Basics in Clinical Nutrition Fifth Edition

Total Page:16

File Type:pdf, Size:1020Kb

Load more

BASICS IN CLINICAL NUTRITION Fifth Edition Editor in Chief Luboš Sobotka Associate Editors Simon P. Allison Alastair Forbes Rémy F. Meier Stéphane M. Schneider Peter B. Soeters Zeno Stanga Andre Van Gossum GALÉN BASICS IN CLINICAL NUTRITION Fifth Edition Editor in Chief Luboš Sobotka Associate Editors Simon P. Allison Alastair Forbes Rémy F. Meier Stéphane M. Schneider Peter B. Soeters Zeno Stanga Andre Van Gossum GALÉN Basics in Clinical Nutrition 5.indd 3 5.8.2019 11:45:00 BASICS IN CLINICAL NUTRITION Fifth edition Editor in Chief Luboš Sobotka Publishing House Galén Na Popelce 3144/10a, 150 00 Prague 5, Czech Republic Managing Editor Lubomír Houdek, Dr. Editor-in-Chief Soňa Dernerová, Dr. Composition Václav Zukal – Galén, Prague Print FINIDR, s. r. o., Lipová 1965, 737 01 Český Těšín, Czech Republic www.espenbluebook.org All rights reserved. This book, or any thereof, may not be used or reproduced in any manner without written permision. For information, address European Society of Parenteral and Enteral Nutrition. Supported by the program PROGRES Q40/12. © ESPEN, 1999, 2000, 2004, 2011, 2019 © Galén, 1999, 2000, 2004, 2011, 2019 ISBN 978-80-7492-427-9 Basics in Clinical Nutrition 5.indd 4 5.8.2019 11:45:00 V Editor in Chief Luboš Sobotka, MD, PhD Professor of Medicine 3rd Department of Medicine Metabolic Care and Gerontology Medical Faculty – Charles University Hradec Králové Czech Republic Associate Editors Simon P. Allison, MD, FRCP Peter B. Soeters, MD, PhD Professor in Clinical Nutrition Emeritus Professor of Surgery Department of Diabetes, Endocrinology Department of Surgery and Nutrition University Hospital Maastricht Queen’s Medical Center Maastricht Nottingham The Netherlands United Kingdom Zeno Stanga, MD, PhD Alastair Forbes, BSc, MD, FRCP, FHEA Professor in Internal Medicine and Clinical Clinical Professor of Medicine Nutrition Chief of Research and Innovation Division of Endocrinology, Diabetes and Norwich Medical School Clinical Nutrition University of East Anglia Division of General Internal Medicine Norwich University Hospital United Kingdom Bern Switzerland Rémy F. Meier, MD Professor of Medicine Andre Van Gossum, MD, PhD Head of Department of Gastroenterology, Professsor Hepatology and Nutrition Head of the Clinic of Intestinal Diseases University Hospital and Nutritional Support Kantonsspital Liestal Department of Gastroenterology Liestal Hopital Erasme Switzerland Universite Libre de Bruxelles Brussels Stéphane M. Schneider, MD, PhD, FEBGH Belgium Professor of Nutrition Nutritional Support Unit Archet University Hospital Nice France Basics in Clinical Nutrition 5.indd 5 5.8.2019 11:45:00 LIST OF AUTHORS VI Basics IN Clinical Nutrition List of authors Stephan C Bischoff, MD, PhD Professor of Medicine Michael Adolph, MD, PhD Institute of Nutritional Medicine Associate Professor University of Hohenheim Head of Nutrition Support Team Stuttgart Senior Physician Anesthesiology and Intensive Germany Care Medicine University Clinic Tuebingen Gyorgy Bodoky, MD, PhD Tuebingen Professor of Oncology Germany St. Laszlo Teaching Hospital Department of Oncology Carla Aeberhard, PhD Budapest Department of Endocrinology, Diabetes and Hungary Clinical Nutrition Bern University Prof Yves Boirie, MD, PhD Hospital and University of Bern University of Clermont-Ferrand Bern Clinical Nutrition department of the University Switzerland Hospital of Clement-Ferrand Human Nutrition Research Center Simon P. Allison, MD, FRCP Clermont-Ferrand Professor in Clinical Nutrition France Department of Diabetes, Endocrinology and Nutrition Marian A. E. van Bokhorst – de van der Queen’s Medical Center Schueren, RD, PhD Nottingham, UK Senior nutrition scientist Department of nutrition and dietetics Raffaella Antonione, MD VU University Medical Center Internal Medicine Amsterdam Clinica Medica, Ospedale di Cattinara The Netherlands Azienda Ospedaliero-Universitaria Trieste Dr Kurt Boeykens Italy Clinical Nutrition Nurse Specialist Nutrition Support Team Peter Austin AZ Nicolaas Hospital Senior Pharmacist Sint-Niklaas Southampton University NHS Hospitals Trust Belgium Southampton United Kingdom Federico Bozzetti, MD Surgeon oncologist Mette M Berger, MD, PhD Faculty of Medicine Professor of Intensive care medicine University of Milan Service of Intensive Care Medicine & Burns Milan Lausanne University Hospital (CHUV) Italy CH- 1011 Lausanne Switzerland Basics in Clinical Nutrition 5.indd 6 5.8.2019 11:45:00 List of authors VII Valentina Bozzetti, MD, PhD Anja Carlsohn, Prof, Dr Neonatal Intensive Unit Department of Ecotrophology San Gerardo Hospital Faculty of Life Science Monza University of Applied Science Italy Hamburg Germany Marco Braga, MD Professor of Surgery Yvon A. Carpentier, MD San Raffaele University Professor of Pathological Biochemistry and Milan Nutrition Italy L. Deloyers Laboratory for Experimental Surgery Fang Cai, MD Université Libre de Bruxelles Physician Brussels Unit of Nutrition Belgium Geneva University Hospital 1211 Geneva 14 Tommy Cederholm, MD, PhD Switzerland Professor of Clinical Nutrition Department of Public Health and Caring Philip C. Calder, PhD, DPhil Sciences Professor of Nutritional Immunology Uppsala University Institute of Human Nutrition and Human Uppsala Development and Health Academic Unit Sweden Faculty of Medicine University of Southampton Emanuele Cereda, MD, PhD Southampton General Hospital Researcher and Physician Southampton Nutrition and Dietetics Service United Kingdom IRCCS Fondazione Policlinico San Matteo Pavia Maria E. Camilo, MD, PhD Italy Professor of Medicine and Nutrition Research Unit of Nutrition and Metabolism Irit Chermesh, MD Institute of Molecular Medicine Deputy Director of Gastroenterology Medical Faculty Department Lisbon University Medical Director of Clinical Nutrition Lisbon Rambam Health Care Campus Portugal Haifa Israel Noël Cano, MD, PhD Professor of Nutrition Michael Chourdakis, MD, RD, MPH, PhD Human Nutrition Research Center of Auvergne Assistant Professor of Medical Nutrition Human Nutrition Unit, UMR 1019 INRA- Dept.of Medicine Clermont University Aristotle University of Thessaloniki Clinical Nutrition Unit, Clermont-Ferrand Thessaloniki University Hospital Greece Clement-Ferrand France Basics in Clinical Nutrition 5.indd 7 5.8.2019 11:45:01 VIII Basics IN Clinical Nutrition Luc Cynober, PharmD, PhD Wilfred Druml, MD Professor of Nutrition Professor of Medicine Head of Departments Medical Department III Dept. of Experimental, Metabolic and Clinical Division of Nephrology Biology University of Vienna and Vienna Pharmacy Faculty – Paris Descartes University General Hospital and Clinical Chemistry Department Vienna Cochin and Hôtel-Dieu Hospitals, APHP Austria Paris France Stanley J. Dudrick, MD, FACS Professor of Surgery Erno Dardai, MD, PhD Chairman, Department of Surgery Department of Anesthesiology and Intensive Director, Program in Surgery Therapy St. Mary’s Hospital St. Stephen’s Hospital Waterbury, CT Budapest Yale University School of Medicine Hungary New Haven, CT USA Sarah Delliere, MD, MS Service de Biochimie Marinos Elia, MD, FRCP Hopital Cochin Professor of Clinical Nutrition & Metabolism Groupe Hospitalier HUPC, APHP Institute of Human Nutrition Paris University of Southampton France Southampton General Hospital Southampton Nicolaas E. P. Deutz, MD, PhD United Kingdom Professor of Geriatrics. Professor of Pediatrics and Nutrition Nicholas D. Embleton, MD, MBBS, FRCPCH, Center for Translational Research in Aging BSc & Longevity Consultant Neonatal Pediatrician Department of Health and Kinesiology Honorary Reader in Neonatal Medicine Texas A&M University Royal Victoria Infirmary College Station, TX Newcastle Hospital USA NHS Foundation Trust Newcastle upon Tyne David F. Driscoll, PhD United Kingdom Vice President Stable Solutions LLC Joel Faintuch, MD, PhD Easton, MA Senior Professor USA Department of Gastroenterology Sao Paulo University Medical School Sao Paulo Brazil Basics in Clinical Nutrition 5.indd 8 5.8.2019 11:45:01 List of authors IX Joel J. Faintuch, MD, PhD Laurence Genton, MD, PhD Professor of Medicine Professor in Clinical Nutrition Department of Medicine Clinical Nutrition Hospital das Clinicas Geneva University Hospital Sao Paulo University Medical School Geneva Sao Paulo Switzerland Brazil M. Cristina Gonzalez, MD, PhD Enrico Fiaccadori, MD, PhD Professor of Post-Graduation Program in Health Renal Failure Unit and Behaviour Division of Nephrology Catholic University of Pelotas Parma University Hospital Pelotas RS University of Parma Brazil Parma Italy Olivier Goulet, MD, PhD Professor of Paediatrics Eric Fontaine, MD, PhD Department of Gastroenterology Professor of Medicine Hopital Necker Enfans-Malades INSERM U1055 - LBFA Paris Joseph Fourier University France Grenoble Cedex France Robert F. Grimble, BSc, PhD, RNutr Professor of Nutrition Alastair Forbes, BSc, MD, FRCP, FHEA Division of Developmental Origins Clinical Professor of Medicine of Health and Disease Chief of Research and Innovation School of Medicine Norwich Medical School University of Southampton University of East Anglia Southampton Norwich United Kingdom United Kingdom Martin Haluzík, MD, PhD Konstantinos C. Fragkos, MB, BS, MSc, PhD Professor of Medicine Clinical Research Fellow in Gastroenterology Department of Experimental Diabetology and Clinical Nutrition Institute for Clinical and Experimental Medicine University College London Prague London Czech Republic United Kingdom Folke Hammarqvist, MD, PhD Wim G. van Gemert, MD, PhD Professor in Emergency Surgery Colorectal,
Recommended publications
  • Aspartame Studies by Dr. Mercola

    Aspartame Studies by Dr. Mercola

    Aspartame Studies Health Problem: Brain damage/Cognitive skills disruption/Retardation/Neurochemical changes in the brain/Behavioral and Mood Changes/Problems Reference: http://aspartame.mercola.com/sites/aspartame/studies.aspx 1. Year Published: 1970 Full Reference: Brain Damage in Infant Mice Following Oral Intake of Glutamate, Aspartate, or Cysteine; Nature 1970;227-609-610 Funded By: Washington University Conclusion/Findings: Irreversible degenerative changes and acute neuronal necrosis Hyperlink to Study http://www.nature.com/nature/journal/v227/n5258/pdf/227609b0.pdf 2. Year Published: 2008 Full Reference: Direct and Indirect Cellular Effects of Aspartame on the Brain. European Journal of Clinical Nutrition (2008) 62, 451-462; P. Humphries, E. Pretorius, and H. Naude Funded By: Not known Conclusion/Findings: Excessive aspartame ingestion might cause certain mental disorders, as well as compromised learning and emotional functioning Hyperlink to Study: http://www.newmediaexplorer.org/sepp/aspartamebrain.pdf 3. Year Published: 2007 Full Reference: Life-Span Exposure to Low Doses of Aspartame Beginning During Prenatal Life Increases Cancer Effects in Rats, Morando Soffritti, Fiorella Belpoggi, Eva Tibaldi, Davide Degli Esposti, Michelina Lauriola; Environmental Health Perspectives, 115(9) Sep 2007; 115:1293-1297. doi:10.1289/ehp.10271. Funded By: Not known Conclusion/Findings: Carcinogenicity proven a second time; with effects increased when exposure to aspartame begins during fetal life. Hyperlink to Study: http://ehp03.niehs.nih.gov/article/fetchArticle.action?articleURI=info:doi/10.1289/ehp.10271 4. Year Published: 1984 Full Reference: Effects of Aspartame and Glucose on Rat Brain Amino Acids and Serotonin. Yokogoshi H, Roberst CH, Caballero B, Wurtman RJ. American Journal of clinical Nutrition.
  • Journal of Obesity and Nutritional Disorders

    Journal of Obesity and Nutritional Disorders

    Journal of Obesity and Nutritional Disorders Sparre M and Kristensen G. J Obes Nutr Disord: JOND-116. Review Article DOI: 10.29011/JOND-116.100016 Casualties of the Danish Malnutrition Period Maja Sparre1*, Gustav Kristensen2 1Geriatric Department, University Hospital Gentofte, Hellerup, Denmark 2Econometric Department, Stockholm School of Economics, Latvia *Corresponding Author: Maja Sparre, Geriatric Department, University hospital Gentofte, Niels Andersensvej 28, 2900 Hellerup, Denmark. Tel: +4538673867; Fax: +4538677632; Email: [email protected] Citation: Sparre M, Kristensen G (2017) Casualties of the Danish Malnutrition Period. J Obes Nutr Disord: JOND-116. DOI: 10.29011/JOND-116.100016 Received Date: 20 September, 2017; Accepted Date: 28 October, 2017; Published Date: 03 November, 2017 Abstract From 1999 to 2007 the number of people who died from malnutrition in Denmark rose suddenly, in some parts of the country up to 8 times. Inspired by the Dutch famine studies we examine that the death rates from diseases causing malnutrition. We find a parallel to the Dutch famine studies in that it seems that patients suffering from schizophrenia, stroke and Alzheimer’s disease also in excess during this period. Abbreviations: during this period show that they have an increased risk of devel- oping schizophrenia, diabetes, cold, breast cancer and Alzheimer’s DMP : The Danish Malnutrition Period Disease(AD) and have an altogether higher all-cause mortality [l-3]. AD : Alzheimer's Disease The Danish malnutrition period (DMP) 1999- Keywords:
  • International Prevalences of Reported Food Allergies and Intolerances

    International Prevalences of Reported Food Allergies and Intolerances

    European Journal of Clinical Nutrition (2001) 55, 298±304 ß 2001 Nature Publishing Group All rights reserved 0954±3007/01 $15.00 www.nature.com/ejcn International prevalences of reported food allergies and intolerances. Comparisons arising from the European Community Respiratory Health Survey (ECRHS) 1991 ± 1994 RK Woods1*, M Abramson1, M Bailey1 and EH Walters2 on behalf of the European Community Respiratory Health Survey (ECRHS) 1Departments of Epidemiology and Preventive Medicine, Monash Medical School, The Alfred Hospital, Prahran, Victoria, Australia; and 2Department of Respiratory Medicine, Monash Medical School, The Alfred Hospital, Prahran, Victoria, Australia Objective: The aim of this study was to report the prevalence, type and reported symptoms associated with food intolerance. Design: A cross-sectional epidemiological study involving 15 countries using standardized methodology. Participants answered a detailed interviewer-administered questionnaire and took part in blood, lung function and skin prick tests to common aeroallergens. Setting: Randomly selected adults who took part in the second phase of the European Community Respiratory Health Survey (ECRHS). Subjects: The subjects were 17 280 adults aged 20 ± 44 y. Results: Twelve percent of respondents reported food allergy=intolerance (range 4.6% in Spain to 19.1% in Australia). Atopic females who had wheezed in the past 12 months, ever had asthma or were currently taking oral asthma medications were signi®cantly more likely to report food allergy=intolerance. Participants from Scandi- navia or Germany were signi®cantly more likely than those from Spain to report food allergy=intolerance. Respondents who reported breathlessness as a food-related symptom were more likely to have wheezed in the past 12 months, to have asthma, use oral asthma medications, be atopic, have bronchial hyperreactivity, be older and reside in Scandinavia.
  • The Use of Non-Nutritive Sweeteners in Establishing and Maintaining a Healthy Weight

    The Use of Non-Nutritive Sweeteners in Establishing and Maintaining a Healthy Weight

    Brigham Young University BYU ScholarsArchive Student Works 2014-07-15 The Use of Non-Nutritive Sweeteners in Establishing and Maintaining A Healthy Weight Derrick Pickering Brigham Young University - Provo, [email protected] Mary Williams Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/studentpub Part of the Nursing Commons The College of Nursing showcases some of our best evidence based scholarly papers from graduate students in the Family Nurse Practitioner Program. The papers address relevant clinical problems for advance practice nurses and are based on the best evidence available. Using a systematic approach students critically analyze and synthesize the research studies to determine the strength of the evidence regarding the clinical problem. Based on the findings, recommendations are made for clinical practice. The papers are published in professional journals and presented at professional meetings. BYU ScholarsArchive Citation Pickering, Derrick and Williams, Mary, "The Use of Non-Nutritive Sweeteners in Establishing and Maintaining A Healthy Weight" (2014). Student Works. 120. https://scholarsarchive.byu.edu/studentpub/120 This Peer-Reviewed Article is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Student Works by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. The Use of Non-Nutritive Sweeteners in Establishing and Maintaining A Healthy Weight Derrick E. Pickering An evidence based scholarly paper submitted to the faculty of Brigham Young University in partial fulfillment of requirements for the degree of Masters of Science Mary Williams, Chair College of Nursing Brigham Young University August 2014 ii ABSTRACT The Use of Non-Nutritive Sweeteners in Establishing and Maintaining a Healthy Weight Derrick Pickering College of Nursing, BYU Master of Science in Nursing Obesity is an epidemic and continues to rise.
  • Food Processing: Opportunities and Challenges

    Food Processing: Opportunities and Challenges

    IUFoST Scientific Information Bulletin (SIB) November 2020 FOOD PROCESSING: OPPORTUNITIES AND CHALLENGES With a projected global population of almost 10 billion people by 2050 and limited natural resources available, sustainable production of adequate high-quality food is a major challenge facing our society. Food processing and preservation are among the most powerful tools available to achieve the goal of feeding the constantly increasing population because they are useful in addressing both post- harvest and consumer food losses. Food processing and full utilization of resources help to achieve food safety, increase shelf life, and improve the nutritional value of foods. Typical food processing includes operations such as mixing and formulating raw materials, pasteurization, heating, freezing, chilling, filtration, drying, fortification, packaging and the addition of preservatives, colorants, and flavors. In this sense, cooking is a form of food processing. Nowadays, the majority of foods sold in grocery stores have been subjected to some degree of processing; however, people and organizations often give different definitions of “processed food”. Food processing eliminates pathogenic microorganisms, may increase the availability or preservation of nutrients, and even reduce or deactivate innate harmful components. However, it is also evident that certain processes may result in the reduction of nutrients or potential bioactives. Some formulations increase ingredients that can contribute to poor health when consumed in high amount. Others may employ additives to extend shelf life and maintain flavor, texture and safety. Concerns have been raised among consumers and some health professionals about the potential negative effects of processed foods on human health and their relation to the obesity epidemic and chronic diseases such as type-2 diabetes and cardiovascular disease, in a scenario of increased sedentarism, reduced time for food preparation at home and overeating.
  • Nutrition and Dietetics (NTD) 1

    Nutrition and Dietetics (NTD) 1

    Nutrition and Dietetics (NTD) 1 Nutrition and Dietetics (NTD) Courses NTD 3399 Experimental Course: 1-6 semester hours. The content of this course is not described in the catalog. Title and number NTD 1101 Introduction to Dietetics: 1 semester hour. of credits are announced in the Class Schedule. Experimental courses may History of the profession, academic pathway, outline of internship expectations, be offered no more than three times with the same title and content. May be career opportunities, and professional ethics. S repeated. NTD 1139 Consumer Nutrition: 3 semester hours. NTD 4400 Nutrition Assessment and Instruction: 3 semester hours. Introduction to nutrition, relationships among food choices, levels of nutrition, Assessment of nutrition status of individuals through anthropometric, clinical, health of the individual and family. Experiences in dietary analysis, label and and dietary assessment and discussion of theories of behavioral modification, advertising critiques, and discussions of current trends. Designed for non-science models and techniques, communication skills in nutrition instruction. S majors. D NTD 4401 Medical Nutrition Therapy I: 3 semester hours. NTD 1199 Experimental Course: 1-6 semester hours. Application of nutrition principles and the nutrition care process in the prevention The content of this course is not described in the catalog. Title and number and treatment of obesity, diabetes mellitus, cardiovascular disease, nutrition of credits are announced in the Class Schedule. Experimental courses may support, and diseases of the respiratory tract, gallbladder, and pancreas. be offered no more than three times with the same title and content. May be PREREQ: Acceptance into Didactic Program in Dietetics, NTD 3360, repeated.
  • Current Knowledge of the Health Effects of Sugar Intake

    Current Knowledge of the Health Effects of Sugar Intake

    Current Knowledge of the Health Effects of Sugar Intake Anne L. Mardis, MD, MPH1 Twenty years ago, the common themselves or from corresponding Center for Nutrition Policy perception was that sugar intake was simple sugars added to foods during and Promotion associated with several chronic processing. Within the body, most diseases: Diabetes, coronary heart dietary sugars are converted to glucose, disease, obesity, and hyperactivity in a major fuel used by all cells and the children. Sugar was also thought to be primary fuel required by brain tissue the sole cause of dental caries. Recent for normal function. Low levels of advances in scientific knowledge, glucose in the blood will impair the however, have shed some light on the brain and cause permanent mental role of sugar in chronic diseases and impairment or worse—coma or death. dental caries. The evidence indicates The body can store a limited amount that sugar is not in itself associated of glucose as glycogen, which it can with the aforementioned chronic draw upon for less than a day. After diseases and is not the sole offender this, other sources such as proteins, in the development of dental caries. from the breakdown of body tissues, This research brief discusses current must be used to synthesize glucose scientific knowledge of the health for the cells (15). effects of sugar. Diabetes Physiology The relationship between dietary Despite having been labeled as “empty carbohydrates and insulin resistance calories,” sugars are truly important (a risk factor for diabetes mellitus, compounds from the perspective of ischemic heart disease, and hyper- the human organism.
  • CLINICAL NUTRITION HIGHLIGHTS Science Supporting Better Nutrition 2010 • Volume 6, Issue 3

    CLINICAL NUTRITION HIGHLIGHTS Science Supporting Better Nutrition 2010 • Volume 6, Issue 3

    ISSN 1815-7262 CLINICAL NUTRITION HIGHLIGHTS Science supporting better nutrition 2010 • Volume 6, Issue 3 In this issue Diagnosing and treating cow’s milk protein allergy Clinical nutrition abstracts 32nd ESPEN Congress CLINICAL NUTRITION HIGHLIGHTS Science supporting better nutrition 2010 • Volume 6, Issue 3 Feature article 2 Diagnosing and treating cow’s milk protein allergy Professor Christophe Dupont Health economic perspective 8 Economic estimates of the burden of cow’s milk protein allergy: A literature review Clinical nutrition abstracts 9 Cancer 9 Critical care 9 Geriatrics 12 Immunonutrition 13 Nutrition support 14 Pediatrics 15 Highlights of 32nd ESPEN Congress 18 5–8 September 2010 Conference calendar 24 Sponsored as a service to the medical profession by the Nestlé Nutrition Institute. Editorial development by CMPMedica. The opinions expressed in this publication are not necessarily those of the editor, publisher or sponsor. Any liability or obligation for loss or damage howsoever arising is hereby disclaimed. Although great care has been taken in compiling and checking the information herein to ensure that it is accurate, the editor, publisher and sponsor shall not be responsible for the continued currency of the information or for any errors, omissions or inaccuracies in this publication. © 2010 Société des Produits Nestlé S.A. All rights reserved. No part of this publication may be reproduced by any process in any language without the written permission of the publisher. Diagnosing and treating cow’s milk protein allergy Professor Christophe Dupont Pediatric Gastroenterology Feature article Feature Hôpital Necker – Enfants Malades Paris, France I. Introduction mendations or guidelines for the diagnosis and treatment of CMPA; one such task force was convened to develop Cow’s milk is the basis of most infant formulas, is widely consensus recommendations, including an algorithm, to used for complementary feeding and is commonly consumed specifically assist primary care physicians and general pedia- throughout childhood as part of a “balanced” diet.
  • Food Processing

    Food Processing

    FOOD PROCESSING BACKGROUND READING 5 A recent search for “processed food” on the internet brought up results that suggest, by and large, that they are harmful to health and should be avoided.1 Why have processed foods garnered such media criticism? This module sheds some light why and how foods are processed, as well as the actual harms and benefits associated with the industry. In this curriculum, food processing is defined as the practices used by food and beverage industries to transform raw plant and animal materials, such as grains, produce, meat and dairy, into products for consumers.2-4 Nearly all our food is processed in some way.5 Examples include freezing vegetables, milling wheat into flour and frying potato chips. Slaughtering animals for meat is also sometimes considered a form of food processing. Although some forms of food processing use the latest technology, others have been practiced for centuries. Early Egyptians brewed beer and discovered how to bake leavened bread, and the ancient Greeks made salted pork, a precursor to ham and bacon.3 Modern food processing is sometimes defined as taking place at a plant or factory.3 This is distinct from food preparation, which usually takes place in kitchens.3 Many activities—washing and cooking, for example—are common to both processing and preparation. The companies that process foods are sometimes called food manufacturers.6 While food processing can offer many benefits to businesses and consumers, certain aspects of the industry raise concerns over nutrition, food safety, worker justice, local economies and the environment. Degrees of food processing Not all foods undergo the same degree of processing.
  • NFSC - Nutrition and Food Science 1

    NFSC - Nutrition and Food Science 1

    NFSC - Nutrition and Food Science 1 NFSC431 Food Quality Control (4 Credits) NFSC - NUTRITION AND FOOD Definition and organization of the quality control function in the food industry; preparation of specifications; statistical methods for SCIENCE acceptance sampling; in-plant and processed product inspection. Instrumental and sensory methods for evaluating sensory quality, identity NFSC412 Food Processing Technology (4 Credits) and wholesomeness and their integration into grades and standards of Provides in-depth study of the major industrial modes of food quality. Statistical Process Control (SPC). preservation. It integrates aspects of the biology, microbiology, NFSC434 Food Microbiology Laboratory (3 Credits) biochemistry and engineering disciplines as they relate to food A study of techniques and procedures used in the microbiological processing technology and food science. examination of foods. Prerequisite: CHEM241, CHEM242, NFSC431, NFSC414, and NFSC434. Prerequisite: Must have completed or be concurrently enrolled in Corequisite: NFSC421 and NFSC423. NFSC430. Recommended: MATH120; or completion of MATH220 recommended. Credit Only Granted for: NFSC434 or ANSC434. NFSC414 Mechanics of Food Processing (4 Credits) Formerly: FDSC434. Applications in the processing and preservation of foods, of power NFSC440 Advanced Human Nutrition (4 Credits) transmission, hydraulics, electricity, thermodynamics, refrigeration, A critical study of physiologic, molecular and metabolic influences on instruments and controls, materials handling and time
  • NUTRITION and DIETETICS MAJOR Transfer Requirements

    NUTRITION and DIETETICS MAJOR Transfer Requirements

    NUTRITION AND DIETETICS MAJOR Transfer Requirements The following requirements for the major are subject to change without notice. To assure accuracy of the information on this sheet, you should consult with a counselor, the articulation officer, or review articulation agreements via the internet at www.assist.org. CAREER OPPORTUNITIES: Dietetics is the study of human nutrition and its application in providing for the dietary needs of people. Dietetics programs are designed to prepare individuals for occupations as professional Dietitians and Nutritionists, Dietetic Technicians, and Dietetic Assistants. At many colleges and universities, dietetics is offered as an option in home economics or food and nutrition programs. A period of clinical experience is required for certification as a registered Dietitian by the American Dietetics Association. A growing number of schools offer coordinated undergraduate programs, allowing students to complete the required clinical experience while obtaining a bachelor’s degree. Professional Dietetics programs provide option for specialized study in areas such as administration, education, research, and clinical and community dietetics. CALIFORNIA STATE POLYTECHNIC UNIVERSITY, POMONA Foods and Nutrition B.S. Core Requirements: Biology 101; Chemistry 1A-1B; Math 150; Microbiology 33; Nutrition 11; Physiology 31; Psychology 5; Sociology 101 or Anthropology 2 Dietetics: no additional courses Food Science: add Biology 102; Physics 2A-2B or 3A-3B; Math 160-161 CALIFORNIA STATE UNIVERSITY, LONG BEACH Dietetics
  • Risk of Metabolic Syndrome in Adults Exposed to the Great Chinese Famine During the Fetal Life and Early Childhood

    Risk of Metabolic Syndrome in Adults Exposed to the Great Chinese Famine During the Fetal Life and Early Childhood

    European Journal of Clinical Nutrition (2012) 66, 231–236 & 2012 Macmillan Publishers Limited All rights reserved 0954-3007/12 www.nature.com/ejcn ORIGINAL ARTICLE Risk of metabolic syndrome in adults exposed to the great Chinese famine during the fetal life and early childhood X Zheng1, Y Wang2, W Ren1, R Luo2, S Zhang1, JH Zhang3 and Q Zeng4 1Department of Endocrinology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; 2The Public Health Center, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China; 3Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, USA and 4Department of Statistics, Chongqing Medical University, Chongqing, China Background/Objectives: To determine whether exposure to the Chinese famine during fetal life and early childhood was associated with a greater risk of metabolic syndrome in later life. Subjects/Methods: We used data of adults from the 2008 annual physical examinations in Public Health Center of the First Affiliated Hospital of Chongqing Medical University in Chongqing. To minimize misclassification of the famine exposure periods, subjects born in 1959 and 1962 were excluded. Totally, 5040 participants were enrolled and categorized into control (1963–1964), fetally exposed (1960–1961) and postnatally exposed (1957–1958) group. We adopted the definition of metabolic syndrome recommended by the Chinese Diabetes Society in 2004. Results: Women in fetally and postnatally exposed groups had significantly higher prevalences of metabolic syndrome than in control group (7.3% and 8.6% vs 4.0%, Po0.05, respectively). Women in fetally and postnatally exposed groups had a significantly higher risk of metabolic syndrome, as compared with control women (odds ratio (OR) 1.87 (95% confidence interval (CI) 1.15–3.04, P ¼ 0.012), OR 1.50 (95% CI 1.20–1.87, P ¼ 0.0003), respectively).