Computational Issues in Mathematical Cosmology

Total Page:16

File Type:pdf, Size:1020Kb

Computational Issues in Mathematical Cosmology Computational Issues in Mathematical Cosmology Alan Coley1, Luis Lehner2, Frans Pretorius3 & David Wiltshire4 March 9, 2017 1. Department of Mathematics and Statistics, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada. 2. Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada. 3. Department of Physics, Princeton University, Princeton, New Jersey 08544, USA. 4. Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand. 1 Introduction Numerical computations have always played an important role in physical cos- mology, particularly in conventional N-body Newtonian simulations [1]. Compu- tational Cosmology (CC) is playing an increasingly important role in exploring general relativistic effects, and numerical simulations are often an extremely useful way to gain new insights into mathematical cosmology [2–4]. CC codes were initially developed to address inhomogeneous cosmologies [5], and CC has always been important in the study of cosmological singularities. As we shall briefly discuss below, CC simulations of large scale dynamical processes in the early Universe have recently been reported. 1 More complex CC codes aimed at understanding cosmological evolutions are currently being developed. Recently numerical studies of cosmic bubble collisions and inflation in inhomogeneous geometries have been initiated. These issues will be addressed in this special Focus Issue of Classical and Quantum Gravity. 1There are a number of numerical packages used in computational cosmology. The Einstein Toolkit is a standard open-source software suite for relativistic astrophysics, and also contains modules for the evolution and analysis of cosmological spacetimes in full general relativ- ity: http://einsteintoolkit.org (see also http://hyperspace.uni-frankfurt.de/category/codes/). Dedicated programs include: GRCHOMBO [6] (see also www.grchombo.org), CosmoGRAPH [7], gevolution [8] and DEFROST [9] (see also www.sfu.ca/physics/cosmology/defrost/). 1 2 Inhomogeneous cosmology Most studies of theoretical and observational cosmology have utilized analyt- ical methods. This is, in part, because the observed high degree of statis- tical spatial homogeneity and isotropy (and particularly observations of the cosmic microwave background radiation) supports the assumption that the large scale structure of the Universe is well-described by the exact Friedmann- Lemaˆıtre-Robertson-Walker (FLRW) metrics, with deviations from the FLRW solutions small and hence amenable to treatment by perturbation theory. How- ever, at the present epoch statistical spatial homogeneity (as estimated by the 2–point galaxy–galaxy correlation function [10]) only occurs on a mini- −1 mum spatial scale ∼> 100 h Mpc (where h is related to the Hubble constant −1 −1 by H0 = 100h km sec Mpc ). On smaller scales, matter in the Universe is strongly inhomogeneous at the present epoch, exhibiting a complex cosmic web [11] of hierarchical structure: the Universe is dominated in volume by ex- panding voids [12], with bound galaxy clusters forming sheets, filaments and knots that surround the voids and thread them. In fact, some 40% of the vol- ume of the Universe is contained in voids of just one characteristic diameter, −1 30 h Mpc, and a density contrast δρ < −0.94 [13,14] very close to empty (δρ = −1). This means that on these scales we are in the “nonlinear regime” of cosmology with respect to perturbation theory. At present the nonlinear regime is still treated almost exclusively by N– body numerical simulations using Newtonian gravity [1]. The full relativistic problem is very complicated; after all, it took decades to solve even the two body problem in numerical relativity. A full theory of computational cosmology (CC) in general relativity that deals with the complexity of late epoch structure may well take decades of development. However, it is important that a start is made, especially given that the standard Newtonian approach to structure formation invokes two as yet unknown components – dark energy and dark matter – for most of the energy density of the Universe. Even if relativistic effects were only to lead to percent level corrections to a FLRW model plus Newtonian gravity, the observed inhomogeneity demands we confront basic unknowns. There is one crucial difference between Newtonian and general relativistic dynamics. In Newtonian gravity energy is simply defined and absolutely conserved. In general relativity this is not the case in the absence of time symmetry, as occurs in the actual Universe. Future computational cosmology must not only deal with subtle numerical issues but also confront fundamental physical questions relating to the coupling of gravitational energy and matter energy-momentum as one coarse grains in a hierarchy of structure as complex as that of the Universe we observe. −1 The related debate about the backreaction of small scale (∼< 100 h Mpc) inhomogeneities on average cosmic expansion, cosmic acceleration and the na- ture of dark energy (c.f., [15, 16]), cannot be resolved purely by mathematical analysis. The issue at stake is one of starting assumptions in response to an unsolved physical question: What is the largest scale that we can coarse-grain matter and geometry obeying Einstein’s equations on one scale while expecting 2 the average evolution to still be an exact solution of Einstein’s equations on a larger scale? CC within full general relativity is now beginning to address these funda- mental issues [6–8]. To date the emphasis has been on studying the properties of the spacetimes. Recently, these CC studies have been extended by including photons traversing these spacetimes, consequently investigating the impact of inhomogeneities on cosmological observations [17]. −1 Separately, the first ray tracing studies of small scale (∼< 100 h Mpc) inho- mogeneous exact solutions of Einstein’s equations – Szekeres models – are being performed, which are constrained by actual large galaxy surveys [18]. This pro- vides an independent route to testing the possible differences of full general relativity from Newtonian gravity in its nonlinear regime, in realistic models constrained by data. 2.1 Black hole lattices CC studies of whether an effective expansion rate of an inhomogeneous model is consistent with that of an equivalent homogeneous dust filled universe have been considered in the context of the evolution of a periodic lattice of black holes (BH) (the BHs mimicking strong, self-gravitating inhomogeneities, which are the most extreme example of non-linearity possible in GR) [19–21]. In [20] the authors explicitly constructed and evolved a three-dimensional, fully rel- ativistic, eight-BH lattice with spherical topology; these quantities were then compared against a reference closed FLRW model. The effects of local inhomo- geneities have been investigated in [21] using different initial data, describing an expanding inhomogeneous universe model composed of regularly aligned BHs of identical mass. In this limit, their simulations are always dominated by the expanding underdense regions, hence the correction to the energy density is negative and the effective pressure is positive. 2.2 Bouncing models Using exotic matter or alternative modified theories of gravity can lead to the initial singularity being replaced by a bounce to an expanding universe. For ex- ample, CC methods have been applied to the study of bouncing cosmologies in the ekpyrotic cosmological scenario by studying the evolution of adiabatic per- turbations in a nonsingular bounce [22]; the results show that the bounce is dis- rupted in regions of the Universe with significant inhomogeneity and anisotropy over the background energy density, but is achieved in regions that are rela- tively homogeneous and isotropic. Sufficiently small perturbations, consistent with observational constraints, can pass through the nonsingular bounce with negligible alteration from the nonlinearity. It is also possible to study the persistence of black holes through a bounce [23] (see also [24]). Bounces can also be realized by quantum effects in regions of extreme energies, and Loop Quantum Gravity inspired cosmology has also been studied in [25]. 3 2.3 Very early Universe Studies of “bubble universes”, in which our Universe is one of many nucleating and growing inside an ever-expanding false vacuum, have also been undertaken with CC tools. In particular, [26] investigated the collisions between bubbles, by computing the cosmological observables arising from bubble collisions directly from the Lagrangian of a single scalar field. It is expected that initial conditions will contain some measure of inho- mogeneities, and random initial conditions will not necessarily give rise to an inflationary spacetime; indeed, it is often stated that inflation requires a homo- geneous patch of size roughly the inverse Hubble radius to begin. CC has been used to consider the effects of inhomogeneous initial conditions on inflation. It has been shown that large field inflation is robust to simple inhomogeneous (and anisotropic) initial conditions with large initial gradient energies in situations in which the field is initially confined to the part of the potential that supports inflation, while it is also known that small field inflation is much less robust to inhomogeneities than its large field counterpart [27]. Recently, the large field case with a varying extrinsic curvature has been investigated [28]; it was found that regions which are initially collapsing may
Recommended publications
  • Inhomogeneous Cosmology with Numerical Relativity
    PHYSICAL REVIEW D 95, 064028 (2017) Inhomogeneous cosmology with numerical relativity Hayley J. Macpherson,* Paul D. Lasky, and Daniel J. Price Monash Centre for Astrophysics and School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia (Received 16 November 2016; published 17 March 2017) We perform three-dimensional numerical relativity simulations of homogeneous and inhomogeneous expanding spacetimes, with a view toward quantifying nonlinear effects from cosmological inhomoge- neities. We demonstrate fourth-order convergence with errors less than one part in 106 in evolving a flat, dust Friedmann-Lemaître-Roberston-Walker spacetime using the Einstein Toolkit within the Cactus framework. We also demonstrate agreement to within one part in 103 between the numerical relativity solution and the linear solution for density, velocity and metric perturbations in the Hubble flow over a factor of ∼350 change in scale factor (redshift). We simulate the growth of linear perturbations into the nonlinear regime, where effects such as gravitational slip and tensor perturbations appear. We therefore show that numerical relativity is a viable tool for investigating nonlinear effects in cosmology. DOI: 10.1103/PhysRevD.95.064028 I. INTRODUCTION spacetimes [41], the propagation and collision of gravita- tional wave perturbations [42,43] and linearized perturba- Modern cosmology relies on the cosmological principle— tions to a homogeneous spacetime [44,45]. More recent that the Universe is sufficiently homogeneous and isotropic work has continued to include symmetries to simplify the on large scales to be described by a Friedmann-Lemaître- numerical calculations, e.g. Refs. [46,47]. Robertson-Walker (FLRW) model. Cosmological N-body Simulations free of these symmetries have only emerged simulations, e.g.
    [Show full text]
  • Spectral Distortion in a Radially Inhomogeneous Cosmology
    Dartmouth College Dartmouth Digital Commons Dartmouth Scholarship Faculty Work 11-5-2013 Spectral Distortion in a Radially Inhomogeneous Cosmology R. R. Caldwell Dartmouth College N. A. Maksimova Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Cosmology, Relativity, and Gravity Commons Dartmouth Digital Commons Citation Caldwell, R. R. and Maksimova, N. A., "Spectral Distortion in a Radially Inhomogeneous Cosmology" (2013). Dartmouth Scholarship. 1962. https://digitalcommons.dartmouth.edu/facoa/1962 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. Spectral Distortion in a Radially Inhomogeneous Cosmology R. R. Caldwell1 and N. A. Maksimova1 1Department of Physics & Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 USA (Dated: October 16, 2013) The spectral distortion of the cosmic microwave background blackbody spectrum in a radially inhomogeneous spacetime, designed to exactly reproduce a ΛCDM expansion history along the past light cone, is shown to exceed the upper bound established by COBE-FIRAS by a factor of approximately 3700. This simple observational test helps uncover a slew of pathological features that lie hidden inside the past light cone, including a radially contracting phase at decoupling and, if followed to its logical extreme, a naked singularity at the radially inhomogeneous Big Bang. I. INTRODUCTION Is the Universe playing fair with us? Are the laws of physics and the structure of space-time the same everywhere? It is a fundamental tenet of the Standard Cosmological Model that the answer is yes.
    [Show full text]
  • The Local Value of H0 in an Inhomogeneous Universe
    Prepared for submission to JCAP The local value of H0 in an inhomogeneous universe I. Odderskov,a S. M. Koksbang,a S. Hannestad,a aDepartment of Physics and Astronomy University of Aarhus, Ny Munkegade, Aarhus C, Denmark E-mail: [email protected], [email protected], [email protected] Abstract. The effects of local inhomogeneities on low redshift H0 determinations are studied by estimating the redshift-distance relation of mock sources in N-body simulations. The results are compared to those obtained using the standard approach based on Hubble's law. The comparison shows a clear tendency for the standard approach to yield lower values of H0 than the approach based on the scheme using light rays. The difference is, however, small. More precisely, it is found that the overall effect of inhomogeneities on the determination of H0 is a small increase in the local estimates of about 0:3% compared to the results obtained with Hubble's law, when based on a typical distribution of supernovae in the redshift range 0:01 < z < 0:1. The overall conclusion of the study is a verification of the results that have earlier been obtained by using Hubble's law: The effects of inhomogeneities on local H0 estimates are not significant enough to make it plausible that differences in high- and low-redshift estimates of H0 are due to small inhomogeneities within the setting of standard cosmology. arXiv:1601.07356v2 [astro-ph.CO] 28 Jan 2016 Contents 1 Introduction1 2 Method for computing redshift-distance relations in N-body simulations at low redshift2 3 Mock observations4 3.1 Redshift distribution of sources4 3.2 Observers5 3.3 Lightcone snapshots6 3.4 Summary6 4 Results and discussion7 5 Summary 10 6 Acknowledgments 10 1 Introduction Overall, the ΛCDM model is consistent with observations at a remarkable level considering the model's simplicity compared to the real, inhomogeneous universe.
    [Show full text]
  • Inhomogeneous Cosmological Models and Averaging in Cosmology: Overview
    Home Search Collections Journals About Contact us My IOPscience Inhomogeneous cosmological models and averaging in cosmology: overview This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2011 Class. Quantum Grav. 28 160301 (http://iopscience.iop.org/0264-9381/28/16/160301) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 194.94.224.254 The article was downloaded on 11/01/2012 at 09:53 Please note that terms and conditions apply. IOP PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 28 (2011) 160301 (7pp) doi:10.1088/0264-9381/28/16/160301 EDITORIAL Inhomogeneous cosmological models and averaging in cosmology: overview 1. Introduction Cosmological observational data [1]1, when fitted using models based on the assumption of a spatially homogeneous and isotropic Friedmann–Lemaˆıtre–Robertson–Walker (FLRW) model plus small perturbations, are usually interpreted as implying that the spatial geometry is flat, there is currently an accelerated expansion and the majority of the matter in the Universe is dark, non-baryonic and cold, giving rise to the so-called CDM-concordance model (where the dark energy is interpreted as a positive cosmological constant ). The concordance model of cosmology is now operating on a well-established and tightly constrained empirical basis. However, although the concordance CDM model is remarkably successful, there does exist significant tensions between the data and the model [2]. Furthermore, if our Universe is not a perturbation of an exact flat FLRW solution, the conventional data analyses and their interpretation are not necessarily valid [3].
    [Show full text]
  • Observational Cosmology - 30H Course 218.163.109.230 Et Al
    Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity.
    [Show full text]
  • Observational Tests of Backreaction with Recent Data
    Journal of Cosmology and Astroparticle Physics Related content - Tension in the void: cosmic rulers strain Observational tests of backreaction with recent inhomogeneous cosmologies Miguel Zumalacárregui, Juan García- data Bellido and Pilar Ruiz-Lapuente - The cosmic microwave background in an inhomogeneous universe To cite this article: Matteo Chiesa et al JCAP12(2014)049 Chris Clarkson and Marco Regis - Testing the void against cosmological data: fitting CMB, BAO, SN and H0 Tirthabir Biswas, Alessio Notari and Wessel Valkenburg View the article online for updates and enhancements. Recent citations - The background Friedmannian Hubble constant in relativistic inhomogeneous cosmology and the age of the Universe Boudewijn F. Roukema et al - Averaged Lemaître–Tolman–Bondi dynamics Eddy G Chirinos Isidro et al - Angular distribution of cosmological parameters as a probe of space-time inhomogeneities C. Sofia Carvalho and Katrine Marques This content was downloaded from IP address 131.169.4.70 on 28/11/2017 at 11:25 ournal of Cosmology and Astroparticle Physics JAn IOP and SISSA journal Observational tests of backreaction with recent data JCAP12(2014)049 Matteo Chiesa,a,b Davide Mainoa and Elisabetta Majerottoc,b aUniversity of Milan, Physics Department, via Giovanni Celoria 16, Milan, Italy bINAF-Osservatorio Astronomico di Brera, via Emilio Bianchi 46, Merate, Italy cDepartamento de F´ısica Te´orica and Instituto de F´ısica Te´orica, Universidad Aut´onoma de Madrid IFT-UAM/CSIC, 28049 Cantoblanco, Madrid, Spain E-mail: [email protected], [email protected], [email protected] Received June 3, 2014 Revised November 7, 2014 Accepted November 28, 2014 Published December 22, 2014 Abstract.
    [Show full text]
  • Inhomogeneous Structure Formation May Alleviate Need for Accelerating Universe Johan Hansson* and Jesper Lindkvist
    The Open Astronomy Journal, 2010, 3, 145-149 145 Open Access Inhomogeneous Structure Formation May Alleviate Need for Accelerating Universe Johan Hansson* and Jesper Lindkvist Department of Physics, Luleå University of Technology, SE-971 87 Luleå, Sweden Abstract: When taking the real, inhomogeneous and anisotropic matter distribution in the semi-local universe into account, there may be no need to postulate an accelerating expansion of the universe despite recent type Ia supernova data. Local curvatures must be integrated (over all space) to obtain the global curvature of the universe, which seems to be very close to zero from cosmic microwave background data. As gravitational structure formation creates bound regions of positive curvature, the regions in between become negatively curved in order to comply with a vanishing global curvature. The actual dynamics of the universe is altered due to the self-induced inhomogeneities, again more prominently so as structure formation progresses. Furthermore, this negative curvature will increase as a function of time as structure formation proceeds, which mimics the effect of “dark energy” with negative pressure. Hence, the “acceleration” may be merely a mirage. We make a qualitative and semi-quantitative analysis, for pedagogical reasons using newtonian gravity corrected for special relativistic effects (which works surprisingly well) to corroborate and illustrate/visualize these statements. This article may be seen as an attempt to communicate to a larger number of people the necessity of starting to take seriously the real, observed inhomogeneous distribution and the nonlinearities of nonperturbative general relativity, and their impact on the dynamics and behavior of the cosmos instead of allowing an oversimplified cosmological model to generate a consensus world-view of a cosmos allegedly dominated by mysterious dark energy.
    [Show full text]
  • Consistent Young Earth Relativistic Cosmology
    The Proceedings of the International Conference on Creationism Volume 8 Print Reference: Pages 14-35 Article 23 2018 Consistent Young Earth Relativistic Cosmology Phillip W. Dennis Unaffiliated Follow this and additional works at: https://digitalcommons.cedarville.edu/icc_proceedings Part of the Cosmology, Relativity, and Gravity Commons DigitalCommons@Cedarville provides a publication platform for fully open access journals, which means that all articles are available on the Internet to all users immediately upon publication. However, the opinions and sentiments expressed by the authors of articles published in our journals do not necessarily indicate the endorsement or reflect the views of DigitalCommons@Cedarville, the Centennial Library, or Cedarville University and its employees. The authors are solely responsible for the content of their work. Please address questions to [email protected]. Browse the contents of this volume of The Proceedings of the International Conference on Creationism. Recommended Citation Dennis, P.W. 2018. Consistent young earth relativistic cosmology. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 14–35. Pittsburgh, Pennsylvania: Creation Science Fellowship. Dennis, P.W. 2018. Consistent young earth relativistic cosmology. In Proceedings of the Eighth International Conference on Creationism, ed. J.H. Whitmore, pp. 14–35. Pittsburgh, Pennsylvania: Creation Science Fellowship. CONSISTENT YOUNG EARTH RELATIVISTIC COSMOLOGY Phillip W. Dennis, 1655 Campbell Avenue,
    [Show full text]
  • CONTENTS the Marcel Grossmann Meetings
    July 21, 2008 11:37 WSPC - Proceedings Trim Size: 9.75in x 6.5in contents 21 CONTENTS The Marcel Grossmann Meetings | Publications in this Series and Sponsors . v Organizing Committees . vii Marcel Grossmann Awards . ix Preface . xiii Inaugural Address . xix Marcel Grossmann Award Essay . xxi PART A PLENARY AND REVIEW TALKS A Brief History of X-Ray Astronomy in Germany Truemper, Joachim E. 3 On the Discovery of the Kerr metric Kerr, Roy Patrick . 9 Chaos and Symmetry in String Cosmology Damour, Thibault . 39 Hidden Symmetries, Cosmological Singularities and the E10=K(E10) Sigma Model Kleinschmidt, Axel; Nicolai, Herman . 49 The Nature of Generic Cosmological Singularities Uggla, Claes . 73 QCD and String Theory Klebanov, Igor R. 90 The Cosmic String Inverse Problem Polchinski, Joseph . 105 Loop Quantum Gravity: Four Recent Advances and a Dozen Frequently Asked Questions Ashtekar, Abhay . 126 String Theory Landscape and the Standard Model of Particle Physics Lust,¨ Dieter . 148 The Status of the Virgo Gravitational Wave Detector Bizouard, Marie-Anne; for the Virgo collaboration . 177 July 21, 2008 11:37 WSPC - Proceedings Trim Size: 9.75in x 6.5in contents 22 Analytical Modeling of Binary Black Holes Coalescence Buonanno, Alessandra . 197 Binary Pulsars and General Relativistic Effects Kramer, Michael . 225 Space Astronometry and Relativity Mignard, Fran¸cois; Klioner, Sergei A. 245 Neutrino Astronomy 2006 Halzen, Francis . 272 Dark Matter and Sterile Neutrinos Biermann, Peter L.; Munyaneza, Faustin . 291 Supercomputer Simulations of the Joint Formation and Evolution of Galaxies and Quasars Springel, Volker . 309 CMB Observations: From BOOMERanG to Planck : : : and Beyond De Bernardis, Paolo . 326 The Origins and the Early Evolution of Quasars and Supermassive Black Holes Djorgovski, S.
    [Show full text]
  • Inhomogeneous Pre-Big Bang String Cosmology
    March 21 1997 CERN-TH/97-42 Inhomogeneous Pre-Big Bang String Cosmology G. Veneziano Theory Division, CERN, CH-1211 Geneva 23, Switzerland Abstract An inhomogeneous version of Pre–Big Bang cosmology emerges, within string theory, from quite generic initial conditions, provided they lie deeply inside the weak-coupling, low- curvature regime. Large-scale homogeneity, flatness, and isotropy appear naturally as late- time outcomes of such an evolution. CERN-TH/97-42 March 1997 1 Introduction Superstring theory, a supposedly consistent and unified quantum theory of all interactions, suggests, through its peculiar duality symmetries [1], an attractive alternative to standard inflationary cosmology, the so-called Pre- Big Bang (PBB) scenario [2] [3] [4]. The basic postulate of PBB cosmology is that the Universe started its evolution from a very perturbative initial state, i.e. from very weak coupling and very small curvatures (in appropriate units, see below). If initial homogeneity is also assumed, this leads automatically to a super-inflationary epoch during which the accelerated expansion of the Universe is driven by the accelerated growth of the effective (gauge and gravity) coupling, i.e. of the dilaton. This result looks surprising, at first sight, since the equation of state of the dilaton is not of the kind that one usually associates with inflation. Indeed, inflation only occurs if the geometry is looked at in the so-called String(S)-frame, the one appearing in the Nambu- Goto-Polyakov action, while in the Einstein(E)-frame one rather observes an accelerated contraction. The point here is that, precisely at weak coupling and small curvatures, fun- damental strings keep their characteristic size constant and sweep geodesic surfaces with respect to the S-frame metric [5] [6].
    [Show full text]
  • Inhomogeneous Cosmology: an Answer to the Dark Matter and Dark Energy Problems?
    Inhomogeneous cosmology : an answer to the Dark Matter and Dark Energy problems? Alexandre Alles To cite this version: Alexandre Alles. Inhomogeneous cosmology : an answer to the Dark Matter and Dark Energy problems?. Astrophysics [astro-ph]. Université Claude Bernard - Lyon I, 2014. English. NNT : 2014LYO10165. tel-01266465 HAL Id: tel-01266465 https://tel.archives-ouvertes.fr/tel-01266465 Submitted on 2 Feb 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Num´ero d’ordre : 165 - 2014 Ann´ee 2014 THESE` DE L’UNIVERSITEDELYON´ D´elivr´ee par L’UNIVERSITE´ CLAUDE BERNARD LYON 1 ECOLE´ DOCTORALE DE PHYSIQUE ET ASTROPHYSIQUE DE LYON (PHAST, ED52) pour l’obtention du Diplomeˆ de Doctorat (arrˆet´edu7aoˆut 2006) soutenue publiquement le 22 Septembre 2014 par M. Alexandre Alles Titre : Inhomogeneous cosmology, an answer to the Dark Matter and Dark Energy problems? Jury : Alexandre Arbey, MCF. Examinateur Thomas Buchert,Pr. Directeur Aldo Deandrea,Pr. Examinateur Boudewijn F. Roukema,Pr. Rapporteur et Examinateur Pierre Salati,Pr. Pr´esident David L. Wiltshire,Pr. Rapporteur – Centre de Recherche Astrophysique de Lyon (CRAL - UMR 5574) – – Universite´ Claude Bernard Lyon 1 (UCBL) – – Ecole Doctorale de Physique et Astrophysique de Lyon (ED PHAST 52) – Inhomogeneous cosmology: an answer to the Dark Matter and Dark Energy problems? Author: Alexandre Alles September 21, 2014 Supervisor: Pr.
    [Show full text]
  • Solving the Horizon Problem with a Delayed Big-Bang Singularity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server SOLVING THE HORIZON PROBLEM WITH A DELAYED BIG-BANG SINGULARITY Marie-No¨elle CEL´ ERIER´ D´epartement d'Astrophysique Relativiste et de Cosmologie Observatoire de Paris{Meudon 5 Place Jules Janssen 92195 Meudon C´edex FRANCE The hot Big-Bang standard model for the evolution of the universe, despite strong successes, lets unresolved a number of problems. One of its main drawbacks, known as the horizon problem, was until now thought to be only solvable by an inflationary scenario. Here is proposed a class of inhomogeneous models of universe, getting rid of some of the worst drawbacks of standard cosmology. The horizon problem is solved by means of an initial singularity of “delayed” type and without need for any inflationary phase. The flatness and cosmological constant problems disappear. In this work, completed in collaboration with Jean Schneider 1,inthe framework of General Relativity, the Cosmological Principle is discarded to solve the horizon, flatness and cosmological constant problems, without any inflationary assumption, while keeping the successfull predictions of the stan- dard model. 1 The Cosmological Principle The standard justification of this principle rests on two arguments. One, observation-based, is the quasi-isotropy of the CMBR around us. The sec- ond, philosophical, asserts that our location in the universe is not special, and what we observe around us must be thus observed the same from everywhere. The standard conclusion is that the matter distribution of the universe is ho- mogeneous. One can, however, refuse the copernician argument.
    [Show full text]