Rough Creek Graben Consortium Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Rough Creek Graben Consortium Final Report Kentucky Geological Survey James C. Cobb, State Geologist and Director University of Kentucky, Lexington Rough Creek Graben Consortium Final Report John Hickman Contract Report 55 Series XII, 2013 Our Mission Our mission is to increase knowledge and understanding of the mineral, energy, and water resources, geologic hazards, and geology of Kentucky for the benefit of the Commonwealth and Nation. © 2006 University of Kentucky Earth Resources—OurFor further information Common contact: Wealth Technology Transfer Officer Kentucky Geological Survey 228 Mining and Mineral Resources Building University of Kentucky Lexington, KY 40506-0107 www.uky.edu/kgs ISSN 0075-5591 Technical Level Technical Level General Intermediate Technical General Intermediate Technical Contents Executive Summary ....................................................................................................................................1 Goals ................................................................................................................................................1 Data Confidentiality ......................................................................................................................2 Study Area ......................................................................................................................................2 Project Data .....................................................................................................................................2 Summary and Major Conclusions ...............................................................................................2 Introduction .................................................................................................................................................3 Overview of Regional Stratigraphy and Tectonics ...................................................................3 Oil and Gas Exploration History .................................................................................................8 Data and Methods .....................................................................................................................................10 Well Data .......................................................................................................................................10 Seismic Data ..................................................................................................................................10 Time Horizons .................................................................................................................13 Velocity Analysis ............................................................................................................13 Potential Fields Data .......................................................................................................17 Faults ..............................................................................................................................................17 Mapping Techniques ...................................................................................................................19 Map Analysis .............................................................................................................................................23 Structure on the Top of the New Albany Shale .......................................................................23 Thickness of the New Albany Shale ..........................................................................................25 Structure on the Base of the New Albany Shale ......................................................................25 Thickness of the Interval Between the Base of the New Albany Shale and the Top of the Maquoketa Shale ...................................................................................................................25 Structure on the Top of the Maquoketa Shale .........................................................................27 Thickness of the Maquoketa Shale ............................................................................................27 Structure on the Base of the Maquoketa Shale ........................................................................27 Thickness of the Interval Between the Base of the Maquoketa Shale and the Top of the Knox Supergroup .........................................................................................................................28 Structure on the Top of the Knox Supergroup ........................................................................28 Thickness of the Knox Supergroup ...........................................................................................28 Structure on the Top of the Eau Claire Formation ..................................................................29 Thickness of the Eau Claire Formation .....................................................................................29 Structure on the Top of the Reelfoot Arkose............................................................................30 Thickness of the Reelfoot Arkose ..............................................................................................30 Structure on the Top of Precambrian Basement ......................................................................30 Well-Based Cross-Section Analysis ........................................................................................................31 Laboratory Sample Analysis ...................................................................................................................32 Well-Cuttings X-Ray Diffraction and Fluorescence ................................................................32 Hydrocarbon Samples .................................................................................................................32 Additional Analyses ....................................................................................................................41 Discussion ..................................................................................................................................................41 Kinematic Structural and Tectonic Analysis ............................................................................41 Petroleum Systems Analysis ......................................................................................................45 New Albany Shale ..........................................................................................................45 Organic Content .................................................................................................45 Overburden/Burial ...........................................................................................45 Hydrocarbon Generation/Migration .............................................................46 Reservoir .............................................................................................................46 Contents (continued) Trap/Seal ............................................................................................................47 Maquoketa Shale .............................................................................................................47 Organic Content .................................................................................................47 Overburden/Burial ...........................................................................................47 Hydrocarbon Generation/Migration .............................................................48 Reservoir .............................................................................................................48 Trap/Seal ............................................................................................................49 Eau Claire Formation .....................................................................................................49 Organic Content .................................................................................................49 Overburden/Burial ...........................................................................................51 Hydrocarbon Generation/Migration .............................................................51 Reservoirs ............................................................................................................52 Trap and Seal ......................................................................................................53 Untested Zones of Higher Potential for Deep Gas Production ..........................................................53 Southern Shelf Edge ....................................................................................................................53 Eastern Limb of the Tolu Arch/Fluorspar Uplift ....................................................................55 Owensboro Graben Spillway .....................................................................................................56 Slope-to-Flat Transition Zone in Hart County .........................................................................56 References Cited ........................................................................................................................................59 Figures 1. Map showing locations of interpreted Precambrian rifts in the southern Illinois Basin .....4 2. Generalized Precambrian subcrop map for the project area ...................................................5 3. Time scale and stratigraphy used in
Recommended publications
  • Nd Isotope Mapping of the Grenvillian Allochthon Boundary Thrust in Algonquin Park, Ontario
    Canadian Journal of Earth Sciences Nd isotope mapping of the Grenvillian Allochthon Boundary Thrust in Algonquin Park, Ontario Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2018-0142.R1 Manuscript Type: Article Date Submitted by the 26-Sep-2018 Author: Complete List of Authors: Dickin, Alan; School of Geography and Geology Strong, Jacob; School of Geography and Geology Keyword: Nd isotopes,Draft Model ages, Grenville Province Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 34 Canadian Journal of Earth Sciences 1 Nd isotope mapping of the Grenvillian Allochthon Boundary Thrust in Algonquin Park, 2 Ontario 3 4 A.P. Dickin and J.W.D. Strong 5 School of Geography and Earth Sciences, McMaster University, Hamilton ON, Canada 6 7 Abstract 8 Over fifty new Nd isotope analyses are presented for high-grade orthogneisses from 9 Algonquin Park and surrounding region in order to map major Grenvillian thrust boundaries. Nd 10 model ages display a consistent geographical pattern that allows detailed mapping of the 11 boundary between the Algonquin and MuskokaDraft domains, here interpreted as the local trajectory 12 of the Ottawan-age Allochthon Boundary Thrust (ABT). The ABT is underlain by a domain with 13 Paleoproterozoic Nd model ages, interpreted as a tectonic duplex entrained onto the base of the 14 main allochthon. The boundaries determined using Nd isotope mapping are consistent with field 15 mapping and with remotely sensed aeromagnetic and digital elevation data. The precise location 16 of the ABT can be observed in a road-cut on Highway 60, on the north shore of the Lake of Two 17 Rivers in the centre of Algonquin Park.
    [Show full text]
  • Bedrock Geology of Altenburg Quadrangle, Jackson County
    BEDROCK GEOLOGY OF ALTENBURG QUADRANGLE Institute of Natural Resource Sustainability William W. Shilts, Executive Director JACKSON COUNTY, ILLINOIS AND PERRY COUNTY, MISSOURI STATEMAP Altenburg-BG ILLINOIS STATE GEOLOGICAL SURVEY E. Donald McKay III, Interim Director Mary J. Seid, Joseph A. Devera, Allen L. Weedman, and Dewey H. Amos 2009 360 GEOLOGIC UNITS ) ) ) 14 Qal Alluvial deposits ) 13 18 Quaternary Pleistocene and Holocene 17 360 ) 15 360 16 14 0 36 ) 13 Qf Fan deposits ) Unconformity Qal ) & 350 tl Lower Tradewater Formation Atokan ) ) Pennsylvanian 360 ) &cv Caseyville Formation Morrowan 24 360 ) Unconformity ) 17 Upper Elviran undivided, Meu ) Waltersburg to top of Degonia 19 20 Qal 21 22 23 ) 24 ) Mv Vienna Limestone 360 o ) 3 Mts ) 350 Mts Tar Springs Sandstone ) 20 360 ) Mgd 360 30 ) Mgd Glen Dean Limestone ) 21 350 360 Mts 29 ) Qal Hardinsburg Sandstone and J N Mhg Chesterian ) Golconda Formations h Æ Qal Mav anc 28 27 Br ) N oJ 26 25 JN 85 N ) Cypress Sandstone through J Mcpc Dsl 500 Paint Creek Formation JN N ) J o Mts N 5 J s ) Dgt 600 J N 70 J N Mgd Yankeetown Formation s ) Myr Db 80 28 Æ and Renault Sandstone N J 29 N J N ) Sb J Mgd Mississippian o Dgt Ssc 25 Clines o N 25 Msg 27 ) Qal J 80 s 3 Mav Aux Vases Sandstone N J N Mts o MILL J MISSISSIPPI 34 ) Qal J N ) N J Dsl 35 N 26 J o N 25 J Mgd Mgd ) Msg Ste. Genevieve Limestone 500 o Db DITCH J 20 Mgd N N N ) J J o RIVER o N 600 J 80 N ) 10 o J Mav Æ Msl St.
    [Show full text]
  • 2019 Structural Geology Syllabus
    GEOL 3411: STRUCTURAL GEOLOGY, SPRING 2021, REVISED 4/3/2021 MWF 9:00 – 9:50, Lab: T 2:00 – 4:50 Professor: Dr. Joe Satterfield Office: VIN 122 Office phone: 325-486-6766 Physics and Geosciences Department Office: 325-942-2242 E-mail: [email protected] Course Description A study of ways rocks and continents deform by faulting and folding, methods of picturing geologic structures in three dimensions, and causes of deformation. Includes a weekend field trip project (tentative date: April 15). Prerequisite: Physical Geology or Historical Geology Course Delivery Style: On-campus class and lab Structural Geology lecture and lab will be run as face-to-face classes in Vincent 146. Each person will sit at their own table to maintain social distancing. You will sit at the same table each class. Short videos made by your professor coupled with required reading in our two textbooks will introduce terms and basic concepts. We will spend much time in class and lab applying terms and concepts to solve problems. Most Fridays we will meet outside for a review discussion followed by a short quiz. Please refer to this Health and Safety web page1 for updated information about campus guidelines as they relate to the COVID-19 pandemic. Required Textbook • Structural geology of rocks and regions, Third Edition, by George H. Davis, Stephen J. Reynolds, and Charles F. Kluth. No lab manual needed! Required Lab and Field Equipment 1. Geology field book (I will place an order for all interested and pay shipping) 2. Pad of Tracing paper, 8.5 in x 11 in or 9 in x 12 in (Buy at Hobby Lobby or Michaels) 3.
    [Show full text]
  • Mantle Flow Through the Northern Cordilleran Slab Window Revealed by Volcanic Geochemistry
    Downloaded from geology.gsapubs.org on February 23, 2011 Mantle fl ow through the Northern Cordilleran slab window revealed by volcanic geochemistry Derek J. Thorkelson*, Julianne K. Madsen, and Christa L. Sluggett Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada ABSTRACT 180°W 135°W 90°W 45°W 0° The Northern Cordilleran slab window formed beneath west- ern Canada concurrently with the opening of the Californian slab N 60°N window beneath the southwestern United States, beginning in Late North Oligocene–Miocene time. A database of 3530 analyses from Miocene– American Holocene volcanoes along a 3500-km-long transect, from the north- Juan Vancouver Northern de ern Cascade Arc to the Aleutian Arc, was used to investigate mantle Cordilleran Fuca conditions in the Northern Cordilleran slab window. Using geochemi- Caribbean 30°N Californian Mexico Eurasian cal ratios sensitive to tectonic affi nity, such as Nb/Zr, we show that City and typical volcanic arc compositions in the Cascade and Aleutian sys- Central African American Cocos tems (derived from subduction-hydrated mantle) are separated by an Pacific 0° extensive volcanic fi eld with intraplate compositions (derived from La Paz relatively anhydrous mantle). This chemically defi ned region of intra- South Nazca American plate volcanism is spatially coincident with a geophysical model of 30°S the Northern Cordilleran slab window. We suggest that opening of Santiago the slab window triggered upwelling of anhydrous mantle and dis- Patagonian placement of the hydrous mantle wedge, which had developed during extensive early Cenozoic arc and backarc volcanism in western Can- Scotia Antarctic Antarctic 60°S ada.
    [Show full text]
  • Using CAD to Solve Structural Geology Problems
    Using CAD to Solve Structural Geology Problems Introduction Computer-Aided Design software applications can be used as a much more efficient replacement for traditional manual drafting methods. So instead of using a scale, protractor, drafting pend, etc., you can instead use CAD programs to electronically draft the solution to structural geology problems, or even compose a complete geologic map or cross-section with the application. There are many CAD applications available, costing anywhere from $5,000 to $0 (free), with varying levels of sophistication. Probably the most common is AutoCAD, however, because of the high cost of this software we will instead use a free “clone” that operates (for our purposes) just as well and is very similar in operation to AutoCAD. This application is “DraftSight”, and you may download it at no cost from the below web site: http://www.3ds.com/products-services/draftsight-cad-software/free-download/ (or just “Google” the word “DraftSight”) There are versions for the MacOS and Linux operating systems, however, I have only tested the Windows version (using WIN7 and WIN10) and the Linux version. I have heard from students that have used DraftSight under MacOS successfully but I can’t verify that personally. If you wish to use CAD to solve and/or compose structural geology projects please proceed to download the install file and install it on your system. There will also are several workstations with DraftSight installed in the Earth Sciences department. Before we delve into the details of using CAD please remember this- CAD and other computer applications are just electronic replacements for manual instruments.
    [Show full text]
  • Mineral Resources of the Illinois Basin in the Context of Basin Evolution
    Mineral Resources of the Illinois Basin in the Context of Basin Evolution St. Louis, Missouri, January 22-23,1992 Program and Abstracts Edited by Martin B. Goldhaber and J. James Eidel U.S. Geological Survey Open-File Report 92-1 This report is preliminary and has not been edited or reviewed for conformity with U.S. Geological Survey, Illinois State Geological Survey, Kentucky Geological Survey, Missouri Division of Geology and Land Survey, and Indiana Geological Survey standards. PREFACE The mineral resources of the U.S. midcontinent were instrumental to the development of the U.S. economy. Mineral resources are an important and essential component of the current economy and will continue to play a vital role in the future. Mineral resources provide essential raw materials for the goods consumed by industry and the public. To assess the availability of mineral resources and contribute to the abib'ty to locate and define mineral resources, the U.S. Geological Survey (USGS) has undertaken two programs in cooperation with the State Geological Surveys in the midcontinent region. In 1975, under the Conterminous U.S. Mineral Assessment Program (CUSMAP) work began on the Rolla 1° X 2° Quadrangle at a scale of 1:250,000 and was continued in the adjacent Springfield, Harrison, Joplin, and Paducah quadrangles across southern Missouri, Kansas, Illinois, Arkansas, and Oklahoma. Public meetings were held in 1981 to present results from the Rolla CUSMAP and in 1985 for the Springfield CUSMAP. In 1984, the Midcontinent Strategic and Critical Minerals Project (SCMP) was initiated by the USGS and the State Geological Surveys of 16 states to map and compile data at 1:1,000,000 scale and conduct related topical studies for the area from latitude 36° to 46° N.
    [Show full text]
  • AAPG 2010 Fossen Etal Canyonlands.Pdf
    GEOLOGIC NOTE AUTHORS Haakon Fossen Center for Integrated Petroleum Research, Department of Earth Sci- Fault linkage and graben ence, University of Bergen, P.O. Box 7800, Bergen 5020, Norway; [email protected] stepovers in the Canyonlands Haakon Fossen received his Candidatus Scien- tiarum degree (M.S. degree equivalent) from (Utah) and the North the University of Bergen (1986) and his Ph.D. in structural geology from the University of Min- Sea Viking Graben, with nesota (1992). He joined Statoil in 1986 and the University of Bergen in 1996. His scientific implications for hydrocarbon interests cover the evolution and collapse of mountain ranges, the structure and evolution of the North Sea rift basins, and petroleum- migration and accumulation related deformation structures at various scales. Haakon Fossen, Richard A. Schultz, Egil Rundhovde, Richard A. Schultz Geomechanics-Rock Atle Rotevatn, and Simon J. Buckley Fracture Group, Department of Geological Sciences and Engineering/172, University of Nevada, Reno, Nevada 89557; [email protected] ABSTRACT Richard Schultz received his B.A. degree in ge- Segmented graben systems develop stepovers that have im- ology from Rutgers University (1979), his M.S. degree in geology from Arizona State University portant implications in the exploration of oil and gas in exten- (1982), and his Ph.D. in geomechanics from sional tectonic basins. We have compared and modeled a rep- Purdue University (1987). He worked at the Lunar resentative stepover between grabens in Canyonlands, Utah, and Planetary Institute, NASA centers, and in and the North Sea Viking Graben and, despite their different precious metals exploration before joining the structural settings, found striking similarities that pertain to University of Nevada, Reno, in 1990.
    [Show full text]
  • 106Th Annual Report of the State Geologist
    106TH ANNUAL REPORT OF THE STATE GEOLOGIST of INDIANA GEOLOGICAL SURVEY DEPARTMENT OF NATURAL RESOURCES for July 1, 1981 - June 30, 1982 GEOLOGICAL SURVEY ONE HUNDRED AND SIXTH ANNUAL REPORT OF THE STATE GEOLOGIST PERSONNEL Permanent Personnel Administration John B. Patton •.•••• • .•.•••••••••.. State Geo 1og i st Maurice E. Biggs •. Assistant State Geologist Mary E. Fox • • • • • • • • . • . • . • • • • • • . •Mineral Statistician E. Co leen George. • . • . • . • • . • . • . • • • • • Principal Secretary Coal and Industrial Minerals Section Donald D. Carr .•• • •••.•••Geologist and Head Curtis H. Ault ••. .Geologist and Associate Head Donald L. Eggert. • Geologist Gordon S. Fraser •••••• • .•.• Geologist Denver Harper • • · .••• Geologist Nancy R. Hasenmueller .•...• • Geologist Wa 1ter A. Hasenmue 11 er. • • . .••••• Geologist Paul Irwin (Reclamation). • Geologist Nelson R. Shaffer ••• • Geologist Michele Wright (NRC) •. • • Geo log ist Janet Roller ••• · . • • • Secretary (To August 14, 1981) Susan E. Rumple . • • • . • Secretary (From August 12, 1981) Kathryn Shaffer • • . • • . • • Secretary Drafting and Photography Section William H. Moran. ••Chief Draftsman and Head Richard T. Hill •. •••.•.• Senior Geological Draftsman Roger L. Purcell. • Senior Geological Draftsman George R. Ringer ••. • •••••••••.•Photographer Wilbur E. Stalions. • Geological Artist-Draftsman Educational Services Reevan D. Rarick .•••. .•••.•.•. Geologist 1 Geochemistry Section Richard K. Leininger. Geochemist and Head Margaret V. Golde •.••. • .Instrument Analyst
    [Show full text]
  • The High Pressure Belt in the Grenville Province: 75 Architecture, Timing, and Exhumation1
    100 867 100 95 95 75 The High Pressure belt in the Grenville Province: 75 architecture, timing, and exhumation1 25 25 Toby Rivers, John Ketchum, Aphrodite Indares, and Andrew Hynes 5 5 0 0 Abstract: We propose that the Grenvillian allochthonous terranes may be grouped into High Pressure (HP) and Low Pressure (LP) belts and examine the HP belt in detail in the western and central Grenville Province. The HP belt is developed in Paleo- and Mesoproterozoic rocks of the pre-Grenvillian Laurentian margin and characterized by Grenvillian eclogite and co-facial HP granulite in mafic rocks. Pressure–temperature (P–T) estimates for eclogite-facies conditions in well-preserved assemblages are about 1800 MPa and 850°C. In the central Grenville Province, HP rocks formed at -1060–1040 Ma and underwent a single stage of unroofing with transport into the upper crust by -1020 Ma, whereas farther west they underwent two stages of unroofing separated by penetrative mid-crustal recrystallization before transport to the upper crust at -1020 Ma. Unroofing processes were comparable in the two areas, involving both thrusting and extensional faulting in an orogen propagating into its foreland by understacking. In detail, thrusting episodes preceded extension in the western Grenville Province, whereas in the central Grenville Province, they were coeval, resulting in unroofing by tectonic extrusion. In the central Grenville Province, the footwall ramp is well preserved, but any former ramp in the western Grenville Province was obliterated by later lower crustal extensional flow. Continuation of the HP belt into the eastern Grenville Province is not established, but likely on geological grounds.
    [Show full text]
  • Crespi, Cooper Boemmels, and Robinson Geology of The
    CRESPI, COOPER BOEMMELS, AND ROBINSON C2-1 GEOLOGY OF THE NORTHERN TACONIC ALLOCHTHON: STRAIN VARIATION IN THRUST SHEETS, BRITTLE FAULTS, AND POSTRIFT DIKE EMPLACEMENT by Jean Crespi, Jennifer Cooper Boemmels, and Jessica Robinson Geosciences, University of Connecticut, Storrs, CT 06269 INTRODUCTION This field trip has three purposes: (1) to present a synthesis of structural and strain data for the Taconic slate belt, which lies in the northern part of the Giddings Brook thrust sheet in the Taconic allochthon, (2) to present an analysis of fault-slip data for postcleavage faults in the region, and (3) to present the results of work on mafic dikes in the Taconic lobe of the New England–Québec igneous province. The stops have been selected to illustrate the along-strike variation in structure and strain, to show representative postcleavage faults, and to include dikes in a variety of orientations. The data presented at the stops cover a region that extends for about 60 km along strike in the Giddings Brook thrust sheet, from Hubbardton, Vermont, in the north to Salem, New York, in the south (Figs. 1 and 2). Emplacement of the Taconic allochthon took place during the Early to Late Ordovician Taconic orogeny. In the northeastern United States, the Taconic orogeny has traditionally been interpreted as resulting from the collision of a west-facing volcanic arc with the eastern margin of Laurentia (Bird and Dewey, 1970; Rowley and Kidd, 1981; Stanley and Ratcliffe, 1985). In this interpretation, emplacement of the Taconic allochthon occurred in a proforeland setting. New geochronological data, however, indicate that the orogeny involved several phases (Karabinos et al., 1998, 2017; Macdonald et al., 2014, 2017).
    [Show full text]
  • Xerox University Microfilms
    information t o u s e r s This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target” for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete. 4. The majority of usefs indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation.
    [Show full text]
  • B2150-B FRONT Final
    Bedrock Geology of the Paducah 1°×2° CUSMAP Quadrangle, Illinois, Indiana, Kentucky, and Missouri By W. John Nelson THE PADUCAH CUSMAP QUADRANGLE: RESOURCE AND TOPICAL INVESTIGATIONS Martin B. Goldhaber, Project Coordinator T OF EN TH TM E U.S. GEOLOGICAL SURVEY BULLETIN 2150–B R I A N P T E E R D . I O S . R A joint study conducted in collaboration with the Illinois State Geological U Survey, the Indiana Geological Survey, the Kentucky Geological Survey, and the Missouri M 9 Division of Geology and Land Survey A 8 4 R C H 3, 1 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1998 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Mark Schaefer, Acting Director For sale by U.S. Geological Survey, Information Services Box 25286, Federal Center Denver, CO 80225 Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Library of Congress Cataloging-in-Publication Data Nelson, W. John Bedrock geology of the Paducah 1°×2° CUSMAP Quadrangle, Illinois, Indiana, Ken- tucky, and Missouri / by W. John Nelson. p. cm.—(U.S. Geological Survey bulletin ; 2150–B) (The Paducah CUSMAP Quadrangle, resource and topical investigations ; B) Includes bibliographical references. Supt. of Docs. no. : I 19.3:2150–B 1. Geology—Middle West. I. Title. II. Series. III. Series: The Paducah CUSMAP Quadrangle, resource and topical investigations ; B QE75.B9 no. 2150–B [QE78.7] [557.3 s—dc21 97–7724 [557.7] CIP CONTENTS Abstract ..........................................................................................................................
    [Show full text]