Halogenoalkanes:Substitution and Elimination Reactions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Evaluating the Acute and Chronic Toxicity of Potassium Carbonate and the Interactive Effects Between Sodium and Potassium on Rainbow Trout (Oncorhynchus Mykiss)
University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Fall 2020 Evaluating the acute and chronic toxicity of potassium carbonate and the interactive effects between sodium and potassium on rainbow trout (Oncorhynchus mykiss) Ashutosh Rao University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Rao, Ashutosh, "Evaluating the acute and chronic toxicity of potassium carbonate and the interactive effects between sodium and potassium on rainbow trout (Oncorhynchus mykiss)" (2020). Master's Theses and Capstones. 1395. https://scholars.unh.edu/thesis/1395 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Evaluating the acute and chronic toxicity of potassium carbonate and the interactive effects between sodium and potassium on rainbow trout (Oncorhynchus mykiss) By Ashutosh Rao BS in Marine, Freshwater, & Estuarine Biology, University of New Hampshire, 2017 THESIS Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences: Marine Biology September 2020 i This thesis was examined and approved in partial fulfillment of the requirements for the degree of Master’s in Biological Sciences: Marine Biology by: Thesis/Dissertation Director, Dr. Elizabeth Fairchild, Research Associate Professor in Biological Sciences, University of New Hampshire Dr. Todd Guerdat, Assistant Professor of Agricultural Engineering, University of New Hampshire Dr. -
Ryflor™ Chemical Compatibility List
Chemical Compatibility List The following information is based on known chemical compatibility data for RyFlor™, and should only be considered as reference. Further laboratory tests may be required to verify the compatibility of a particular chemical with expanded RyFlor™ products. Chemicals Compatible with RyFlor™ Acetaldehyde Barium Sulfide Cetane (Hexadecane) Acetamide Beer Chloric Acid Acetic Acid Benzaldehyde Chlorinated Water Acetic Anhydride Benzene Chlorine Acetone Benzoic Acid Chlorine Dioxide Acetophenone Benzonitrile Chloroacetic Acid Acetylene Benzyl Alcohol Chlorobenzene Acrylic Anhydride Benzyl Chloride Chloroethylene Adipic Acid Black Liquor (Sulfate Chloroform Allyl Acetate Liquor) Chlorosulfonic Acid Allyl Alcohol Borax Chromic Acid Allyl Chloride Boric Acid Chromic Anhydride Aluminum Chloride Brine Citric Acid Aluminum Flouride Bromine Copper Acetate Aluminum Hydroxide Butadiene Copper Chloride Aluminum Nitrate Butane Copper Fluoride Aluminum Potassium Butyl Acetate Copper Sulfate Sulfate (Alum) Butyl Alcohol (Butanol) Cottonseed Oil Aluminum Sulfate Butyl Amine Creosote Ammonia Butyl Chloride Cresols (Cresylic Acid) Ammonium Carbonate Butyl Ether Crude Oil Ammonium Chloride Butyl Phthalate Cyanic Acid Ammonium Fluoride Butyl Methacrylate Cyclohexane Ammonium Hydroxide Butylene Cyclohexanol Ammonium Nitrate Butyric Acid Cyclohexanone Ammonium Phosphate Calcium Bisulfite Dibutyl Phthalate Ammonium Sulfate Calcium Chloride Dichlorobenzen Amyl Acetate Calcium Hydroxide Dichloroethane Amyl Alcohol Calcium Hypochlorite Dichloroethylene -
Chemistry 0310 - Organic Chemistry 1 Chapter 6
Dr. Peter Wipf Chemistry 0310 - Organic Chemistry 1 Chapter 6. SN2 Reactions Nucleophilic substitution reactions occur when nucleophiles (electron-rich species) displace leaving groups on electrophiles (electron-poor species). The net result is the substitution of one group for another bonded to a carbon atom. Nucleophilicity is increased by a negative charge and an increase in the polarizability. The greater the size and the lower the electronegativity of an atom, the greater its polarizability. Leaving groups are stable species that can be detached with their bonding electrons from a molecule during reaction. Most good leaving groups are the conjugate bases of strong acids. Sulfonates (mesylates, tosylates, triflates, etc.) are popular leaving groups since they can be readily obtained from alcohols. Solvents also influence nucleophilicity. SN2 reactions are second-order reactions whose rates depend o the concentration of both the alkyl halide and the nucleophile. The transition state of the one-step SN2 process involves a trigonal bipyramidal carbon and results in an overall inversion of configuration. The order of reactivity of alkyl halides and alkyl sulfonates in SN2 reactions is CH3>1°>2°>3°. The activation energy, DG‡, determines the rate of a reaction: k = koexp(-DG‡/RT). The overall change in free energy, DG, determines the position of the thermodynamic equilibrium. A positive sign of DG is characteristic for an endergonic reaction, a negative DG is found for an exergonic process. The rate of a reaction can be measured and provides information about its mechanism. The reaction order is the sum of the exponents in the rate equation. Relative Leaving Group Abilities: Leaving Group Common Name krel AcO acetate 1 x 10-10 Cl chloride 0.0001 Br bromide 0.001 I iodide 0.01 O mesylate 1.00 H3C S O O O tosylate 0.70 H3C S O O O brosylate 2.62 Br S O O O nosylate 13 O2N S O O O fluorosulfate 29,000 F S O O O triflate 56,000 CF3 S O O O nonaflate 120,000 C4F9 S O O. -
Reactions of Benzene & Its Derivatives
Organic Lecture Series ReactionsReactions ofof BenzeneBenzene && ItsIts DerivativesDerivatives Chapter 22 1 Organic Lecture Series Reactions of Benzene The most characteristic reaction of aromatic compounds is substitution at a ring carbon: Halogenation: FeCl3 H + Cl2 Cl + HCl Chlorobenzene Nitration: H2 SO4 HNO+ HNO3 2 + H2 O Nitrobenzene 2 Organic Lecture Series Reactions of Benzene Sulfonation: H 2 SO4 HSO+ SO3 3 H Benzenesulfonic acid Alkylation: AlX3 H + RX R + HX An alkylbenzene Acylation: O O AlX H + RCX 3 CR + HX An acylbenzene 3 Organic Lecture Series Carbon-Carbon Bond Formations: R RCl AlCl3 Arenes Alkylbenzenes 4 Organic Lecture Series Electrophilic Aromatic Substitution • Electrophilic aromatic substitution: a reaction in which a hydrogen atom of an aromatic ring is replaced by an electrophile H E + + + E + H • In this section: – several common types of electrophiles – how each is generated – the mechanism by which each replaces hydrogen 5 Organic Lecture Series EAS: General Mechanism • A general mechanism slow, rate + determining H Step 1: H + E+ E El e ctro - Resonance-stabilized phile cation intermediate + H fast Step 2: E + H+ E • Key question: What is the electrophile and how is it generated? 6 Organic Lecture Series + + 7 Organic Lecture Series Chlorination Step 1: formation of a chloronium ion Cl Cl + + - - Cl Cl+ Fe Cl Cl Cl Fe Cl Cl Fe Cl4 Cl Cl Chlorine Ferric chloride A molecular complex An ion pair (a Lewis (a Lewis with a positive charge containing a base) acid) on ch lorine ch loronium ion Step 2: attack of -
Leaving Group of Substrate Important
1 Recap... • Last two lectures we looked at substitution reactions • We found that there we two (extreme) mechanisms • SN1 H H H H H PhS R H R Br R SPh Br • And SN2 H H H H PhS + Br R Br PhS R • We looked at many of the factors that influenced which ..mechanism was operating... • Now we will turn our attention to elimination reactions 2 Elimination reactions NaOH NaOH or low Br H2O OH concentration • You have seen SN1 substitution • Reaction not sped up by altering nucleophile - it is not in RDS • In fact if we increase the amount / concentration of nucleophile we get the following... high O H + + + Br Br OH concentration H H • We observe an elimination reaction • Overall HBr is lost from the molecule • Isn't chemistry fun - these are the same conditions as substitution! • Next two lectures will look at the mechanisms for elimination • And how we control the nature of the reaction we observe... 3 Elimination, bimolecular E2 O H Br HO Br H H • E2 - Elimination bimolecular or 2nd order reaction • 2 molecules in the RDS or transition state H H H H H C H C H H C Br Br H O H C H O H C C H H H H C H C H H H • Two molecules in the rate determining step • So both the base and the substrate control the reaction • Both carbon skeleton & leaving group of substrate important In substitutions nucleophile acts as a nucleophile & attacks carbon In eliminations nucleophile acts as a base & attacks proton 4 Elimination, bimolecular E2: MO • Little confusing as need bonding & anti-bonding in same diagram! • Orbitals need to be parallel for maximum overlap -
Carbonyl Chemistry I: Additions to Carbonyl Groups
Paul Bracher Chem 30 – Section 4 Carbonyl Chemistry I: Additions to Carbonyl Groups Section Agenda 1) Lessons from Exam I, Course Feedbeck Mechanism on Web Site 2) Carbonyl Groups: Structure, Bonding, Molecular Orbitals, Geometry, Reactivity 3) Handout: In-Section Problem Set 4) Handout: In-Section Solution Set 5) Weekly Office Hours: Thursday, 3-4PM and 8-9PM, in Bauer Lobby Structure and Bonding · Carbonyl carbons are roughly sp2 hybridized Molecular Orbital Picture and planar with bond angles near 120 degrees bonding p orbital antibonding p* orbital · The C=O p bond is formed by the overlap of two unhybridized p orbitals. The bond is polarized due to the different electronegativities of carbon and oxygen. 105 o Resonance Model O O Bürgi-Dunitz angle · Another way to picture carbonyl groups is I II through an MO picture. Since the coefficient of · Resonance form II suggests that the carbon pO’s contribution is greater in pC=O, then atom is surrounded by less negative charge conservation of blending atomic orbitals into density than oxygen, rendering the carbon more molecular orbitals tells you that pC must be a electrophilic. larger contributor to the p*C=O orbital. · When reagents add to carbonyl double bonds, · The larger coefficient on oxygen in the filled the nucleophile attacks the carbon atom. orbital explains why the oxygen atom behaves as a Lewis base (it commonly complexes with · Due to the increased negative charge density Lewis acids). The larger coefficient on carbon on oxygen, Lewis acids (such as protons) in the empty antibonding orbital explains why it commonly complex with oxygen. -
Research Module: Scheme 2A. N-Benzylation Using Benzyl Bromide 63
Research Module: Scheme 2A. N-Benzylation Using Benzyl Bromide 63 O Scheme 2 Option O Methanol Solvent NH N-Benzylation + Br NH2 N via Alkyl Halide 1 K2CO3 Workup NH 8 R1 R1 (0.139g/mmol) 6a-e Synthesis of 3a-e Benzyl Bromide N-Benzyl 171 g/mol N-Benzyl 1.438 g/ml Pyrazolidinone Pyrazolidinones 119 ml/mol Scheme 2 Part A: Redissolve in Methanol 1. Turn hot plate to 5. 2. To the flask with your product 3 from Scheme 1, attach a condener with gentle water flow. 3. Add 15 mL of methanol. • For 4-methoxy compoud 3c, you may need to add 20 mL of methanol, since the 4-methoxy substrates is probably less soluble. 4. Heat the mixture on the hot plate with the stirrer at 6 until the material dissolves and becomes completely homogeneous. Once it’s dissolved, reduce the hot plate setting to 4. • If the stir bar isn’t coming free even after several minutes, you may wish to detach the condenser and poke the stir-bar free with a spatula • Make sure that there aren’t chunks or blobs of undissolved material on the outside. Everything needs to be dissolved. 5. Calculate 0.9 equivalents of benzyl bromide. Calculate how many mL of benzyl bromide (119 mL/mol) you need to add 0.90 mmol benzyl bromide per mmol of 3. In other words, if you have 20.0 mmol of 3c, how many mL of benzaldehyde will it take to provide 18.0 mmol? • You need to know how many mmol of reactant 3 you are working with. -
Safety Data Sheet - Patina Gel Revision 11/14/2016
Safety Data Sheet - Patina Gel Revision 11/14/2016 1. PRODUCT AND COMPANY IDENTIFICATION Product name: Patina Gel / Sulfurated Potash 39365-88-3 CAS #: 39365-88-3 Manufacturer: Cool Tools 945 N. Parkway St Jefferson, WI 53549 Telephone: 888-478-5060 Fax: 262-546-5275 Emergency Phone #: Chemtrec USA & Canada 800-424-9300 International 703-527-38 2. HAZARDS IDENTIFICATION GHSClassification Acute Toxicity, Oral (Category 3) Skin Irritation (Category 2) Serious Eye Irritation (Category 2) GH3 Label elements, including precautionary statements Signal Word: Warning Hazard statement(s) H303 May be harmful if swallowed. H315 Causes skin irritation. H320 Causes eye irritation. Precautionary statement(s) P264 Wash hands, face and clothing after handling. P270 Do not eat, drink or smoke when using this product. P271 Use only outdoors or in a well ventilated area. P280 Wear protective gloves/clothing/eye protection P305 & P351 If in eyes, rinse cautiously with water for several minutes. P338 Remove contact lenses, if present and easy to do. Continue rinsing. P312 Call a poison center/doctor if you feel unwell. HMIS Classification NFPA Classification Health hazard: 2 Health hazard: 2 Contact: 1 Reactivity: 0 Flammability 0 Flammability: 0 Physical hazards: 2 Personal B Distributed by: Cool Tools 945 N Parkway St Jefferson, WI 53549 3. COMPOSITION/INFORMATION ON INGREDIENTS Synonyms: Liver of Sulfur, Sulfurated potassa, hepar sulfuris Potassium Trisulfide CAS No. 37488-75-8: 6.25% Potassium Thiosulfate Hydrated CAS No. 10294-66-3: 18.75% Glycerin CAS No. 56-81-5: 75% 4. FIRST AID MEASURES Inhalation: Not likely to occur except as a mist. -
Spe-128 the Catalysis of Potassium Carbonate Solutions in Carbon Dioxide Absorption
SPE-128 THE CATALYSIS OF POTASSIUM CARBONATE SOLUTIONS IN CARBON DIOXIDE ABSORPTION By A. G. Eickmeyer, Chemical Engineering Consultant Prairie Village, Kansas ABS~:RACT bing. The activity o£ hot potassium car THEORY AND DEPINITIONS Downloaded from http://onepetro.org/speatce/proceedings-pdf/61fm/all-61fm/spe-128-ms/2087284/spe-128-ms.pdf by guest on 01 October 2021 bonate solutions has been £ound to be a function of contaminants, having a de The absorption of an acid gas in leterious effect, and catalysts, which any alkaline solution is classed as activate the solution. A small amount chemi-sorption, that is, absorption ll of "Catacarb catalyst cancels the e£ accompanied by chemical reaction. The £ect o£ contamination and larger amounts rate o£ chemical reaction determines give a much more active solution than the size of the towers required by the pure potassium carbonate. In commercial process. plant tests in existing carbonate Unlike caustic, a carbonate solu plants, the Catacarb Process resulted tion has very few hydroxyl ions to re in increased capacity, reduced steam act directly with CO , Therefore, it usaze, and less residual CO , In 2 2 is believed that CO2 must £irst become new plant construction, ~ ss equipment ·hydrated, or react with water to £orm and utility requirements o£ the Catacarb carbonic acid, which in turn reacts Process permit savings in capital in with a carbonate ion to form two bi vestment and operating costs. carbonate ions. INTRODUC '1'1 ON (1) CO2 • H2 0 = H2 CO 3 The hot potassium carbonate £r~cess, developed by the Bureau o£ Mines, ,-, has been applied extensively in recent years to CO 2 removal in the puri£ica Con£irmation o£ the reaction with tion of hydrogen and natural Gas. -
Reactions of Aromatic Compounds Just Like an Alkene, Benzene Has Clouds of Electrons Above and Below Its Sigma Bond Framework
Reactions of Aromatic Compounds Just like an alkene, benzene has clouds of electrons above and below its sigma bond framework. Although the electrons are in a stable aromatic system, they are still available for reaction with strong electrophiles. This generates a carbocation which is resonance stabilized (but not aromatic). This cation is called a sigma complex because the electrophile is joined to the benzene ring through a new sigma bond. The sigma complex (also called an arenium ion) is not aromatic since it contains an sp3 carbon (which disrupts the required loop of p orbitals). Ch17 Reactions of Aromatic Compounds (landscape).docx Page1 The loss of aromaticity required to form the sigma complex explains the highly endothermic nature of the first step. (That is why we require strong electrophiles for reaction). The sigma complex wishes to regain its aromaticity, and it may do so by either a reversal of the first step (i.e. regenerate the starting material) or by loss of the proton on the sp3 carbon (leading to a substitution product). When a reaction proceeds this way, it is electrophilic aromatic substitution. There are a wide variety of electrophiles that can be introduced into a benzene ring in this way, and so electrophilic aromatic substitution is a very important method for the synthesis of substituted aromatic compounds. Ch17 Reactions of Aromatic Compounds (landscape).docx Page2 Bromination of Benzene Bromination follows the same general mechanism for the electrophilic aromatic substitution (EAS). Bromine itself is not electrophilic enough to react with benzene. But the addition of a strong Lewis acid (electron pair acceptor), such as FeBr3, catalyses the reaction, and leads to the substitution product. -
AROMATIC NUCLEOPHILIC SUBSTITUTION-PART -2 Electrophilic Substitution
Dr. Tripti Gangwar AROMATIC NUCLEOPHILIC SUBSTITUTION-PART -2 Electrophilic substitution ◦ The aromatic ring acts as a nucleophile, and attacks an added electrophile E+ ◦ An electron-deficient carbocation intermediate is formed (the rate- determining step) which is then deprotonated to restore aromaticity ◦ electron-donating groups on the aromatic ring (such as -OH, -OCH3, and alkyl) make the reaction faster, since they help to stabilize the electron-poor carbocation intermediate ◦ Lewis acids can make electrophiles even more electron-poor (reactive), increasing the reaction rate. For example FeBr3 / Br2 allows bromination to occur at a useful rate on benzene, whereas Br2 by itself is slow). In fact, a substitution reaction does occur! (But, as you may suspect, this isn’t an electrophilic aromatic substitution reaction.) In this substitution reaction the C-Cl bond breaks, and a C-O bond forms on the same carbon. The species that attacks the ring is a nucleophile, not an electrophile The aromatic ring is electron-poor (electrophilic), not electron rich (nucleophilic) The “leaving group” is chlorine, not H+ The position where the nucleophile attacks is determined by where the leaving group is, not by electronic and steric factors (i.e. no mix of ortho– and para- products as with electrophilic aromatic substitution). In short, the roles of the aromatic ring and attacking species are reversed! The attacking species (CH3O–) is the nucleophile, and the ring is the electrophile. Since the nucleophile is the attacking species, this type of reaction has come to be known as nucleophilic aromatic substitution. n nucleophilic aromatic substitution (NAS), all the trends you learned in electrophilic aromatic substitution operate, but in reverse. -
19.1 Ketones and Aldehydes
19.1 Ketones and Aldehydes • Both functional groups possess the carbonyl group • Important in both biology and industry Simplest aldehyde Simplest ketone used as a used mainly as preservative a solvent Copyright © 2017 John Wiley & Sons, Inc. All rights reserved. 19-1 Klein, Organic Chemistry 3e 19.1 Ketones And Aldehydes Copyright © 2017 John Wiley & Sons, Inc. All rights reserved. 19-2 Klein, Organic Chemistry 3e 19.2 Nomenclature • Four discrete steps to naming an aldehyde or ketone • Same procedure as with alkanes, alcohols, etc… 1. Identify and name the parent chain 2. Identify the name of the substituents (side groups) 3. Assign a locant (number) to each substituents 4. Assemble the name alphabetically Copyright © 2017 John Wiley & Sons, Inc. All rights reserved. 19-3 Klein, Organic Chemistry 3e 19.2 Nomenclature 1. Identify and name the parent chain – For aldehydes, replace the “-e” ending with an “-al” – the parent chain must include the carbonyl carbon Copyright © 2017 John Wiley & Sons, Inc. All rights reserved. 19-4 Klein, Organic Chemistry 3e 19.2 Nomenclature 1. Identify and name the parent chain – The aldehydic carbon is assigned number 1: Copyright © 2017 John Wiley & Sons, Inc. All rights reserved. 19-5 Klein, Organic Chemistry 3e 19.2 Nomenclature 1. Identify and name the parent chain – For ketones, replace the “-e” ending with an “-one” – The parent chain must include the C=O group – the C=O carbon is given the lowest #, and can be expressed before the parent name or before the suffix Copyright © 2017 John Wiley & Sons, Inc. All rights reserved.