Cochlearia L

Total Page:16

File Type:pdf, Size:1020Kb

Cochlearia L Dissertation submitted to the Combined Faculties for the Natural Sciences and for Mathematics of the Ruperto-Carola University of Heidelberg, Germany for the degree of Doctor of Natural Sciences presented by Eva M. Wolf born in: Karlsruhe, Germany Oral examination: 30.08.2017 The evolutionary history of Cochlearia L. Cytogenetics, phylogenomics and metabolomics of a cold relic in a warming world Referees: Prof. Dr. Marcus A. Koch apl. Prof. Dr. Claudia Erbar Table of Contents SUMMARY ........................................................................................................................................ 1 ZUSAMMENFASSUNG ....................................................................................................................... 3 GENERAL INTRODUCTION ................................................................................................................. 5 EVOLUTION IN THE CONTEXT OF A CHANGING ENVIRONMENT ........................................................................... 5 THE STUDY SYSTEM: COCHLEARIA AND TRIBE COCHLEARIEAE ............................................................................ 6 REFERENCES ......................................................................................................................................... 14 CHAPTER 1 – COCHLEARIA CYTOGENETICS ..................................................................................... 21 1.1 ABSTRACT ...................................................................................................................................... 22 1.2 INTRODUCTION ............................................................................................................................... 23 1.2.1 Genome evolution in flowering plants ................................................................................ 23 1.2.2 Genome evolution in the Brassicaceae family ..................................................................... 24 1.2.3 Genome evolution in the genus Cochlearia ......................................................................... 26 1.3 MATERIAL AND METHODS ................................................................................................................. 28 1.3.1 Cytogenetic methods ........................................................................................................... 28 1.3.2 Geographical distribution of chromosome numbers/genome sizes .................................... 31 1.4 RESULTS ........................................................................................................................................ 33 1.4.1 Chromosome counting and flow cytrometric analysis ........................................................ 33 1.4.2 Flow cytometry .................................................................................................................... 42 1.5 DISCUSSION ................................................................................................................................... 46 1.5.1 Two diploid karyotypes and the question of the ancestral base chromosome number ...... 46 1.5.2 Stability, instability and chaos? – Diploidy, polyploidy and aneuploidy in Cochlearia ........ 47 1.5.3 Genome duplication, genome size increase and subsequent parallel genome downsizing 48 1.6 REFERENCES ................................................................................................................................... 50 CHAPTER 2 – COCHLEARIA PHYLOGENOMICS ................................................................................. 57 2.1 ABSTRACT ...................................................................................................................................... 58 2.2 INTRODUCTION ............................................................................................................................... 59 2.2.1 NGS sequencing in phylogenetics and phylogeography ...................................................... 59 2.2.2 Cochlearia phylogenetics..................................................................................................... 60 2.3 MATERIAL AND METHODS ................................................................................................................. 62 2.3.1 Plant material and taxon sampling ..................................................................................... 62 2.3.2 DNA extraction and NGS sequencing .................................................................................. 65 2.3.3 Chloroplast genome data analysis ...................................................................................... 68 2.3.4 Mitochondrial genome data analysis .................................................................................. 72 2.3.5 Nuclear genome data analysis ............................................................................................ 73 2.4 RESULTS ........................................................................................................................................ 77 2.4.1 Illumina sequencing data .................................................................................................... 77 2.4.2 Chloroplast dataset ............................................................................................................. 77 2.4.3 Mitochondrial dataset ......................................................................................................... 85 i 2.4.4 Nuclear dataset................................................................................................................... 88 2.5 DISCUSSION ................................................................................................................................... 97 2.5.1 Congruence and incongruence in organellar phylogenies .................................................. 97 2.5.2 Organellar genome phylogenies, divergence time estimates and nuclear SNP data analyses – rewriting the evolutionary history of the genus Cochlearia ...................................................... 98 2.5.3 New insights into the complex evolutionary histories of polyploid taxa ........................... 101 2.5.4 Repeated adaptation to arctic/alpine habitats ................................................................ 105 2.6 REFERENCES ................................................................................................................................. 107 CHAPTER 3 – COCHLEARIA METABOLOMICS ................................................................................ 115 3.1 ABSTRACT .................................................................................................................................... 116 3.2 INTRODUCTION ............................................................................................................................. 117 3.2.1 New approaches to study plant responses to abiotic stresses and adaptation ................ 117 3.2.2 Edaphic and cold adaptation in arctic/alpine systems and the potential of the Cochlearia study system .............................................................................................................................. 118 3.3 MATERIAL AND METHODS ............................................................................................................... 120 3.3.1 Plant material and taxon sampling ................................................................................... 120 3.3.2 Habitat characterization and ecotype definition .............................................................. 122 3.3.3 Temperature treatment .................................................................................................... 122 3.3.4 Metabolite extraction and analyses ................................................................................. 123 3.3.5 Multivariate statistical analysis of metabolomics and integration of bioclimatic population clusters ....................................................................................................................................... 124 3.4 RESULTS ...................................................................................................................................... 127 3.4.1 Climatic data and habitat characterization ...................................................................... 127 3.4.2 Metabolomics – compound analysis (ANOVA) ................................................................. 129 3.4.3 Metabolomics – DAPC ....................................................................................................... 136 3.5 DISCUSSION AND OUTLOOK ............................................................................................................. 148 3.5.1 Insights from metabolomic compound analysis – investigating the cold metabolome of Cochlearia .................................................................................................................................. 148 3.5.2 DAPC analyses – in search of intrageneric variation in the Cochlearia cold metabolome 149 3.5.3 Outlook ............................................................................................................................. 151 3.5 REFERENCES ................................................................................................................................. 152 AVAILABILITY OF ADDITIONAL MATERIAL .................................................................................... 158 ACKNOWLEDGEMENTS
Recommended publications
  • "National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary."
    Intro 1996 National List of Vascular Plant Species That Occur in Wetlands The Fish and Wildlife Service has prepared a National List of Vascular Plant Species That Occur in Wetlands: 1996 National Summary (1996 National List). The 1996 National List is a draft revision of the National List of Plant Species That Occur in Wetlands: 1988 National Summary (Reed 1988) (1988 National List). The 1996 National List is provided to encourage additional public review and comments on the draft regional wetland indicator assignments. The 1996 National List reflects a significant amount of new information that has become available since 1988 on the wetland affinity of vascular plants. This new information has resulted from the extensive use of the 1988 National List in the field by individuals involved in wetland and other resource inventories, wetland identification and delineation, and wetland research. Interim Regional Interagency Review Panel (Regional Panel) changes in indicator status as well as additions and deletions to the 1988 National List were documented in Regional supplements. The National List was originally developed as an appendix to the Classification of Wetlands and Deepwater Habitats of the United States (Cowardin et al.1979) to aid in the consistent application of this classification system for wetlands in the field.. The 1996 National List also was developed to aid in determining the presence of hydrophytic vegetation in the Clean Water Act Section 404 wetland regulatory program and in the implementation of the swampbuster provisions of the Food Security Act. While not required by law or regulation, the Fish and Wildlife Service is making the 1996 National List available for review and comment.
    [Show full text]
  • Roadside Landscaping with Native Plants in the Czech Republic: a Review
    Horticulture International Journal Review Article Open Access Roadside landscaping with native plants in the Czech Republic: a review Abstract Volume 2 Issue 3 - 2018 Czech Republic has a unique experience in greening the roadsides. The changes that Mohammad Hasan Chowdhury,1 Mohammad were implemented in the early 1990s have had also been incorporated into the roadside 2 landscape in recent years making the Czech Republic one of the forerunners in Sujoun Lasker 1Department of Food Technology and Nutrition Science, greening the roadsides. Most of the roadside landscaping designs were inspired from Noakhali Science and Technology University, Bangladesh western landscapes comprises mostly of exotic species, which do not reconcile with the 2Department of Geography and Environment, Jahangirnagar environmental conditions of the Czech Republic. The intensive use of exotic species University, Bangladesh in artificial vegetation, high water requirements for the Czech Republic greenery with water shortages are causing major environmental and ecological challenges. Correspondence: Mohammad Hasan Chowdhury, Fortunately, the Czech Republic hosts a unique flora and fauna that show remarkable Department of Food Technology and Nutrition Science, adjustment to harsh weather conditions. Here we emphasize the use of native plants Noakhali Science and Technology University, Sonapur, due to their potential to develop roadside landscapes in water shortage conditions, Noakhali-3814, Bangladesh, Email [email protected] leading to reduced water usage for roadside landscaping. The preservation of native biodiversity of the Czech Republic will be an added benefit. In this article the main Received: April 02, 2018 | Published: May 14, 2018 aspects of the Czech Republic roadside landscaping efforts, with the associated water resources using native plants in landscaping, problems in promoting native plants contrast to non-native plants in landscaping and possible solutions are discussed.
    [Show full text]
  • Cochlearia Groenlandica L
    Cochlearia groenlandica L. synonym: Cochlearia officinalis L. scurvygrass Brassicaceae - mustard family status: State Sensitive, BLM strategic rank: G4? / S1S2 General Description: Fleshy, hairless biennial or perennial (sometimes annual); stems several, decumbent or occasionally erect, (5) 10-30 (35) cm long. Basal leaves in a rosette, petioles slender, usually several times longer than the blades, the blades (5) 10-20 mm long, kidney-shaped, heart-shaped or ovate; margins smooth to wavy. Stem leaves usually with larger blades, sessile or broadly short-petiolate, and generally toothed. Floral Characteristics: Racemes much elongated in fruit; flowers inconspicuous. Sepals 4, not saccate at the base; pedicels ascending, 5-15 mm long. Petals white, 3-5 mm long; stamens 6; style 0.2-0.5 mm long. Flowers June to August. Illustration by John H. Rumely, ©1964 University of Washington Fruits: Silicles without stalks, oval to elliptic, (3) 4-7 mm long, Press inflated and somewhat obcompressed, valves prominently nerved. Seeds biseriate, not mucilaginous when wet. Identification Tips: Distinguished from other mustards by its inflated and somewhat obcompressed fruit, maritime habit, fleshy herbage, and basal leaves with long petioles. Range: Circumboreal at high latitudes: islands of the Bering Sea, the Arctic, northern Europe, AK, C anada, and extending southward along the Pacific coast to WA and southern OR. Habitat/Ecology: Maritime. In crevices of rocky bluffs and © Mandy Lindeberg sea stacks, and in gravel and sand along tidal plains. WA populations have been found near the high tide zone in rocky alluvium, along creek beds, on bluffs in the salt spray zone, and near seabird nesting areas on rocky cliffs with bases that are inundated by high tides.
    [Show full text]
  • Colonial Garden Plants
    COLONIAL GARD~J~ PLANTS I Flowers Before 1700 The following plants are listed according to the names most commonly used during the colonial period. The botanical name follows for accurate identification. The common name was listed first because many of the people using these lists will have access to or be familiar with that name rather than the botanical name. The botanical names are according to Bailey’s Hortus Second and The Standard Cyclopedia of Horticulture (3, 4). They are not the botanical names used during the colonial period for many of them have changed drastically. We have been very cautious concerning the interpretation of names to see that accuracy is maintained. By using several references spanning almost two hundred years (1, 3, 32, 35) we were able to interpret accurately the names of certain plants. For example, in the earliest works (32, 35), Lark’s Heel is used for Larkspur, also Delphinium. Then in later works the name Larkspur appears with the former in parenthesis. Similarly, the name "Emanies" appears frequently in the earliest books. Finally, one of them (35) lists the name Anemones as a synonym. Some of the names are amusing: "Issop" for Hyssop, "Pum- pions" for Pumpkins, "Mushmillions" for Muskmellons, "Isquou- terquashes" for Squashes, "Cowslips" for Primroses, "Daffadown dillies" for Daffodils. Other names are confusing. Bachelors Button was the name used for Gomphrena globosa, not for Centaurea cyanis as we use it today. Similarly, in the earliest literature, "Marygold" was used for Calendula. Later we begin to see "Pot Marygold" and "Calen- dula" for Calendula, and "Marygold" is reserved for Marigolds.
    [Show full text]
  • Biogeography and Diversification of Brassicales
    Molecular Phylogenetics and Evolution 99 (2016) 204–224 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Biogeography and diversification of Brassicales: A 103 million year tale ⇑ Warren M. Cardinal-McTeague a,1, Kenneth J. Sytsma b, Jocelyn C. Hall a, a Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada b Department of Botany, University of Wisconsin, Madison, WI 53706, USA article info abstract Article history: Brassicales is a diverse order perhaps most famous because it houses Brassicaceae and, its premier mem- Received 22 July 2015 ber, Arabidopsis thaliana. This widely distributed and species-rich lineage has been overlooked as a Revised 24 February 2016 promising system to investigate patterns of disjunct distributions and diversification rates. We analyzed Accepted 25 February 2016 plastid and mitochondrial sequence data from five gene regions (>8000 bp) across 151 taxa to: (1) Available online 15 March 2016 produce a chronogram for major lineages in Brassicales, including Brassicaceae and Arabidopsis, based on greater taxon sampling across the order and previously overlooked fossil evidence, (2) examine Keywords: biogeographical ancestral range estimations and disjunct distributions in BioGeoBEARS, and (3) determine Arabidopsis thaliana where shifts in species diversification occur using BAMM. The evolution and radiation of the Brassicales BAMM BEAST began 103 Mya and was linked to a series of inter-continental vicariant, long-distance dispersal, and land BioGeoBEARS bridge migration events. North America appears to be a significant area for early stem lineages in the Brassicaceae order. Shifts to Australia then African are evident at nodes near the core Brassicales, which diverged Cleomaceae 68.5 Mya (HPD = 75.6–62.0).
    [Show full text]
  • Apomixis Is Not Prevalent in Subnival to Nival Plants of the European Alps
    Annals of Botany 108: 381–390, 2011 doi:10.1093/aob/mcr142, available online at www.aob.oxfordjournals.org Apomixis is not prevalent in subnival to nival plants of the European Alps Elvira Ho¨randl1,*, Christoph Dobesˇ2, Jan Suda3,4, Petr Vı´t3,4, Toma´sˇ Urfus3,4, Eva M. Temsch1, Anne-Caroline Cosendai1, Johanna Wagner5 and Ursula Ladinig5 1Department of Systematic and Evolutionary Botany, Faculty of Life Sciences, University of Vienna, A-1030 Vienna, Austria, 2Department of Pharmacognosy, Faculty of Life Sciences, University of Vienna, A-1090 Vienna, Austria, 3Department of Botany, Faculty of Science, Charles University in Prague, CZ-128 01 Prague, Czech Republic, 4Institute of Botany, Academy of Sciences of the Czech Republic, CZ-252 43 Pru˚honice, Czech Republic and 5Institute of Botany, University of Innsbruck, A-6020 Innsbruck, Austria * For correspondence. E-mail [email protected] Received: 2 December 2010 Returned for revision: 14 January 2011 Accepted: 28 April 2011 Published electronically: 1 July 2011 † Background and Aims High alpine environments are characterized by short growing seasons, stochastic climatic conditions and fluctuating pollinator visits. These conditions are rather unfavourable for sexual reproduction of flowering plants. Apomixis, asexual reproduction via seed, provides reproductive assurance without the need of pollinators and potentially accelerates seed development. Therefore, apomixis is expected to provide selective advantages in high-alpine biota. Indeed, apomictic species occur frequently in the subalpine to alpine grassland zone of the European Alps, but the mode of reproduction of the subnival to nival flora was largely unknown. † Methods The mode of reproduction in 14 species belonging to seven families was investigated via flow cyto- metric seed screen.
    [Show full text]
  • Specialist Report Charge
    Swan Lake Expansion Project (FERC Project No. 2911) Botany Resource Report FINAL Prepared for: Ketchikan-Misty Fiords Ranger District Tongass National Forest and Ketchikan, Alaska Prepared by: Kathryn Beck, Botanist Beck Botanical Services Karen Brimacombe, Ecologist McMillen, LLC January 2014 Botany Resource Report FINAL TABLE OF CONTENTS 1 Introduction .............................................................................................................................. 1 1.1 Project Description ........................................................................................................... 1 1.2 Regulatory Framework ..................................................................................................... 3 1.2.1 The National Forest Management Act of 1976 (NFMA) .................................... 3 1.2.2 USDA Departmental Regulations 9500-004 ....................................................... 3 1.2.3 36 Code of Federal Regulations (CFR) 219.19 (2000) ....................................... 3 1.2.4 Tongass Land and Resource Management Plan .................................................. 3 1.3 Analysis Area ................................................................................................................... 4 2 Action Alternatives and Reasonably Foreseeable Projects ...................................................... 4 2.1.1 No Action Alternative ......................................................................................... 5 2.1.2 Proposed Action Alternative ..............................................................................
    [Show full text]
  • Arctic National Wildlife Refuge Volume 2
    Appendix F Species List Appendix F: Species List F. Species List F.1 Lists The following list and three tables denote the bird, mammal, fish, and plant species known to occur in Arctic National Wildlife Refuge (Arctic Refuge, Refuge). F.1.1 Birds of Arctic Refuge A total of 201 bird species have been recorded on Arctic Refuge. This list describes their status and abundance. Many birds migrate outside of the Refuge in the winter, so unless otherwise noted, the information is for spring, summer, or fall. Bird names and taxonomic classification follow American Ornithologists' Union (1998). F.1.1.1 Definitions of classifications used Regions of the Refuge . Coastal Plain – The area between the coast and the Brooks Range. This area is sometimes split into coastal areas (lagoons, barrier islands, and Beaufort Sea) and inland areas (uplands near the foothills of the Brooks Range). Brooks Range – The mountains, valleys, and foothills north and south of the Continental Divide. South Side – The foothills, taiga, and boreal forest south of the Brooks Range. Status . Permanent Resident – Present throughout the year and breeds in the area. Summer Resident – Only present from May to September. Migrant – Travels through on the way to wintering or breeding areas. Breeder – Documented as a breeding species. Visitor – Present as a non-breeding species. * – Not documented. Abundance . Abundant – Very numerous in suitable habitats. Common – Very likely to be seen or heard in suitable habitats. Fairly Common – Numerous but not always present in suitable habitats. Uncommon – Occurs regularly but not always observed because of lower abundance or secretive behaviors.
    [Show full text]
  • Adenophora Liliifolia: Condition of Its Populations in Central Europe
    ACTA BIOLOGICA CRACOVIENSIA Series Botanica 58/2: 83–105, 2016 DOI: 10.1515/abcsb-2016-0018 ADENOPHORA LILIIFOLIA: CONDITION OF ITS POPULATIONS IN CENTRAL EUROPE ROMANA PRAUSOVÁ1a*, LUCIE MAREČKOVÁ2a, ADAM KAPLER3, L’UBOŠ MAJESKÝ2, TÜNDE FARKAS4, ADRIAN INDREICA5, LENKA ŠAFÁŘOVÁ6 AND MILOSLAV KITNER2 1University of Hradec Králové, Faculty of Science, Department of Biology, 500 02 Hradec Králové, Czech Republic 2Palacký University in Olomouc, Faculty of Science, Department of Botany, Šlechtitelů 27, 783 71 Olomouc-Holice, Czech Republic 3PAS Botanical Garden – Center for Biological Diversity Conservation in Powsin, Prawdziwka 2, 02-973 Warsaw 76, Poland 4Aggteleki Nemzeti Park Igazgatóság, Tengerszem oldal 1, 3759 Jósvafő, Hungary 5Transilvania University of Brasov, Faculty of Forestry, Şirul Beethoven – 1, 500123 Braşov, Romania 6East Bohemian Museum in Pardubice, Zámek 2, 530 02 Pardubice, Czech Republic Received June 16, 2016; revision accepted September 30, 2016 This study deals with populations of the European-South-Siberian geoelement Adenophora liliifolia (L.) A. DC. in the Czech Republic, Slovakia, Hungary, Romania, and Poland, where this species has its European periphery distri- bution. We studied the population size, genetic variability, site conditions, and vegetation units in which A. liliifolia grows.Keywords: Recent and historical localities of A. liliifolia were ranked into six vegetation units of both forest and non-for- est character. A phytosociological survey showed differences in the species composition among localities. Only a weak pattern of population structure was observed (only 22% of total genetic variation present at the interpopulation level, AMOVA analysis), with moderate values for gene diversity (Hj = 0.141) and polymorphism (P = 27.6%). Neighbor- joining and Bayesian clusterings suggest a similar genetic background for most of the populations from Slovakia, the Czech Republic, and Poland, contrary to the populations from Hungary, Romania, as well as two populations from Central and South Slovakia.
    [Show full text]
  • The Down Rare Plant Register of Scarce & Threatened Vascular Plants
    Vascular Plant Register County Down County Down Scarce, Rare & Extinct Vascular Plant Register and Checklist of Species Graham Day & Paul Hackney Record editor: Graham Day Authors of species accounts: Graham Day and Paul Hackney General editor: Julia Nunn 2008 These records have been selected from the database held by the Centre for Environmental Data and Recording at the Ulster Museum. The database comprises all known county Down records. The records that form the basis for this work were made by botanists, most of whom were amateur and some of whom were professional, employed by government departments or undertaking environmental impact assessments. This publication is intended to be of assistance to conservation and planning organisations and authorities, district and local councils and interested members of the public. Cover design by Fiona Maitland Cover photographs: Mourne Mountains from Murlough National Nature Reserve © Julia Nunn Hyoscyamus niger © Graham Day Spiranthes romanzoffiana © Graham Day Gentianella campestris © Graham Day MAGNI Publication no. 016 © National Museums & Galleries of Northern Ireland 1 Vascular Plant Register County Down 2 Vascular Plant Register County Down CONTENTS Preface 5 Introduction 7 Conservation legislation categories 7 The species accounts 10 Key to abbreviations used in the text and the records 11 Contact details 12 Acknowledgements 12 Species accounts for scarce, rare and extinct vascular plants 13 Casual species 161 Checklist of taxa from county Down 166 Publications relevant to the flora of county Down 180 Index 182 3 Vascular Plant Register County Down 4 Vascular Plant Register County Down PREFACE County Down is distinguished among Irish counties by its relatively diverse and interesting flora, as a consequence of its range of habitats and long coastline.
    [Show full text]
  • Cochlearia Officinalis As a Prophylactic for Covid19”
    “Cochlearia officinalis as a prophylactic for Covid19” Pardis Tabaee Damavandi What are herbal remedies Dietary and herbal remedies are becoming increasingly important not only for we pharmacognosists1, but for all mankind, since Darwinian evolutionary theory teaches us that civilisation evolved from the “ape to the overman”2 transition thanks to the integration of certain officinal plants and nutritional foods in the diet, throughout the centuries. At pandemic joint, we find articles raving about how the essential oil contained in cooking herbs, “Eugenol”3 has been found to act as a prophylactic towards the covid19 virus, as well as how vitamin D deficient patients had a less desirable immune response to combating the infectious virions when exposed to them, and that implies locally (at skin juncture), rather than systemically too, and more (articles). There is also the side of profit that needs to be discussed, in terms of how much revenue supplements provide to production industries, controversially, these are making the administration of the same supplements sometimes difficult, due to human scepticism; and lastly there is lifestyle which has some impact too, as an example, avitaminosis is often observed in populations where alcohol intake is unusually regular, due to the induced “sated feeling” the consumption of ethanol produces in patients, making them more reluctant to eating vitamin-filled foods. Food industries in deprived regions that are not regulated also can be a source of the problem, rather than the solution, as low quality vegetables and fruits, or excessive use of pesticides, parallelly to the deleterious non use of pesticides impact the amount of nutrients within the source of subsistence in question.
    [Show full text]
  • Cochlearia Polonica Fröhl
    Vol. 79, No. 3: 255-261, 2010 ACTA SOCIETATIS BOTANICORUM POLONIAE 255 COCHLEARIA POLONICA FRÖHL. (BRASSICACEAE), A NARROW ENDEMIC SPECIES OF SOUTHERN POLAND: HISTORY OF CONSERVATION EFFORTS, OVERVIEW OF CURRENT POPULATION RESOURCES AND GENETIC STRUCTURE OF POPULATIONS EL¯BIETA CIELAK 1, R Ó¯A KAMIERCZAKOWA 2, M ICHA £ RONIKIER 1 1 W. Szafer Institute of Botany, Polish Academy of Sciences Lubicz 46, 31-512 Kraków Poland e-mail: [email protected] 2 Institute of Nature Conservation, Polish Academy of Sciences Mickiewicza 33, 31-120 Kraków Poland (Received: December 10, 2009. Accepted: April 4, 2010) ABSTRACT Cochlearia polonica Fröhl. (Brassicaceae) is one of the rarest species in the Polish and European flora and a taxon endemic to a very small area in southern Poland. Due to industrial activities and subsequent transforma- tion of habitats it was extinct in all natural localities around 1994. The persistence of the species was ensured thanks to the active protection efforts including a series of transplantations based on the material from the last and decreasing natural population. The history of conservation efforts of C. polonica provides a model example of successful active protection in the European flora. Here, we provide a complete review comprising the following aims: (i) outline of the discovery and taxonomic conceptions on C. polonica , (ii) review of conservation efforts ai- med at preserving its populations, (iii) description of the existing population resources, and (iv) analysis of the ge- netic structure of all existing populations based on previously published data and new, supplementary results. KEY WORDS: Cochlearia polonica , endemic species, transplantation, introduced population, conser - vation, genetic variation, genetic structure, AFLP.
    [Show full text]