R.S. Kunji ⁎ The Medical Research Council, Mitochondrial Biology Unit, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK article info abstract Article history: The mitochondrial ATP-Mg/Pi carrier imports adenine nucleotides from the cytosol into the mitochondrial matrix Received 24 April 2015 and exports phosphate. The carrier is regulated by the concentration of cytosolic calcium, altering the size of the Received in revised form 15 June 2015 adenine nucleotide pool in the mitochondrial matrix in response to energetic demands. The protein consists of Accepted 6 July 2015 three domains; (i) the N-terminal regulatory domain, which is formed of two pairs of fused calcium-binding EF- Available online 9 July 2015 hands, (ii) the C-terminal mitochondrial carrier domain, which is involved in transport, and (iii) a linker region α Keywords: with an amphipathic -helix of unknown function. The mechanism by which calcium binding to the regulatory do- Calcium regulation mechanism main modulates substrate transport in the carrier domain has not been resolved. Here, we present two new crystal EF-hand conformational change structures of the regulatory domain of the human isoform 1. Careful analysis by SEC confirmed that although the SCaMC regulatory domain crystallised as dimers, full-length ATP-Mg/Pi carrier is monomeric. Therefore, the ATP-Mg/Pi Adenine nucleotide translocase carrier must have a different mechanism of calcium regulation than the architecturally related aspartate/glutamate Regulation of adenine nucleotides carrier, which is dimeric. -
TESIS DOCTORAL: Lazarillo And
FACULTAD DE MEDICINA DEPARTAMENTO DE BIOQUÍMICA Y BIOLOGÍA MOLECULAR Y FISIOLOGÍA TESIS DOCTORAL: Lazarillo and related Lipocalins: ligands and functions Presentada por MARIO RUIZ GARCIA para optar al grado de Doctor por la Universidad de Valladolid Dirigida por: Dra. María Dolores Ganfornina Álvarez Dr. Diego Sánchez Romero Impreso 2T AUTORIZACIÓN DEL DIRECTOR DE TESIS (Art. 2.1. c de la Normativa para la presentación y defensa de la Tesis Doctoral en la UVa) D. Diego Sánchez Romero, con D.N.I. nº29759524P, profesor del departamento de Bioquímica y Biología Molecular y Fisiología, y Dª. María Dolores Ganfornina Álvarez, con D.N.I. nº28873307G, profesora del departamento de Bioquímica y Biología Molecular y Fisiología, como Directores de la Tesis Doctoral titulada “Lazarillo and related Lipocalins: ligands and functions”, presentada por D. Mario Ruiz Garcia, alumno del programa de Investigación Biomédica impartido por el departamento de Bioquímica y Biología Molecular y Fisiología: Autorizan la presentación de la misma, considerando que el candidato ha superado el nivel de formación necesario para aspirar al Título de Doctor con Mención Internacional por la Universidad de Valladolid, mediante la realización de un proyecto de investigación original en el que su contribución abarca desde el diseño de las preguntas científicas y el diseño y ejecución de los experimentos, hasta la presentación en diversos formatos (escritura de trabajos para publicación y presentaciones en congresos) de los resultados para su difusión a la comunidad científica. Valladolid, 28 de Febrero de 2013 La Directora de la Tesis, El Director de la Tesis, Fdo.: María Dolores Ganfornina Álvarez Fdo.: Diego Sánchez Romero INDEX 1. -
Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed. -
Transcriptomic and Proteomic Profiling Provides Insight Into
BASIC RESEARCH www.jasn.org Transcriptomic and Proteomic Profiling Provides Insight into Mesangial Cell Function in IgA Nephropathy † † ‡ Peidi Liu,* Emelie Lassén,* Viji Nair, Celine C. Berthier, Miyuki Suguro, Carina Sihlbom,§ † | † Matthias Kretzler, Christer Betsholtz, ¶ Börje Haraldsson,* Wenjun Ju, Kerstin Ebefors,* and Jenny Nyström* *Department of Physiology, Institute of Neuroscience and Physiology, §Proteomics Core Facility at University of Gothenburg, University of Gothenburg, Gothenburg, Sweden; †Division of Nephrology, Department of Internal Medicine and Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan; ‡Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan; |Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden; and ¶Integrated Cardio Metabolic Centre, Karolinska Institutet Novum, Huddinge, Sweden ABSTRACT IgA nephropathy (IgAN), the most common GN worldwide, is characterized by circulating galactose-deficient IgA (gd-IgA) that forms immune complexes. The immune complexes are deposited in the glomerular mesangium, leading to inflammation and loss of renal function, but the complete pathophysiology of the disease is not understood. Using an integrated global transcriptomic and proteomic profiling approach, we investigated the role of the mesangium in the onset and progression of IgAN. Global gene expression was investigated by microarray analysis of the glomerular compartment of renal biopsy specimens from patients with IgAN (n=19) and controls (n=22). Using curated glomerular cell type–specific genes from the published literature, we found differential expression of a much higher percentage of mesangial cell–positive standard genes than podocyte-positive standard genes in IgAN. Principal coordinate analysis of expression data revealed clear separation of patient and control samples on the basis of mesangial but not podocyte cell–positive standard genes. -
Recombinant Human Lipocalin-1 Protein Catalog Number: ATGP2816
Recombinant human Lipocalin-1 protein Catalog Number: ATGP2816 PRODUCT INPORMATION Expression system E.coli Domain 19-176aa UniProt No. P31025 NCBI Accession No. NP_001239546 Alternative Names Lipocalin-1, PMFA, TLC, TP, VEGP PRODUCT SPECIFICATION Molecular Weight 20.1 kDa (183aa) confirmed by MALDI-TOF Concentration 1mg/ml (determined by Bradford assay) Formulation Liquid in. Phosphate-Buffered Saline (pH 7.4) containing 10% glycerol, 1mM DTT Purity > 90% by SDS-PAGE Tag His-Tag Application SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND Description LCN1 is a member of the lipocalin family of small secretory proteins. Lipocalins are extracellular transport proteins that bind to a variety of hydrophobic ligands. This protein is the primary lipid binding protein in tears and is overproduced in response to multiple stimuli including infection and stress. It may be a marker for chromosome aneuploidy as well as an autoantigen in Sjogren's syndrome. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene, and two pseudogenes of this gene are also located on the long arm of chromosome 9. Recombinant human LCN1 protein, fused to His-tag at N- 1 Recombinant human Lipocalin-1 protein Catalog Number: ATGP2816 terminus, was expressed in E. coli and purified by using conventional chromatography techniques. Amino acid Sequence MGSSHHHHHH SSGLVPRGSH MGSHMHHLLA SDEEIQDVSG TWYLKAMTVD REFPEMNLES VTPMTLTTLE GGNLEAKVTM LISGRCQEVK AVLEKTDEPG KYTADGGKHV AYIIRSHVKD HYIFYCEGEL HGKPVRGVKL VGRDPKNNLE ALEDFEKAAG ARGLSTESIL IPRQSETCSP GSD General References Dartt DA. (2011), Ocul Surf. -
In This Table Protein Name, Uniprot Code, Gene Name P-Value
Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2- -
RNA-Seq Analysis for Assessing the Early Response to DSP Toxins in Mytilus Galloprovincialis Digestive Gland and Gill
toxins Article RNA-Seq Analysis for Assessing the Early Response to DSP Toxins in Mytilus galloprovincialis Digestive Gland and Gill María Verónica Prego-Faraldo, Luisa Martínez * and Josefina Méndez Grupo Xenomar, Departamento de Bioloxía, Facultade de Ciencias and CICA (Centro de Investigacións Científicas Avanzadas), Universidade da Coruña, Campus de A Zapateira, 15071 A Coruña, Spain; [email protected] (M.V.P.-F.); josefi[email protected] (J.M.) * Correspondence: [email protected]; Tel.: +34-981-167000-2030; Fax: +34-981-167065 Received: 5 September 2018; Accepted: 13 October 2018; Published: 16 October 2018 Abstract: The harmful effects of diarrhetic shellfish poisoning (DSP) toxins on mammalian cell lines have been widely assessed. Studies in bivalves suggest that mussels display a resistance to the cytogenotoxic effects of DSP toxins. Further, it seems that the bigger the exposure, the more resistant mussels become. To elucidate the early genetic response of mussels against these toxins, the digestive gland and the gill transcriptomes of Mytilus galloprovincialis after Prorocentrum lima exposure (100,000 cells/L, 48 h) were de novo assembled based on the sequencing of 8 cDNA libraries obtained using an Illumina HiSeq 2000 platform. The assembly provided 95,702 contigs. A total of 2286 and 4523 differentially expressed transcripts were obtained in the digestive gland and the gill, respectively, indicating tissue-specific transcriptome responses. These transcripts were annotated and functionally enriched, showing 44 and 60 significant Pfam families in the digestive gland and the gill, respectively. Quantitative PCR (qPCR) was performed to validate the differential expression patterns of several genes related to lipid and carbohydrate metabolism, energy production, genome integrity and defense, suggesting their participation in the protective mechanism. -
Identification of Biomarkers of Metastatic Disease in Uveal
Identification of biomarkers of metastatic disease in uveal melanoma using proteomic analyses Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy Martina Angi June 2015 To Mario, the wind beneath my wings 2 Acknowledgments First and foremost, I would like to acknowledge my primary supervisor, Prof. Sarah Coupland, for encouraging me to undergo a PhD and for supporting me in this long journey. I am truly grateful to Dr Helen Kalirai for being the person I could always turn to, for a word of advice on cell culture as much as on parenting skills. I would also like to acknowledge Prof. Bertil Damato for being an inspiration and a mentor; and Dr Sarah Lake and Dr Joseph Slupsky for their precious advice. I would like to thank Dawn, Haleh, Fidan and Fatima for becoming my family away from home, and the other members of the LOORG for the fruitful discussions and lovely cakes. I would like to acknowledge Prof. Heinrich Heimann and the clinical team at LOOC, especially Sisters Hebbar, Johnston, Hachuela and Kaye, for their admirable dedication to UM patients and for their invaluable support to clinical research. I would also like to thank the members of staff in St Paul’s theatre and Simon Biddolph and Anna Ikin in Pathology for their precious help in sample collection. I am grateful to Dr Rosalind Jenkins who guided my first steps in the mysterious word of proteomics, and to Dr Deb Simpsons and Prof. Rob Beynon for showing me its beauty. -
Rare Variants and Loci for Age-Related Macular Degeneration in The
Human Genetics (2019) 138:1171–1182 https://doi.org/10.1007/s00439-019-02050-4 ORIGINAL INVESTIGATION Rare variants and loci for age‑related macular degeneration in the Ohio and Indiana Amish Andrea R. Waksmunski1,2,3 · Robert P. Igo Jr.3 · Yeunjoo E. Song3 · Jessica N. Cooke Bailey2,3 · Renee Laux3 · Denise Fuzzell3 · Sarada Fuzzell3 · Larry D. Adams4 · Laura Caywood4 · Michael Prough4 · Dwight Stambolian5 · William K. Scott4 · Margaret A. Pericak‑Vance4 · Jonathan L. Haines1,2,3 Received: 27 April 2019 / Accepted: 21 July 2019 / Published online: 31 July 2019 © The Author(s) 2019 Abstract Age-related macular degeneration (AMD) is a leading cause of blindness in the world. While dozens of independent genomic variants are associated with AMD, about one-third of AMD heritability is still unexplained. To identify novel variants and loci for AMD, we analyzed Illumina HumanExome chip data from 87 Amish individuals with early or late AMD, 79 unafected Amish individuals, and 15 related Amish individuals with unknown AMD afection status. We retained 37,428 polymorphic autosomal variants across 175 samples for association and linkage analyses. After correcting for multiple testing (n = 37,428), we identifed four variants signifcantly associated with AMD: rs200437673 (LCN9, p = 1.50 × 10−11), rs151214675 (RTEL1, p = 3.18 × 10−8), rs140250387 (DLGAP1, p = 4.49 × 10−7), and rs115333865 (CGRRF1, p = 1.05 × 10−6). These variants have not been previously associated with AMD and are not in linkage disequilibrium with the 52 known AMD-associated variants reported by the International AMD Genomics Consortium based on physical distance. Genome-wide signifcant linkage peaks were observed on chromosomes 8q21.11–q21.13 (maximum recessive HLOD = 4.03) and 18q21.2–21.32 (maximum dominant HLOD = 3.87; maximum recessive HLOD = 4.27). -
The Repertoire of Serous Ovarian Cancer Non-Genetic Heterogeneity Revealed by Single-Cell Sequencing of Normal Fallopian Tube Ep
bioRxiv preprint doi: https://doi.org/10.1101/672626; this version posted June 17, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. The repertoire of serous ovarian cancer non-genetic heterogeneity revealed by single-cell sequencing of normal fallopian tube epithelial cells Zhiyuan Hu, 1,2,3 Mara Artibani, 1,2,4,9 Abdulkhaliq Alsaadi, 1,2,9 Nina Wietek, 1,2 Matteo Morotti, 1,2,5 Laura Santana Gonzalez, 1,2 Salma El-Sahhar, 1,2 Mohammad KaramiNejadRanjbar, 1,2 Garry Mallett, 1,2 Tingyan Shi, 1,2 Kenta Masuda, 1,2 Yiyan Zheng, 1,2 Kay Chong, 1,2 Stephen Damato, 6 Sunanda Dhar, 6 Riccardo Garruto Campanile, 5 Hooman Soleymani majd, 5 Vincenzo Cerundolo, 7 Tatjana Sauka- Spengler, 4 Christopher Yau 8,* and Ahmed A. Ahmed 1,2,5,10,* 1 Ovarian Cancer Cell Laboratory, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK 2 Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, OX3 9DU, UK 3 Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK 4 Gene Regulatory Networks in Development and Disease Laboratory, Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DS, UK 5 Department of Gynecological Oncology, Churchill Hospital, Oxford University, Oxford, OX3 7LE, UK 6 Department of Histopathology, Oxford University Hospitals, Oxford OX3 9DU, UK 7 Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK 8 Centre for Computational Biology, University of Birmingham, Birmingham, B15 2TT, UK 9 These authors contributed equally 10 Lead Contact * Correspondence: [email protected] (A.A.A), [email protected] (C.Y) 1 bioRxiv preprint doi: https://doi.org/10.1101/672626; this version posted June 17, 2019. -
Multiple Roles of Secretory Lipocalins (Mup, Obp) in Mice
Folia Zool. – 58 (Suppl. 1): 29–40 (2009) Multiple roles of secretory lipocalins (Mup, Obp) in mice Romana STOPKOVÁ1, Denisa HLADOVCOVÁ1, Juraj KOKAVEC2, Daniel VYORAL2 and Pavel STOPKA1,3* 1 Department of Zoology, Faculty of Science, Charles University, Prague, Viničná 7, Prague, 128 44, Czech Republic; e-mail: [email protected] 2 Pathological Physiology and Center of Experimental Hematology, First Faculty of Medicine, Charles University in Prague, Czech Republic 3 Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Rumburska 89, 277 21 Libechov, Czech Republic Received 1 December 2008; Accepted 1 April 2009 Abstract. Many biological processes involve globular transport proteins belonging to a family called lipocalins. The prominent feature in lipocalin structure is their specific tertiary conformation forming eight-stranded beta barrel with capacity to bind various ligands inside. The importance of lipocalins is evident from the list of vital substances (hydrophobic ligands including vitamin A, steroids, bilins, lipids, pheromones etc.) that these proteins transport and from their high expression levels in various tissues. Among wide spectrum of lipocalins, Major Urinary Proteins (Mup) and Odorant Binding Proteins (Obp) are well known for their capacity to bind and carry odorants / pheromones and have been studied to detail in various mammalian models including mice, rats, and hamsters. However, many lipocalins (also including Mups) have previously been described with respect to their protective function in mammalian organism where they transport potentially harmful molecules to a degradation site (e.g. lysozomes) or straight out of the body. As most of lipocalins share similar tertiary structure, their potential role in both transport and excretion processes may be additive or complementary. -
(LCN) Gene Family, Including Evidence the Mouse Mup Cluster Is Result of an “Evolutionary Bloom” Georgia Charkoftaki1, Yewei Wang1, Monica Mcandrews2, Elspeth A
Charkoftaki et al. Human Genomics (2019) 13:11 https://doi.org/10.1186/s40246-019-0191-9 REVIEW Open Access Update on the human and mouse lipocalin (LCN) gene family, including evidence the mouse Mup cluster is result of an “evolutionary bloom” Georgia Charkoftaki1, Yewei Wang1, Monica McAndrews2, Elspeth A. Bruford3, David C. Thompson4, Vasilis Vasiliou1* and Daniel W. Nebert5 Abstract Lipocalins (LCNs) are members of a family of evolutionarily conserved genes present in all kingdoms of life. There are 19 LCN-like genes in the human genome, and 45 Lcn-like genes in the mouse genome, which include 22 major urinary protein (Mup)genes.TheMup genes, plus 29 of 30 Mup-ps pseudogenes, are all located together on chromosome (Chr) 4; evidence points to an “evolutionary bloom” that resulted in this Mup cluster in mouse, syntenic to the human Chr 9q32 locus at which a single MUPP pseudogene is located. LCNs play important roles in physiological processes by binding and transporting small hydrophobic molecules —such as steroid hormones, odorants, retinoids, and lipids—in plasma and other body fluids. LCNs are extensively used in clinical practice as biochemical markers. LCN-like proteins (18–40 kDa) have the characteristic eight β-strands creating a barrel structure that houses the binding-site; LCNs are synthesized in the liver as well as various secretory tissues. In rodents, MUPs are involved in communication of information in urine-derived scent marks, serving as signatures of individual identity, or as kairomones (to elicit fear behavior). MUPs also participate in regulation of glucose and lipid metabolism via a mechanism not well understood.