Robust Induction of Interferon and Interferon-Stimulated Gene

Total Page:16

File Type:pdf, Size:1020Kb

Robust Induction of Interferon and Interferon-Stimulated Gene PLOS ONE RESEARCH ARTICLE Robust induction of interferon and interferon- stimulated gene expression by influenza B/ Yamagata lineage virus infection of A549 cells Pengtao Jiao1,2☯, Wenhui Fan2☯, Ying Cao2, He Zhang2, Lu Tian2,3, Lei Sun2,3, 1 1,2,3,4 2,3 Tingrong Luo *, Wenjun Liu *, Jing LiID * 1 State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresourses & Laboratory of Animal Infectious Diseases, College of Animal Sciences and Veterinary Medicine, Guangxi University, Nanning, Guangxi, China, 2 CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of a1111111111 Microbiology, Chinese Academy of Sciences, Beijing, China, 3 University of Chinese Academy of Sciences, a1111111111 Beijing, China, 4 Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of a1111111111 Sciences, Beijing, China a1111111111 a1111111111 ☯ These authors contributed equally to this work. * [email protected] (JL); [email protected] (WJL); [email protected] (TRL) Abstract OPEN ACCESS Influenza B virus (IBV) belongs to the Orthomyxoviridae family and generally causes spo- Citation: Jiao P, Fan W, Cao Y, Zhang H, Tian L, Sun L, et al. (2020) Robust induction of interferon radic epidemics but is occasionally deadly to individuals. The current research mainly and interferon-stimulated gene expression by focuses on clinical and pathological characteristics of IBV. However, to better prevent or influenza B/Yamagata lineage virus infection of treat the disease, one must determine the strategies developed by IBV to invade and disrupt A549 cells. PLoS ONE 15(4): e0231039. https:// doi.org/10.1371/journal.pone.0231039 cellular proteins and approach to replicate itself, to suppress antiviral innate immunity, and understand how the host responds to IBV infection. The B/Shanghai/PD114/2018 virus was Editor: Kui Li, University of Tennessee Health Science Center, UNITED STATES able to infect alveolar epithelial cells (A549) cells, with good potential for replication. To iden- tify host cellular responses against IBV infection, differentially expressed genes (DEGs) Received: December 23, 2019 were obtained using RNA sequencing. The GO and KEGG pathway term enrichment analy- Accepted: March 13, 2020 ses with the DEGs were performed, and we found that the DEGs were primary involved in Published: April 8, 2020 metabolic processes and cellular function, which may be related to the host response, Copyright: © 2020 Jiao et al. This is an open including the innate immune response against the virus. Our transcriptome analysis results access article distributed under the terms of the demonstrated robust induction of interferon and interferon-stimulated gene expression by Creative Commons Attribution License, which IBV in human cells during the early stages of infection, providing a foundation for further permits unrestricted use, distribution, and reproduction in any medium, provided the original studies focused on antiviral drug development and interactions between the virus and host. author and source are credited. Data Availability Statement: All relevant data are within the manuscript and its Supporting Information files. Introduction Funding: This work was supported by grants from the National Science and Technology Major Project Influenza viruses are single-stranded negative-sense RNA viruses belonging to the family (2018ZX10101004) (W.H.F), and the National Key Orthomyxoviridae, and are phylogenetically grouped into four virus genera: influenza A, B, C, R&D Program of China (2017YFD051105, and D viruses [1, 2]. Influenza B virus (IBV) generally causes local mild epidemics, but it may 2016YFD0500206) (W.J.L), the National Natural Science Foundation of China (Grant No. 31970153, be fatal to individuals, especially infants, pregnant woman, the elderly, and people with 31630079) (J.L, W.J.L), and the Youth Innovation impaired immune systems [3]. Since the 1980s, IBV have two genetically and antigenically dif- Promotion Association of CAS (2019091) (J.L). ferentiated lineages, termed B/Yamagata lineage and B/Victoria lineage, and the antigenic drift PLOS ONE | https://doi.org/10.1371/journal.pone.0231039 April 8, 2020 1 / 18 PLOS ONE Robust induction of IFNs and ISGs expression by IBV infection of A549 cells The funders had no role in study design, data rate is slower compared with influenza A viruses[4]. IBV is a pathogen with very limited host collection and analysis, decision to publish, or range, and its natural host is mainly humans with fever and cold symptoms. However, seasonal preparation of the manuscript. pandemics can break out, such as from the winter of 2017 to the spring of 2018, when the Yama- Competing interests: The authors have declared gata lineage strain became the dominant pandemic strain alongside IAV (H1N1 and H3N2) [5]. that no competing interests exist. When influenza virus invades a host cell, the innate immune system is activated against the virus. During the infection, viruses are recognized by pattern recognition receptors, the innate response is triggered, and interferons (IFNs) are secreted to limit early viral proliferation [6]. This identification leads to an appropriate antiviral response and to the activation of inflam- matory response and adaptive immune responses [7]. While the reasons for the limited host range of IBV remain unclear, one of explanations is that the interaction between IBV and the innate immune system imbues the virus with distinct characteristics, such as the role of ISG15, a typical interferon-induced antiviral gene for the innate immune response [8, 9]. Existing studies describe the production of host cytokines, including IFNs, IFN-stimulated genes (ISGs), and proinflammatory cytokines against influenza virus infection, as integral parts of the process of the cellular antiviral response [10±13]. We have also reported that type I IFNs, ISGs, and proinflammatory cytokines can be induced by IBV virions at the early stage of virus infection [7, 14]. The interaction between influenza virus infection and the host anti-viral response has been investigated in depth [15, 16], and the regulatory mechanism of IBV infection is also under investigation. Previous research has already shown that IBV ribonucleoprotein rapidly acti- vates TLR signaling pathways [14]. Nevertheless, the overall circumstances of the innate immune response, the pathways and types of IFNs that are dominant in innate immunity against IBV infection, and how they are regulated remain unclear. As has been demonstrated, the potential cytokines after viral infection can be directly or indirectly identified with the aid of transcriptome analysis [17]. RNA sequencing (RNA-seq) technology has been used to identify differences in gene regulation, which links transcriptional activators to the general transcriptional machinery [18]. In the present study, we investigated the host immune responses against IBV infection, using the B/Shanghai/PD114/2018 strain as a model, to study the anti-viral capability of IFNs and ISGs, which released in response to IBV infections. These results give us a glimpse into the host innate immunity and antiviral responses, particularly, multiple signaling pathways and antiviral factors that collectively limit viral replication. Materials and methods Cell lines, antibodies, and virus preparation Human lung carcinoma epithelial cells (A549) and Madin-Darby Canine Kidney cells (MDCK) were obtained from the American Type Culture Collection (ATCC, Manassas, VA) and were grown at 37ÊC in a humidified atmosphere with 5% CO2 in Dulbecco's modified Eagle's medium (DMEM; Gibco) supplemented with 10% (v/v) fetal bovine serum (Gibco), 100 U/mL penicillin, and 100 μg/mL streptomycin. A rabbit polyclonal antibody against NP was purchased from Thermo-Fisher Scientific. Goat anti-rabbit IgG conjugated to fluorescein isothiocyanate (FITC) were purchased from Zhongshan Golden Bridge Biotechnology (Beijing, China). The mouse anti-GAPDH mono- clonal antibody and anti-GFP antibody were purchased from Santa Cruz Biotechnology. HRP goat anti-mouse IgG was purchased from Beyotime. Genes encoding full-length ISGs, including the IFIT family (IFIT1, IFIT2, IFIT3, and IFIT5), IFITM family (IFITM1, IFITM2, IFITM3, and IFITM5), ISG15, ISG20, LAMP3, and RSAD2, were synthesized by GENEWIZ and then cloned into the pcDNA3.1-GFP vector. PLOS ONE | https://doi.org/10.1371/journal.pone.0231039 April 8, 2020 2 / 18 PLOS ONE Robust induction of IFNs and ISGs expression by IBV infection of A549 cells The B/Shanghai/PD114/2018 (B-SH; Yamagata lineage) virus was isolated from patients in Shanghai, China, and was a gift from Prof. Dayan Wang of the Chinese Center for Disease Control and Prevention. The virus stock was propagated in the allantoic cavities of 9-day-old specific-pathogen-free embryonated chicken eggs, and the virus titer was determined by 10-fold serial titration in MDCK cells according to plaque assays. The virus was stored at −80ÊC before use. Plaque assay Plaque assays were performed as previously described [19]. Briefly, MDCK cells were plated on 6-well culture plates and infected by serially diluted B-SH virus in serum-free DMEM sup- plemented with 2 μg/mL of TPCK-treated trypsin for 1 h at 37ÊC, 5% CO2. Then, the virus was removed, and the cells were washed with sterile phosphate-buffered saline (PBS). Next, the cells were overlaid with phenol red free-DMEM medium containing TPCK-treated trypsin (2 μg/mL), 0.6% low melting point agarose and incubated at 37ÊC with 5% CO2. Visible pla- ques were counted 72 h post infection to determine the virus titer. Data of all assays were obtained from at least three independent experiments, and expressed as means ± SD. Immunofluorescence assay A549 cells were seeded in 24-well culture plates overnight. The cells were proliferated on glass coverslips, infected with B-SH (MOI = 0.1) until a monolayer of cells spread to > 80% of the bottom of the culture glass coverslips, incubated for 1 h, and then the inoculum was displaced with DMEM for continued incubation at 37ÊC, 5% CO2. Cells were collected at 0, 4, 8, and 12 h, and the specific steps of immunofluorescence assay, as described by Jing et al [7] and Cao et al [15].
Recommended publications
  • A Case of Prenatal Diagnosis of 18P Deletion Syndrome Following
    Zhao et al. Molecular Cytogenetics (2019) 12:53 https://doi.org/10.1186/s13039-019-0464-y CASE REPORT Open Access A case of prenatal diagnosis of 18p deletion syndrome following noninvasive prenatal testing Ganye Zhao, Peng Dai, Shanshan Gao, Xuechao Zhao, Conghui Wang, Lina Liu and Xiangdong Kong* Abstract Background: Chromosome 18p deletion syndrome is a disease caused by the complete or partial deletion of the short arm of chromosome 18, there were few cases reported about the prenatal diagnosis of 18p deletion syndrome. Noninvasive prenatal testing (NIPT) is widely used in the screening of common fetal chromosome aneuploidy. However, the segmental deletions and duplications should also be concerned. Except that some cases had increased nuchal translucency or holoprosencephaly, most of the fetal phenotype of 18p deletion syndrome may not be evident during the pregnancy, 18p deletion syndrome was always accidentally discovered during the prenatal examination. Case presentations: In our case, we found a pure partial monosomy 18p deletion during the confirmation of the result of NIPT by copy number variation sequencing (CNV-Seq). The result of NIPT suggested that there was a partial or complete deletion of X chromosome. The amniotic fluid karyotype was normal, but result of CNV-Seq indicated a 7.56 Mb deletion on the short arm of chromosome 18 but not in the couple, which means the deletion was de novo deletion. Finally, the parents chose to terminate the pregnancy. Conclusions: To our knowledge, this is the first case of prenatal diagnosis of 18p deletion syndrome following NIPT.NIPT combined with ultrasound may be a relatively efficient method to screen chromosome microdeletions especially for the 18p deletion syndrome.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Functional Analysis of Sall4
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Functional analysis of Sall4 in modulating embryonic stem cell fate A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Molecular Pathology by Pei Jen A. Lee Committee in charge: Professor Steven Briggs, Chair Professor Geoff Rosenfeld, Co-Chair Professor Alexander Hoffmann Professor Randall Johnson Professor Mark Mercola 2009 Copyright Pei Jen A. Lee, 2009 All rights reserved. The dissertation of Pei Jen A. Lee is approved, and it is acceptable in quality and form for publication on microfilm and electronically: ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ ______________________________________________________________ Co-Chair ______________________________________________________________ Chair University of California, San Diego 2009 iii Dedicated to my parents, my brother ,and my husband for their love and support iv Table of Contents Signature Page……………………………………………………………………….…iii Dedication…...…………………………………………………………………………..iv Table of Contents……………………………………………………………………….v List of Figures…………………………………………………………………………...vi List of Tables………………………………………………….………………………...ix Curriculum vitae…………………………………………………………………………x Acknowledgement………………………………………………….……….……..…...xi Abstract………………………………………………………………..…………….....xiii Chapter 1 Introduction ..…………………………………………………………………………….1 Chapter 2 Materials and Methods……………………………………………………………..…12
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • In This Table Protein Name, Uniprot Code, Gene Name P-Value
    Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2-
    [Show full text]
  • Association of Sequence Alterations in the Putative Promoter of RAB7L1 with a Reduced Parkinson Disease Risk
    ORIGINAL CONTRIBUTION Association of Sequence Alterations in the Putative Promoter of RAB7L1 With a Reduced Parkinson Disease Risk Ziv Gan-Or, BMedSci; Anat Bar-Shira, PhD; Dvir Dahary, MSc; Anat Mirelman, PhD; Merav Kedmi, PhD; Tanya Gurevich, MD; Nir Giladi, MD; Avi Orr-Urtreger, MD, PhD Objective: To examine whether PARK16, which was re- Results: All tested SNPs were significantly associated with cently identified as a protective locus for Parkinson dis- PD (odds ratios=0.64-0.76; P=.0002-.014). Two of them, ease (PD) in Asian, white, and South American popula- rs1572931 and rs823144, were localized to the putative pro- tions, is also associated with PD in the genetically moter region of RAB7L1 and their sequence variations al- homogeneous Ashkenazi Jewish population. teredthepredictedtranscriptionfactorbindingsitesofCdxA, p300, GATA-1, Sp1, and c-Ets-1. Only 0.4% of patients were Design: Case-control study. homozygous for the protective rs1572931 genotype (T/T), comparedwith3.0%amongcontrols(P=5ϫ10−5).ThisSNP was included in a haplotype that reduced the risk for PD by Setting: A medical center affiliated with a university. 10- to 12-fold (P=.002-.01) in all patients with PD and in a subgroupofpatientswhodonotcarrytheAshkenazifounder Subjects: Five single-nucleotide polymorphisms (SNPs) mutations in the GBA or LRRK2 genes. located between RAB7L1 and SLC41A1 were analyzed in 720 patients with PD and 642 controls, all of Ashkenazi Conclusions: Our data demonstrate that specific SNP Jewish origin. variations and haplotypes in the PARK16 locus are asso- ciated with reduced risk for PD in Ashkenazim. Al- Main Outcome Measures: Haplotypes were defined though it is possible that alterations in the putative pro- and risk estimates were determined for each SNP and hap- moter of RAB7L1 are associated with this effect, the role lotype.
    [Show full text]
  • MOCHI Enables Discovery of Heterogeneous Interactome Modules in 3D Nucleome
    Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press MOCHI enables discovery of heterogeneous interactome modules in 3D nucleome Dechao Tian1,# , Ruochi Zhang1,# , Yang Zhang1, Xiaopeng Zhu1, and Jian Ma1,* 1Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA #These two authors contributed equally *Correspondence: [email protected] Contact To whom correspondence should be addressed: Jian Ma School of Computer Science Carnegie Mellon University 7705 Gates-Hillman Complex 5000 Forbes Avenue Pittsburgh, PA 15213 Phone: +1 (412) 268-2776 Email: [email protected] 1 Downloaded from genome.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The composition of the cell nucleus is highly heterogeneous, with different constituents forming complex interactomes. However, the global patterns of these interwoven heterogeneous interactomes remain poorly understood. Here we focus on two different interactomes, chromatin interaction network and gene regulatory network, as a proof-of-principle, to identify heterogeneous interactome modules (HIMs), each of which represents a cluster of gene loci that are in spatial contact more frequently than expected and that are regulated by the same group of transcription factors. HIM integrates transcription factor binding and 3D genome structure to reflect “transcriptional niche” in the nucleus. We develop a new algorithm MOCHI to facilitate the discovery of HIMs based on network motif clustering in heterogeneous interactomes. By applying MOCHI to five different cell types, we found that HIMs have strong spatial preference within the nucleus and exhibit distinct functional properties. Through integrative analysis, this work demonstrates the utility of MOCHI to identify HIMs, which may provide new perspectives on the interplay between transcriptional regulation and 3D genome organization.
    [Show full text]
  • Newly Identified Gon4l/Udu-Interacting Proteins
    www.nature.com/scientificreports OPEN Newly identifed Gon4l/ Udu‑interacting proteins implicate novel functions Su‑Mei Tsai1, Kuo‑Chang Chu1 & Yun‑Jin Jiang1,2,3,4,5* Mutations of the Gon4l/udu gene in diferent organisms give rise to diverse phenotypes. Although the efects of Gon4l/Udu in transcriptional regulation have been demonstrated, they cannot solely explain the observed characteristics among species. To further understand the function of Gon4l/Udu, we used yeast two‑hybrid (Y2H) screening to identify interacting proteins in zebrafsh and mouse systems, confrmed the interactions by co‑immunoprecipitation assay, and found four novel Gon4l‑interacting proteins: BRCA1 associated protein‑1 (Bap1), DNA methyltransferase 1 (Dnmt1), Tho complex 1 (Thoc1, also known as Tho1 or HPR1), and Cryptochrome circadian regulator 3a (Cry3a). Furthermore, all known Gon4l/Udu‑interacting proteins—as found in this study, in previous reports, and in online resources—were investigated by Phenotype Enrichment Analysis. The most enriched phenotypes identifed include increased embryonic tissue cell apoptosis, embryonic lethality, increased T cell derived lymphoma incidence, decreased cell proliferation, chromosome instability, and abnormal dopamine level, characteristics that largely resemble those observed in reported Gon4l/udu mutant animals. Similar to the expression pattern of udu, those of bap1, dnmt1, thoc1, and cry3a are also found in the brain region and other tissues. Thus, these fndings indicate novel mechanisms of Gon4l/ Udu in regulating CpG methylation, histone expression/modifcation, DNA repair/genomic stability, and RNA binding/processing/export. Gon4l is a nuclear protein conserved among species. Animal models from invertebrates to vertebrates have shown that the protein Gon4-like (Gon4l) is essential for regulating cell proliferation and diferentiation.
    [Show full text]
  • Complete Transcriptome Profiling of Normal and Age-Related Macular
    www.nature.com/scientificreports OPEN Complete Transcriptome Profling of Normal and Age-Related Macular Degeneration Eye Tissues Reveals Received: 16 June 2017 Accepted: 30 January 2018 Dysregulation of Anti-Sense Published: xx xx xxxx Transcription Eun Ji Kim1, Gregory R. Grant1,2, Anita S. Bowman3,4, Naqi Haider3,4, Harini V. Gudiseva3 & Venkata Ramana Murthy Chavali3,4 Age-related macular degeneration (AMD) predominantly afects the retina and retinal pigment epithelium in the posterior eye. While there are numerous studies investigating the non-coding transcriptome of retina and RPE, few signifcant diferences between AMD and normal tissues have been reported. Strand specifc RNA sequencing of both peripheral retina (PR) and RPE-Choroid-Sclera (PRCS), in both AMD and matched normal controls were generated. The transcriptome analysis reveals a highly signifcant and consistent impact on anti-sense transcription as well as moderate changes in the regulation of non-coding (sense) RNA. Hundreds of genes that do not express anti-sense transcripts in normal PR and PRCS demonstrate signifcant anti-sense expression in AMD in all patient samples. Several pathways are highly enriched in the upregulated anti-sense transcripts—in particular the EIF2 signaling pathway. These results call for a deeper exploration into anti-sense and noncoding RNA regulation in AMD and their potential as therapeutic targets. Age-related macular degeneration (AMD) is the third largest cause of vision loss worldwide1. It is a progressive retinal disorder that involves loss of central vision, hypo- and hyper-pigmentation of the RPE, deposition of drusen in the Bruch’s membrane, and loss of photoreceptors, especially in the 8th or 9th decade2–4.
    [Show full text]
  • A Quantitative Telomeric Chromatin Isolation Protocol Identifies Different Telomeric States
    ARTICLE Received 20 Aug 2013 | Accepted 31 Oct 2013 | Published 25 Nov 2013 DOI: 10.1038/ncomms3848 A quantitative telomeric chromatin isolation protocol identifies different telomeric states Larissa Grolimund1,2,*, Eric Aeby1,2,*, Romain Hamelin1,3, Florence Armand1,3, Diego Chiappe1,3, Marc Moniatte1,3 & Joachim Lingner1,2 Telomere composition changes during tumourigenesis, aging and in telomere syndromes in a poorly defined manner. Here we develop a quantitative telomeric chromatin isolation protocol (QTIP) for human cells, in which chromatin is cross-linked, immunopurified and analysed by mass spectrometry. QTIP involves stable isotope labelling by amino acids in cell culture (SILAC) to compare and identify quantitative differences in telomere protein com- position of cells from various states. With QTIP, we specifically enrich telomeric DNA and all shelterin components. We validate the method characterizing changes at dysfunctional tel- omeres, and identify and validate known, as well as novel telomere-associated polypeptides including all THO subunits, SMCHD1 and LRIF1. We apply QTIP to long and short telomeres and detect increased density of SMCHD1 and LRIF1 and increased association of the shel- terins TRF1, TIN2, TPP1 and POT1 with long telomeres. Our results validate QTIP to study telomeric states during normal development and in disease. 1 EPFL-Ecole Polytechnique Fe´de´rale de Lausanne, School of Life Sciences, CH-1015 Lausanne, Switzerland. 2 ISREC-Swiss Institute fro Experimental Cancer Research at EPFL, CH-1015 Lausanne, Switzerland. 3 Proteomics Core Facility at EPFL, CH-1015 Lausanne, Switzerland. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to J.L.
    [Show full text]
  • Mrna Editing, Processing and Quality Control in Caenorhabditis Elegans
    | WORMBOOK mRNA Editing, Processing and Quality Control in Caenorhabditis elegans Joshua A. Arribere,*,1 Hidehito Kuroyanagi,†,1 and Heather A. Hundley‡,1 *Department of MCD Biology, UC Santa Cruz, California 95064, †Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and ‡Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405 ABSTRACT While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes. KEYWORDS Caenorhabditis elegans; splicing; RNA editing; RNA modification; polyadenylation; quality control; WormBook TABLE OF CONTENTS Abstract 531 RNA Editing and Modification 533 Adenosine-to-inosine RNA editing 533 The C. elegans A-to-I editing machinery 534 RNA editing in space and time 535 ADARs regulate the levels and fates of endogenous dsRNA 537 Are other modifications present in C.
    [Show full text]
  • A Concise Review of Human Brain Methylome During Aging and Neurodegenerative Diseases
    BMB Rep. 2019; 52(10): 577-588 BMB www.bmbreports.org Reports Invited Mini Review A concise review of human brain methylome during aging and neurodegenerative diseases Renuka Prasad G & Eek-hoon Jho* Department of Life Science, University of Seoul, Seoul 02504, Korea DNA methylation at CpG sites is an essential epigenetic mark position of carbon in the cytosine within CG dinucleotides that regulates gene expression during mammalian development with resultant formation of 5mC. The symmetrical CG and diseases. Methylome refers to the entire set of methylation dinucleotides are also called as CpG, due to the presence of modifications present in the whole genome. Over the last phosphodiester bond between cytosine and guanine. The several years, an increasing number of reports on brain DNA human genome contains short lengths of DNA (∼1,000 bp) in methylome reported the association between aberrant which CpG is commonly located (∼1 per 10 bp) in methylation and the abnormalities in the expression of critical unmethylated form and referred as CpG islands; they genes known to have critical roles during aging and neuro- commonly overlap with the transcription start sites (TSSs) of degenerative diseases. Consequently, the role of methylation genes. In human DNA, 5mC is present in approximately 1.5% in understanding neurodegenerative diseases has been under of the whole genome and CpG base pairs are 5-fold enriched focus. This review outlines the current knowledge of the human in CpG islands than other regions of the genome (3, 4). CpG brain DNA methylomes during aging and neurodegenerative islands have the following salient features. In the human diseases.
    [Show full text]
  • The Genetic Program of Pancreatic Beta-Cell Replication in Vivo
    Page 1 of 65 Diabetes The genetic program of pancreatic beta-cell replication in vivo Agnes Klochendler1, Inbal Caspi2, Noa Corem1, Maya Moran3, Oriel Friedlich1, Sharona Elgavish4, Yuval Nevo4, Aharon Helman1, Benjamin Glaser5, Amir Eden3, Shalev Itzkovitz2, Yuval Dor1,* 1Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 2Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel. 3Department of Cell and Developmental Biology, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel 4Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University and Hadassah, The Institute for Medical Research Israel- Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel 5Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel *Correspondence: [email protected] Running title: The genetic program of pancreatic β-cell replication 1 Diabetes Publish Ahead of Print, published online March 18, 2016 Diabetes Page 2 of 65 Abstract The molecular program underlying infrequent replication of pancreatic beta- cells remains largely inaccessible. Using transgenic mice expressing GFP in cycling cells we sorted live, replicating beta-cells and determined their transcriptome. Replicating beta-cells upregulate hundreds of proliferation- related genes, along with many novel putative cell cycle components. Strikingly, genes involved in beta-cell functions, namely glucose sensing and insulin secretion were repressed. Further studies using single molecule RNA in situ hybridization revealed that in fact, replicating beta-cells double the amount of RNA for most genes, but this upregulation excludes genes involved in beta-cell function.
    [Show full text]