Glossary of Terms the Mayor’S Municipal Waste Management Strategy

Total Page:16

File Type:pdf, Size:1020Kb

Glossary of Terms the Mayor’S Municipal Waste Management Strategy APPENDIX sEven GlossAry of TErms ThE Mayor’s municipal wAste management sTrategy Advanced conversion technologies: are in a generating station of which at least 98 per defined in the Reneables Obligation Order 2002 cent of the energy content (measured over a as meaning anaerobic digestion, gasification period of one month) is derived from plant or or pyrolysis. Such technologies may require animal matter or substances derived directly pre-treatment technologies such as mechanical or indirectly therefrom (whether or not such biological treatment (MBT) or autoclave to matter or substances are waste) and includes prepare waste for use in advanced conversion agricultural, forestry or wood wastes or residues, technologies. sewage and energy crops (provided that such plant or animal matter is not or is not derived Aggregates: granular material used in directly or indirectly from fossil fuel). construction. Aggregates may be natural, artificial or recycled. Biomass waste/biomass municipal waste: refers to materials derived from plant or animal Anaerobic digestion: this is the biological matter including wood, paper, card, and organic degradation of organics in the absence of waste (food and green garden waste). oxygen, producing biogas (typical composition of 65 per cent methane and 35 per cent CO2) Borough/London boroughs: There are 32 and residue (digestate) suitable for use as a soil London boroughs plus the City of London. improver. The 32 London boroughs are administered by London borough councils which are elected Autoclave: is a steam sterilisation process to every four years. The boroughs are the principal treat mixed waste and includes mechanical local authorities in London and are responsible components to separate out materials suitable for running most local services in their areas, for recycling. The heat in the autoclave (up such as schools, social services, waste collection to 150 degrees Celsius) changes the physical and roads. characteristics of the waste. This can lead to greater recovery rates of higher quality Bottom Ash: burnt out residues from the recyclable materials than what can be achieved bottom grate of waste incinerators, which using mechanical biological treatment (MBT) represents between 20 and 25 percent of the technologies. Autoclave is also known as processed waste by weight. Ferrous metals can mechanical heat treatment (MHT). be removed by magnetic separation for recycling and bottom ash itself is being increasing used in Biodegradable waste: is defined in Council the manufacture of masonry blocks and in road Directive 1999/31/EC on the landfill of waste construction. as meaning any waste that is capable of undergoing anaerobic or aerobic decomposition, Bring Recycling: refers to a recycling site, see such as organic kitchen and green garden waste, recycling site. Known as such, as the recycler has and paper and paperboard. A proportion of to ‘bring’ their materials to the site. textiles is deemed to be biodegradable for the purpose of implementing the Landfill Allowance Brownfield land: any land or premises which Trading Scheme (LATS) – see definition. has previously been used or developed and is not currently fully in use, although it may be Biomass: is defined in the Renewables partially occupied or utilised. The land may also Obligation Order 2002 as meaning fuel used be vacant, derelict or contaminated but excludes 3 parks, recreation grounds, allotments and land Carbon dioxide: is a naturally occurring gas where the remains of previous use have blended comprising 0.04 per cent of the atmosphere. It is into the landscape, or have been overtaken by essential to photosynthesis in plants and is also nature conservation value or amenity use. a prominent greenhouse gas. The burning of fossil fuels such as coal or gas, and some waste Business improvement districts: This materials including plastics, releases carbon concept was originally developed in the USA dioxide into the atmosphere. It is currently the for increasing investment within defined areas predominant scientific opinion that carbon of a city such as town centres. This is achieved dioxide emissions are the main cause of global through changes to local taxation, based on a warming, contributing to climate change. supplementary rate levied on businesses within that defined area. Carbon dioxide-equivalent: is the universal unit of measurement used to indicate the global Calorific Value: the calorific value of a warming potential (GWP) of greenhouse gases. substance, typically a fuel, is the amount of It is used to evaluate the impacts of releasing (or heat released during the energy conversion of a avoiding the release of) different greenhouse specified amount of fuel. The calorific value is gases. For example, the GWP of methane is a characteristic for each substance of the fuel. 21 times that of CO2, which has a GWP of 1. It is measured in units of energy per unit of the Sulphur hexafluoride has a GWP of 23,900. A substance. For the purposes of this document CO2-equivalent figure is used to represent the the fuel substances referred to are biomass and warming impact of greenhouse gases. See also non-biomass residual municipal waste used for definition of Global Warming Potential. energy generation. The calorific value of these substances is expressed in mega joules (MJ) Carbon intensity floor: is the CO2eq emissions per kilogram of residual waste treated. See also performance level set for electricity generated definitions of biomass waste, non-biomass waste from London’s municipal waste to achieve. and residual waste. The carbon intensity floor has been set at the level whereby any electricity generated from Capital Growth Programme: Capital Growth London’s municipal waste is to be no more is a partnership initiative between London polluting in carbon terms than the electricity Food Link, the Mayor of London, and the Big source it replaces. Refer to Policy 2 for more Lottery’s Local Food Fund. It is championed information on the carbon intensity floor. by the Chair of the London Food Board Rosie Boycott and aims to create 2012 new Combined Cycle Gas Turbine (CCGT) plant: community food growing spaces across London A combined cycle gas turbine (CCGT) plan by the end of 2012. Capital Growth offers uses a gas turbine to generate electricity. The practical help, grants training and support waste heat also produced is used to make steam to groups wanting to establish community to generate additional electricity via a steam food growing projects as well as advice to turbine. This last step enhances the efficiency of landowners. These new food growing spaces electricity generation. along with existing allotments, city farms and community gardens could be the ideal location Combined heat and power: The combined for the by-products of composting facilities. production of electricity and usable heat is known as combined heat and power (CHP). ThE Mayor’s municipal wAste management sTrategy Steam or hot water, which would otherwise be Construction, demolition & excavation rejected when electricity alone is produced, is waste: waste arising from the construction, used for space or process heating. repair, maintenance and demolition of buildings and structures, including roads. It consists Commercial waste: waste arising from premises mostly of brick, concrete, hardcore, subsoil which are wholly or mainly for trade, business, and topsoil, but it can contain quantities of sport, recreation or entertainment as defined in timber, metal, plastics and occasionally special Schedule 4 of the Controlled Waste Regulations (hazardous) waste materials. 1992. Digestate: The nutrient-rich residues of Co-mingled: Co-mingled Recycled materials anaerobic digestion that can be used as a soil that are collected together and are recycled improver or fertiliser. following further sorting. Single stream co- mingled systems are where materials are Doorstep recycling collection services: collected in a single compartment vehicle with recycling collections services provided to the sorting of the materials occurring at a individual households where recyclable material Materials Reclamation Facilities. Two stream is collected from householder’s doorstep. partially co-mingled systems are where residents Householders receiving a doorstep collection are required to separate materials into two typically, but not always, will be provided with categories, usually fibres (paper/card) and their own container to store recyclables for containers (glass, cans and plastic bottles). collection. See also definition of communal Separate containers are provided for each recycling collection services. category the contents of which are loaded into separate compartments on a twin compartment Dry recyclables: refers to dry materials suitable collection vehicle. for recycling including paper, card, metals, plastics, textiles, and waste electrical items. Communal recycling collection services: Does not include organic waste (food and green recycling collection services whereby communal garden waste). recycling containers, typically 1100 litre bins, are provided for a number of properties to deposit East London Waste Authority: Waste their recyclable materials. Communal recycling Disposal Authority for the London Boroughs of collection services are generally provided to Newham, Redbridge, Barking and Dagenham multi-occupancy properties on-site, where and Havering. door step recycling collections services are not suitable or easily provided. See also definition of Embodied carbon: The term ‘embodied
Recommended publications
  • Sixstepstosavingmoneyandred
    Seattle Public Utilities’ Resource Venture program provides free assistance to help Seattle-area businesses lower utility costs, obtain rebates, comply with regulations and receive public recognition, all while protecting the environment. Contact us today for assistance! Email: [email protected] Phone: (206) 343-8505 The Seattle Business Recycling Guide is designed to lead your business through six easy steps that save money by reducing waste. This guide provides information about regulations, free resources, helpful links, and success stories from area businesses. Read on to get started today! Recycling is good business Cost savings and efficiency: Commercial recycling and compost services can save you 30-50 percent on your garbage service bill. Reducing garbage service immediately saves your business money. Customer/employee demand: Customers increasingly want to support ‘green’ businesses, and 82 percent of American adults say they are aware of a business’s green practices.1 Recycling and waste reduction practices are some of the most visible ways to demonstrate your commitment to green practices. Compliance: The City of Seattle prohibits businesses from putting recyclables such as cardboard, paper, yard debris, and selected construction materials in the garbage.2 The City also bans certain materials, such as Styrofoam™ and single-use plastic bags, from being given out to customers. Creating effective recycling programs for these materials will help ensure your business is in compliance and avoids fines. Environment: Businesses have a substantial impact on climate change through everyday activities. The U.S. EPA has estimated that the full life cycle of materials – from sourcing to use and disposal – makes up nearly half of our collective carbon footprint.3 By adopting waste reduction practices, business can lower their greenhouse gas emissions, create less pollution, and support a healthier community.4 Economy and jobs: Recycling protects and expands U.S.
    [Show full text]
  • Non-Incineration Medical Waste Treatment Technologies
    Non-Incineration Medical Waste Treatment Technologies A Resource for Hospital Administrators, Facility Managers, Health Care Professionals, Environmental Advocates, and Community Members August 2001 Health Care Without Harm 1755 S Street, N.W. Unit 6B Washington, DC 20009 Phone: 202.234.0091 www.noharm.org Health Care Without Harm 1755 S Street, N.W. Suite 6B Washington, DC 20009 Phone: 202.234.0091 www.noharm.org Printed with soy-based inks on Rolland Evolution, a 100% processed chlorine-free paper. Non-Incineration Medical Waste Treatment Technologies A Resource for Hospital Administrators, Facility Managers, Health Care Professionals, Environmental Advocates, and Community Members August 2001 Health Care Without Harm www.noharm.org Preface THE FOUR LAWS OF ECOLOGY . Meanwhile, many hospital staff, such as Hollie Shaner, RN of Fletcher-Allen Health Care in Burlington, Ver- 1. Everything is connected to everything else, mont, were appalled by the sheer volumes of waste and 2. Everything must go somewhere, the lack of reduction and recycling efforts. These indi- viduals became champions within their facilities or 3. Nature knows best, systems to change the way that waste was being managed. 4. There is no such thing as a free lunch. Barry Commoner, The Closing Circle, 1971 In the spring of 1996, more than 600 people – most of them community activists – gathered in Baton Rouge, Up to now, there has been no single resource that pro- Louisiana to attend the Third Citizens Conference on vided a good frame of reference, objectively portrayed, of Dioxin and Other Hormone-Disrupting Chemicals. The non-incineration technologies for the treatment of health largest workshop at the conference was by far the one care wastes.
    [Show full text]
  • “Violet” Refused-Derived Fuel from Municipal Solid Waste to Reduce Landfills (Refresh DANUBE)
    Working Group “VIOLET” Refused-Derived Fuel from Municipal Solid Waste to reduce landfills (REFREsh DANUBE) ABSTRACT The REFREsh Danube project aims to reduce the landfilled amount of municipal solid waste, which is a source of water and soil pollution, by its use as refuse-derived fuel in the cement industry of Novi Sad (Serbia). The main actors involved are Lafarge Beočin Cement Factory, Municipality of Novi Sad, JPK Čistoća (waste-management company) and experts from interdisciplinary fields. The project addresses societal challenges on climate change, air, water and soil pollution as well as using the municipal solid waste as an alternative energy source in response to H2020 and Europe 2020 Strategy. KEYWORDS Leachate Water pollution MSW RDF Cement industry AUTHORS KIŠJUHAS Aleksej, from University of Novi Sad (SERBIA) KODNIK Danijela, from University of Trieste (ITALY) SHKRELI Eltjana, from Universiteti i Shkodrës “Luigj Gurakuqi” (ALBANIA) TORBOLI Valentina, from University of Trieste (ITALY) UDREA Ana-Maria, from “Babes-Bolyai” University (ROMANIA) ŽABAR Romina, from University of Nova Gorica (SLOVENIA) 139 BACKGROUND OF THE PROBLEM The environment is the basis for economy, because the economy depends on natural resources in order to satisfy the constant growing human needs, but in order to preserve the environment for future generations we need to develop mechanisms for protecting the environment without reducing the economic activity and conducting economic activities without destroying the environ- ment. Then a question arises: How can we use our resources for achieving a certain economic growth and at the same time contribute to the environmental conservation? Where is the balance? Are landfills causing health and environmental problems, or they might be used as economic resources? It all depends on human awareness and ac- tions.
    [Show full text]
  • A Guide to Recycling, Waste Management and Resource Productivity for Business CONTENTS
    LIFTING THE LID ON WASTE A guide to recycling, waste management and resource productivity for business CONTENTS • FOREWORDS 4 • SETTING THE SCENE 6 • FROM CLIMATE CHANGE TO EMPLOYMENT –THE IMPORTANCE OF TURNING WASTE INTO WEALTH 11 • HOW WILL YOU BENEFIT FROM TURNING WASTE INTO WEALTH? 12 • TURNING YOUR WASTE INTO WEALTH: QUESTIONS, ACTIONS AND STORIES 19 • A BUSINESS GUIDE FOR GREATER RESOURCE PRODUCTIVITY AND RESPONSIBLE WASTE MANAGEMENT 23 • CONCLUSION 33 • ACKNOWLEDGEMENTS 35 • ENDNOTES 36 LIFTING THE LID ON WASTE: A GUIDE TO RECYCLING, WASTE MANAGEMENT AND RESOURCE PRODUCTIVITY FOR BUSINESS This guide sets out the opportunities that rethinking resource and waste transformation can bring, explaining how to eliminate avoidable waste and turn ‘waste’ into ‘wealth’. For any business that recognises its responsibility to change, this is the starting place. CAMPAIGNING TO ELIMINATE WASTE The Lifting the Lid on Waste Guide aims to help everyone involved with material resources and Business in the Community’s Waste to Wealth waste – landlords, tenants, property managers, campaign brings together business, facilities managers, procurement teams and government, academia and civil society to employees – to understand how to eliminate unlock opportunities to double the nation’s avoidable waste and turn any ‘waste’ created resource productivity and eliminate avoidable by your business into ‘wealth’ through waste by 2030. Over 160 organisations have reduction, reuse and recycling. It focuses already joined the campaign by signing up to specifically on reducing and better managing the Waste to Wealth Commitment1 or becoming waste as part of a wider circular economy our Waste to Wealth Partners. strategy, recognising that waste is value leaking from our economy.
    [Show full text]
  • Municipal Waste Compliance Promotion Exercise 2014-5
    Municipal Waste Compliance Promotion Exercise 2014-5 Executive Summary mmmll Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). LEGAL NOTICE This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the Internet (http://www.europa.eu). Luxembourg: Publications Office of the European Union, 2016 ISBN 978-92-79-60069-2 doi:10.2779/609002 © European Union, 2016 Reproduction is authorised provided the source is acknowledged. Municipal Waste Compliance Promotion Exercise 2014-5 Table of Contents Table of Contents ............................................................................................. 2 Abstract .......................................................................................................... 3 Executive Summary.......................................................................................... 4 Background .................................................................................................. 4 Introduction to the project .............................................................................. 4 Method .......................................................................................................
    [Show full text]
  • Waste Technologies: Waste to Energy Facilities
    WASTE TECHNOLOGIES: WASTE TO ENERGY FACILITIES A Report for the Strategic Waste Infrastructure Planning (SWIP) Working Group Complied by WSP Environmental Ltd for the Government of Western Australia, Department of Environment and Conservation May 2013 Quality Management Issue/revision Issue 1 Revision 1 Revision 2 Revision 3 Remarks Date May 2013 Prepared by Kevin Whiting, Steven Wood and Mick Fanning Signature Checked by Matthew Venn Signature Authorised by Kevin Whiting Signature Project number 00038022 Report number File reference Project number: 00038022 Dated: May 2013 2 Revised: Waste Technologies: Waste to Energy Facilities A Report for the Strategic Waste Infrastructure Planning (SWIP) Working Group, commissioned by the Government of Western Australia, Department of Environment and Conservation. May 2013 Client Waste Management Branch Department of Environment and Conservation Level 4 The Atrium, 168 St George’s Terrace, PERTH, WA 6000 Locked Bag 104 Bentley DC WA 6983 Consultants Kevin Whiting Head of Energy-from-Waste & Biomass Tel: +44 207 7314 4647 [email protected] Mick Fanning Associate Consultant Tel: +44 207 7314 5883 [email protected] Steven Wood Principal Consultant Tel: +44 121 3524768 [email protected] Registered Address WSP Environmental Limited 01152332 WSP House, 70 Chancery Lane, London, WC2A 1AF 3 Table of Contents 1 Introduction .................................................................................. 6 1.1 Objectives ................................................................................
    [Show full text]
  • 2016 Maryland Statewide Waste Characterization Study
    NORTHEAST MARYLAND WASTE DISPOSAL AUTHORITY ON BEHALF OF MARYLAND DEPARTMENT OF THE ENVIRONMENT 2016 MARYLAND STATEWIDE WASTE CHARACTERIZATION STUDY FINAL REPORT July 14, 2017 11875 High Tech Avenue, Suite 150, Orlando, FL (800) 679-9220 www.mswconsultants.com This report was delivered electronically. If it is necessary to print hard copies, please do so on post-consumer recycled paper and recycle. ACKNOWLEDGEMENTS This study would not have been successful without the cooperation and assistance of multiple disposal facilities across the State of Maryland. MSW Consultants would like to thank the following facilities for hosting the field data collection during this project: Appeal Landfill of Calvert County, Cecil County Central Landfill, Charles County Landfill, Forty West Municipal Landfill of Washington County, Garrett County Landfill, Northwest Transfer Station, City of Baltimore, Quarantine Road Landfill, City of Baltimore Northern Landfill of Carroll County, Somerset County Landfill. We would also like to extend our gratitude to the study organizers for their assistance in the organization and data collection for this project: Maryland Department of the Environment (MDE), Northeast Maryland Waste Disposal Authority (NMWDA). NMWDA/Maryland Department of the Environment 1 ACKNOWLEDGEMENTS This page intentionally left blank. 2 NMWDA/Maryland Department of the Environment TABLE OF CONTENTS EXECUTIVE SUMMARY ..................................................................................... ES-1 ES 1. Introduction .................................................................................................................................
    [Show full text]
  • Standing Committee on Urban Development (2018-2019)
    1 STANDING COMMITTEE ON 25 URBAN DEVELOPMENT (2018-2019) SIXTEENTH LOK SABHA MINISTRY OF HOUSING AND URBAN AFFAIRS SOLID WASTE MANAGEMENT INCLUDING HAZARDOUS WASTE, MEDICAL WASTE AND E-WASTE TWENTY FIFTH REPORT LOK SABHA SECRETARIAT NEW DELHI 12 February, 2019, 23 Magha,1940 (Saka) 2 TWENTY FIFTH REPORT STANDING COMMITTEE ON URBAN DEVELOPMENT (2018-2019) (SIXTEENTH LOK SABHA) MINISTRY OF HOUSING AND URBAN AFFAIRS SOLID WASTE MANAGEMENT INCLUDING HAZARDOUS WASTE, MEDICAL WASTE AND E-WASTE Presented to Lok Sabha on 12.02.2019 Laid in Rajya Sabha on… 12.02.2019 LOK SABHA SECRETARIAT NEW DELHI 12 Febraury, 2019, 23 Magha, 1940 (Saka) 3 C.U.D. No.: 111 Price : Rs. (C) 2019 By Lok Sabha Secretariat Publish under Rule 382 of the Rules of Procedure and Conduct of Business in Lok Sabha (Thirteenth Edition) and Printed by………… 4 Contents Composition of the Committee (2015-16 & 2016-17 will be appended later) Sl.No DRAFT REPORT Page . No. I. Introductory 01-09 A.Overall scenario. B.Kinds of Solid Wastes (i) Wet wastes (ii) Dry wastes C.Challenges D. Constitutional position II. Implementation of different Waste Management Rules 10-20 A. Role of different Ministries B. Different Rules of Solid and other Waste Management (a) Salient features of Solid Waste Management Rules, 2016 (i) Role of State Government/Collector (ii) Role of Central Pollution Control Board (iii) Role of Urban Local Bodies III. Solid Waste Management under Swachh Bharat Mission (Urban). 21-29 (i) A. Scheme for Solid Waste Management (ii) B. Solid Waste Management - over all scenario (iii) (a) Progress on Door to Door collection (iv) (b) Progress on Source Segregation (v) (c) Progress on Waste Processing (vi) (d) Implementation constraints (vii) IV.
    [Show full text]
  • Waste Management
    Environment Committee Waste management The Environment Committee is investigating aspects of London’s waste generation, handling and disposal, to inform the development of work under the Mayor’s Environment Strategy and other policies. The three aspects for particular focus are: • Waste reduction and the circular economy • Recycling • Energy from waste The investigation will seek to build on past work of the committee and identify recommendations to the Mayor and perhaps other London actors. Background London generates a huge amount of waste (about 20 million tonnes in 20101), of many types from earth and cement to plastics, paper and organic material. The main destinations for London’s bulk waste are recycling, incineration as fuel to generate electricity and/or heat buildings, and landfill. Of course the amount of waste to manage can be reduced by using less material in the first place, or by passing goods on to another user, rather than discarding them with the rubbish. The waste hierarchy The ‘waste hierarchy’ places these alternatives in a preferred order based on their environmental and quality of life impacts. 1 Of which, nearly half was construction, demolition and excavation waste (CDE), nearly a third commercial and industrial waste, with municipal (mainly household) waste only 20%. Most CDE waste is re-used or recycled in some form; municipal waste has the lowest recycling rate and the highest landfill. Data from the (previous) Mayor’s Business Waste Strategy https://www.london.gov.uk/what-we-do/environment/environment-publications/mayors-business-waste-management- strategy (see p25) and Municipal Waste Strategy https://www.london.gov.uk/sites/default/files/municipal_waste_final.pdf (see p26) Page 1 of 11 Environment Committee Waste management Since 2000, landfill (at the bottom of the hierarchy) has reduced considerably, but in recent years waste reduction and recycling (high to medium in the hierarchy) have stagnated and further waste diverted from landfill has instead shifted to incineration (low in the hierarchy).
    [Show full text]
  • Integration of Resource Recovery Into Current Waste Management Through
    INTEGRATION OF RESOURCE RECOVERY INTO CURRENT WASTE MANAGEMENT THROUGH (ENHANCED) LANDFILL MINING Juan Carlos Hernández Parrodi 1,2,*, Hugo Lucas 3, Marco Gigantino 4, Giovanna Sauve 5, John Laurence Esguerra 6,7, Paul Einhäupl 5,7, Daniel Vollprecht 2, Roland Pomberger 2, Bernd Friedrich 3, Karel Van Acker 5, Joakim Krook 6, Niclas Svensson 6 and Steven Van Passel 7 1 Renewi Belgium SA/NV, NEW-MINE project, 3920 Lommel, Belgium 2 Montanuniversität Leoben, Department of Environmental and Energy Process Engineering, 8700 Leoben, Austria 3 RWTH Aachen University, Process Metallurgy and Metal Recycling, 52056 Aachen, Germany 4 ETH Zürich, Department of Mechanical and Process Engineering, 8092 Zürich, Switzerland 5 Katholieke Universiteit Leuven, Department of Materials Engineering, 3001 Leuven, Belgium 6 Linköping University, Environmental Technology and Management, 58183 Linköping, Sweden 7 Universiteit Antwerpen, Department of Engineering Management, 2000 Antwerpen, Belgium Article Info: ABSTRACT Received: Europe has somewhere between 150,000 and 500,000 landfill sites, with an estimat- 1 November 2019 Accepted: ed 90% of them being “non-sanitary” landfills, predating the EU Landfill Directive of 15 November 2019 1999/31/EC. These older landfills tend to be filled with municipal solid waste and Available online: often lack any environmental protection technology. “Doing nothing”, state-of-the- 23 December 2019 art aftercare or remediating them depends largely on technical, societal and eco- Keywords: nomic conditions which vary between countries. Beside “doing nothing” and land- Landfill mining strategies fill aftercare, there are different scenarios in landfill mining, from re-landfilling the Enhanced landfill mining waste into “sanitary landfills” to seizing the opportunity for a combined resource-re- Resource recovery covery and remediation strategy.
    [Show full text]
  • Safety Data Sheet Neste Lipa 2
    Revision date: 21/08/2017 Supersedes date: 30/07/2015 SAFETY DATA SHEET NESTE LIPA 2 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Product name NESTE LIPA 2 Product number ID 10748 Internal identification 7572 1.2. Relevant identified uses of the substance or mixture and uses advised against Identified uses Solvent. 1.3. Details of the supplier of the safety data sheet Supplier Neste Markkinointi Oy Keilaranta 21, Espoo, PL 95, FIN-00095 NESTE, FINLAND Tel. +358 10 45811 [email protected] 1.4. Emergency telephone number National emergency telephone +358-9-471 977, +358-9-4711, Poison Information Centre number SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification (EC 1272/2008) Physical hazards Flam. Liq. 2 - H225 Health hazards Eye Irrit. 2 - H319 STOT SE 3 - H336 Asp. Tox. 1 - H304 Environmental hazards Not Classified 2.2. Label elements Pictogram Signal word Danger Hazard statements H225 Highly flammable liquid and vapour. H304 May be fatal if swallowed and enters airways. H319 Causes serious eye irritation. H336 May cause drowsiness or dizziness. 1/9 Revision date: 21/08/2017 Supersedes date: 30/07/2015 NESTE LIPA 2 Precautionary statements P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P304+P340 IF INHALED: Remove person to fresh air and keep comfortable for breathing. P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. P301+P330+P331 IF SWALLOWED: Rinse mouth.
    [Show full text]
  • Quality Assurance of Compost and Digestate – Experiences from Germany
    Quality assurance of compost and digestate – Experiences from Germany Quality assurance of compost and digestate Experiences from Germany 1 Quality assurance of compost and digestate – Experiences from Germany Imprint Publisher: German Environment Agency Section III 2.4 Waste Technology, Waste Technology Transfer Section I 1.2 International Sustainability Strategies, Policy and Knowledge Transfer Wörlitzer Platz 1 D-06844 Dessau-Roßlau Tel: +49 340-2103-0 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Authors: Marie Dollhofer (BiPRO GmbH), Elisabeth Zettl (BiPRO GmbH) In cooperation with: Wolfgang Lausterer (Awiplan-PPD GmbH), Ulrich Hommel (Awiplan-PPD GmbH), Tim Hermann (UBA), Katharina Lenz (UBA) On behalf of the German Environment Agency Design: Atelier Hauer + Dörfler GmbH, Berlin Publications as a pdf: www.umweltbundesamt.de/publikationen Photo credits: BiPRO GmbH, PLANCO-TEC, Shutterstock, Tim Hermann As at July 2017 ISSN 2363-832X This document is a result of the project “Exchange of expe- riences for establishing a system and an organisation for the quality assurance of compost in Bulgaria”. This project was financed by the German Federal Environment Ministry’s Advisory Assistance Programme (AAP) for environmental protection in the countries of Central and Eastern Europe, the Caucasus and Central Asia and other countries neigh- bouring the European Union. It was supervised by the Ger- man Environment Agency. The responsibility for the content of this publication lies with the authors.
    [Show full text]