H. Pylori in NZ, As Well As Elucidate the Underlying Mechanisms Causing Resistance

Total Page:16

File Type:pdf, Size:1020Kb

H. Pylori in NZ, As Well As Elucidate the Underlying Mechanisms Causing Resistance Genomic characterisation and comparison of antibiotic resistant and sensitive Helicobacter pylori in New Zealand Zoe King A thesis submitted to Auckland University of Technology in partial fulfilment of the requirements for the degree of Master of Science (Research) (MSc(Res)) 2020 School of Science Abstract Helicobacter pylori is an important and prevalent human pathogen present in approximately 50 % of the world’s population; causing a range of clinical outcomes from chronic gastritis and gastric ulcers to gastric carcinoma and gastric mucosa-associated lymphoid tissue lymphoma (Hooi et al. 2017; Huang et al. 2002; Kuipers et al. 1995). Treatment of this pathogenic bacterium is becoming increasingly challenging due to the increasing levels of antibiotic resistance worldwide (Malfertheiner et al. 2017; Savoldi et al. 2018). To effectively treat this bacterium, local resistance rates must be known for clinicians to administer the appropriate antibiotics for the highest chance of eradication (Malfertheiner et al. 2017). Within New Zealand (NZ) there is a lack of data on antibiotic resistance rates and levels, as well as a lack of knowledge on the genomic mechanisms causing resistance. This study aimed to increase the understanding of the levels of antibiotic resistant strains of H. pylori in NZ, as well as elucidate the underlying mechanisms causing resistance. Five H. pylori strains (A, B, C, D, and E), provided by Middlemore Hospital (Auckland, NZ) from patients undergoing gastroscopy were subject to antibiotic susceptibility testing, phylogenetic analysis, and comparative genomic analysis to determine their resistance profiles, genomic relationships, genomic characterisations and to identify known and novel mechanisms of resistance. Antibiotic susceptibility testing was performed using two methods, in-house using disc diffusion, and by Middlemore Hospital using Epsilometer test (E-test) strips. In-house testing was unsuccessful. Results obtained from Middlemore Hospital were used to determine the resistance profiles of each isolates. Each isolate was tested against commonly used antibiotics in treatment of H. pylori infections clarithromycin, metronidazole, amoxicillin, and tetracycline. One isolate (A), was sensitive to all antibiotics tested, two isolates (B and E), were resistant to clarithromycin and metronidazole at > 256 μg/mL each, and two isolates (C and D), were resistant to only clarithromycin at 24 μg/mL and 1 μg/mL, respectively. Isolate D did not survive the experimental process and was not investigated further. Sanger sequencing was initially used to sequence the 16S rRNA region to provide preliminary sequence-based identification of the four remaining isolates (A-C and E). Phylogenetic analysis was completed using the 16S rRNA gene, MLST genes, and PhyloPhlAn2 (400 genes) extracted from Illumina based sequencing of each isolate (A-C and E). The relationships of the isolates (A- C and E) were assessed with a dataset of 155 complete H. pylori genomes. The 16S rRNA gene and MLST genes highlighted the genomic diversity of the H. pylori species and identified each i isolate (A-C and E) as separate strains, likely arising from different sources. Also using the draft genomes, a phylogenetic analysis using PhyloPhlAn2 was employed using which increased the resolution of the trees but still lacked enough sequence information to decipher the interspecies relationships of the dataset. However, the closest relatives to each isolate (A-C and E) were identified from this dataset using the nucleotide sequence PhyloPhlAn2 tree and used for further analysis. The draft genomes of isolates A-C, and E, were also used for comparative genomics with their respective closest references. Characterisation of the genomes showed similar characteristics to other H. pylori isolates. Comparison of the genomes to identify known mechanisms of resistance showed that the A2147G mutation within domain V of the 23S rRNA gene, conferring clarithromycin resistance, was only present in isolates B and C. The R16H amino acid substitution within RdxA, suggested to be involved with metronidazole resistance, was only identified in isolate B. Efflux pumps HefABC, HP1181, and HP1184 were identified in all isolates (A-C and E) and may be a common mechanism of resistance amongst all isolates, however, further work is required to establish their role in antibiotic resistance. The search for novel resistance mechanisms using CARD and OrthoVenn2 identified a major facilitator superfamily (MFS) efflux protein and an outer membrane protein (OMP) identified only in resistant isolates (B, C, and E), which are of further interest to elucidate their potential involvement in antibiotic resistance. Overall, these results suggest that both clarithromycin and metronidazole resistance are present in NZ H. pylori strains. Antibiotic resistance appears to develop independently and through different methods based on the phylogenetic methods employed in this study. None of the resistant isolates (B, C, and E) shared one common mechanism of resistance, however, the presence of efflux pumps, in both sensitive (A) and resistant (B, C, and E) strains, suggests that this mechanism may play an important role in resistance. More work is required to fully elucidate the role of efflux pumps and the two novel proteins in antibiotic resistant H. pylori. ii Table of Contents Abstract ............................................................................................................................... i Table of Contents ............................................................................................................... iii List of Figures ................................................................................................................... viii List of Tables ..................................................................................................................... xii Attestation of Authorship ................................................................................................. xiv Acknowledgements ........................................................................................................... xv Abbreviations.................................................................................................................. xvii Chapter 1 General Introduction and Literature Review ......................................................... 1 1.1 General Introduction .................................................................................................. 1 1.2 Research Questions and Aims ..................................................................................... 2 1.3 Literature Review ....................................................................................................... 5 1.3.1 Helicobacter pylori............................................................................................... 5 1.3.1.1 Morphology ................................................................................................. 5 1.3.1.2 Flagella ........................................................................................................ 6 1.3.1.3 Genomic Characteristics ............................................................................... 7 1.3.1.4 Growth in the Lab ........................................................................................ 8 1.3.2 Epidemiology ...................................................................................................... 9 1.3.2.1 Global Spread of H. pylori ............................................................................. 9 1.3.2.2 Natural Reservoirs...................................................................................... 11 1.3.2.3 Transmission.............................................................................................. 13 1.3.2.4 Vectors ...................................................................................................... 14 1.3.3 Infection ........................................................................................................... 15 1.3.3.1 Clinical Outcomes ...................................................................................... 15 1.3.3.2 Virulence ................................................................................................... 17 1.3.4 Treatment......................................................................................................... 20 1.3.4.1 Diagnosis ................................................................................................... 20 1.3.4.2 Antibiotic Characteristics and Cellular Targets.............................................. 20 1.3.4.3 Treatment Regimens .................................................................................. 24 1.3.4.4 First-line Treatments .................................................................................. 26 1.3.4.5 Second-line Treatments.............................................................................. 27 1.3.4.6 Salvage Treatments .................................................................................... 27 1.3.5 Antibiotic Resistance ......................................................................................... 28 1.3.5.1 Resistance Rates ........................................................................................ 28 1.3.5.2 Mechanisms of Antibiotic Resistance........................................................... 32 1.3.5.3 Clarithromycin Resistance..........................................................................
Recommended publications
  • Structural Characterization of Helicobacter Pylori Proteins Contributing to Stomach Colonization
    Università degli Studi di Padova Dipartimento di Biologia Scuola di Dottorato di Ricerca in Bioscienze e Biotecnologie Indirizzo: Biotecnologie Ciclo XXVIII STRUCTURAL CHARACTERIZATION OF HELICOBACTER PYLORI PROTEINS CONTRIBUTING TO STOMACH COLONIZATION Direttore della Scuola: Ch.mo Prof. Paolo Bernardi Coordinatore di Indirizzo: Ch.ma Prof.ssa Fiorella Lo Schiavo Supervisore: Ch.mo Prof. Giuseppe Zanotti Dottorando: Maria Elena Compostella 31 Gennaio 2016 Università degli Studi di Padova Department of Biology School of Biosciences and Biotechnology Curriculum: Biotechnology XXVIII Cycle STRUCTURAL CHARACTERIZATION OF HELICOBACTER PYLORI PROTEINS CONTRIBUTING TO STOMACH COLONIZATION Director of the Ph.D. School: Ch.mo Prof. Paolo Bernardi Coordinator of the Curriculum: Ch.ma Prof.ssa Fiorella Lo Schiavo Supervisor: Ch.mo Prof. Giuseppe Zanotti Ph.D. Candidate: Maria Elena Compostella 31 January 2016 Contents ABBREVIATIONS AND SYMBOLS IV SUMMARY 9 SOMMARIO 15 1. INTRODUCTION 21 1.1 HELICOBACTER PYLORI 23 1.2 GENETIC VARIABILITY 26 1.2.1 GENOME COMPARISON 26 1.2.1.1 HELICOBACTER PYLORI 26695 26 1.2.1.2 HELICOBACTER PYLORI J99 28 1.2.2 CORE GENOME 30 1.2.3 MECHANISMS GENERATING GENETIC VARIABILITY 31 1.2.3.1 MUTAGENESIS 32 1.2.3.2 RECOMBINATION 35 1.2.4 HELICOBACTER PYLORI AS A “QUASI SPECIES” 37 1.2.5 CLASSIFICATION OF HELICOBACTER PYLORI STRAINS 38 1.3 EPIDEMIOLOGY 40 1.3.1 INCIDENCE AND PREVALENCE OF HELICOBACTER PYLORI INFECTION 40 1.3.2 SOURCE AND TRANSMISSION 42 1.4 ADAPTATION AND GASTRIC COLONIZATION 47 1.4.1 ACID ADAPTATION 49 1.4.2 MOTILITY AND CHEMIOTAXIS 60 1.4.3 ADHESION 65 1.5 PATHOGENESIS AND VIRULENCE FACTORS 72 1.5.1 VACUOLATING CYTOTOXIN A 78 1.5.2 CAG PATHOGENICITY ISLAND AND CYTOTOXIN-ASSOCIATED GENE A 83 1.5.3 NEUTROPHIL-ACTIVATING PROTEIN 90 1.6 HELICOBACTER PYLORI AND GASTRODUODENAL DISEASES 92 1.7 ERADICATION AND POTENTIAL BENEFITS 97 2.
    [Show full text]
  • 1 Aix-Marseille Universite Faculte De Médecine De
    AIX-MARSEILLE UNIVERSITE FACULTE DE MÉDECINE DE MARSEILLE ECOLE DOCTORALE DES SCIENCES DE LA VIE ET DE LA SANTE T H È S E Présentée et publiquement soutenue devant LA FACULTÉ DE MÉDECINE DE MARSEILLE Le 21 Novembre 2019 Par Mr DIALLO Ousmane Oumou Né le 02 Février 1988 à Dalaba SURVEILLANCE DE LA RESISTANCE AUX ANTIBIOTIQUES DANS LA REGION PROVENCE ALPES COTE D’AZUR A PARTIR DES SYSTEMES DE SURVEILLANCE (MARSS et PACASURVE) Pour obtenir le grade de Doctorat d’Aix-Marseille Universités Spécialité Pathologie Humaine : Maladies infectieuses Membres du jury de Thèse Pr. Laurence Camoin Président du jury Pr. Jean Philippe Lavigne Rapporteur Pr. Max Maurin Rapporteur Pr. Jean-Marc Rolain Directeur de thèse MEPHI, Aix Marseille Université, IHU Méditerranée Infection, AP-HM, Marseille Faculté de Médecine, Marseille. 1 1 AVANT PROPOS Le format de présentation de cette thèse correspond à une recommandation de la spécialité Maladies Infectieuses et Microbiologie, à l’intérieur du Master des Sciences de la Vie et de la Santé qui dépend de l’École Doctorale des Sciences de la Vie de Marseille. Le candidat est amené à respecter des règles qui lui sont imposées et qui comportent un format de thèse utilisé dans le Nord de l’Europe et qui permet un meilleur rangement que les thèses traditionnelles. Par ailleurs, la partie introduction et bibliographie est remplacée par une revue envoyée dans un journal afin de permettre une évaluation extérieure de la qualité de la revue et de permettre à l’étudiant de commencer le plus tôt possible une bibliographie exhaustive sur le domaine de cette thèse.
    [Show full text]
  • In Silico Evolutionary Analysis of Helicobacter Pylori Outer Membrane Phospholipase a (OMPLA) Hilde S Vollan1*, Tone Tannæs1, Yoshio Yamaoka2 and Geir Bukholm3,4
    Vollan et al. BMC Microbiology 2012, 12:206 http://www.biomedcentral.com/1471-2180/12/206 RESEARCH ARTICLE Open Access In silico evolutionary analysis of Helicobacter pylori outer membrane phospholipase A (OMPLA) Hilde S Vollan1*, Tone Tannæs1, Yoshio Yamaoka2 and Geir Bukholm3,4 Abstract Background: In the past decade, researchers have proposed that the pldA gene for outer membrane phospholipase A (OMPLA) is important for bacterial colonization of the human gastric ventricle. Several conserved Helicobacter pylori genes have distinct genotypes in different parts of the world, biogeographic patterns that can be analyzed through phylogenetic trees. The current study will shed light on the importance of the pldA gene in H. pylori. In silico sequence analysis will be used to investigate whether the bacteria are in the process of preserving, optimizing, or rejecting the pldA gene. The pldA gene will be phylogenetically compared to other housekeeping (HK) genes, and a possible origin via horizontal gene transfer (HGT) will be evaluated through both intra- and inter- species evolutionary analyses. Results: In this study, pldA gene sequences were phylogenetically analyzed and compared with a large reference set of concatenated HK gene sequences. A total of 246 pldA nucleotide sequences were used; 207 were from Norwegian isolates, 20 were from Korean isolates, and 19 were from the NCBI database. Best-fit evolutionary models were determined with MEGA5 ModelTest for the pldA (K80 + I + G) and HK (GTR + I + G) sequences, and maximum likelihood trees were constructed. Both HK and pldA genes showed biogeographic clustering. Horizontal gene transfer was inferred based on significantly different GC contents, the codon adaptation index, and a phylogenetic conflict between a tree of OMPLA protein sequences representing 171 species and a tree of the AtpA HK protein for 169 species.
    [Show full text]
  • Evolutionary Dynamics of the Vapd Gene in Helicobacter Pylori and Its
    ISSN Online: 2372-0956 Symbiosis www.symbiosisonlinepublishing.com Research Article SOJ Microbiology & Infectious Diseases Open Access Evolutionary dynamics of the vapD gene in Helicobacter pylori and its wide distribution among bacterial phyla Gabriela Delgado-Sapién1, Rene Cerritos-Flores2, Alejandro Flores-Alanis1, José L Méndez1, Alejandro Cravioto1, Rosario Morales-Espinosa1* *1Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México 04510. 2Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México 04510. Received: 12th August , 2020; Accepted: 15th November 2020 ; Published: 03rd December, 2020 *Corresponding author: RosarioMorales-Espinosa, PhD, MD, Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasi- tología. Universidad Nacional Autónoma de México. Avenida Universidad 3000, Colonia Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México City, México.Tel.: +525 5523 2135; Fax: +525 5623 2114 E-mail: [email protected] factors [1,2,3]. Genetic diversity is seen among H. pylori strains Abstract from different origins and ethnic populations, as well as within The vapD gene is present in microorganisms from different phyla H. pylori populations within a single stomach. It is well known and encodes for the virulence-associated protein D (VapD). In some that H. pylori is a highly recombinant microorganism [4-8] and microorganisms, it has been suggested that vapD participates in either a natural transformant, which explains its genomic variability protecting the bacteria from respiratory burst within the macrophage and diversity that favour a better adaptive capacity and its or in facilitating the persistence of the microorganism within the permanence on the gastric mucosa for decades.
    [Show full text]
  • Helicobacter Pylori: Comparative Genomics and Structure-Function Analysis of the Flagellum Biogenesis Protein HP0958
    UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks! Title Helicobacter pylori: comparative genomics and structure-function analysis of the flagellum biogenesis protein HP0958 Author(s) de Lacy Clancy, Ceara A. Publication date 2014 Original citation de Lacy Clancy, C. A. 2014. Helicobacter pylori: comparative genomics and structure-function analysis of the flagellum biogenesis protein HP0958. PhD Thesis, University College Cork. Type of publication Doctoral thesis Rights © 2014, Ceara A. De Lacy Clancy. http://creativecommons.org/licenses/by-nc-nd/3.0/ Item downloaded http://hdl.handle.net/10468/1684 from Downloaded on 2021-10-10T14:33:51Z Helicobacter pylori: Comparative genomics and structure-function analysis of the flagellum biogenesis protein HP0958 A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy by Ceara de Lacy Clancy, B.Sc. School of Microbiology National University of Ireland, Cork Supervisor: Prof. Paul W. O’Toole Head of School of Microbiology: Prof. Gerald Fitzgerald February 2014 Table of Contents Table of Contents Abstract ........................................................................................................................ i Chapter 1 Literature Review....................................................................................................... 1 1 Helicobacter pylori .................................................................................................. 2 1.1 Discovery
    [Show full text]
  • ( 12 ) United States Patent
    US009956282B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,956 , 282 B2 Cook et al. (45 ) Date of Patent: May 1 , 2018 ( 54 ) BACTERIAL COMPOSITIONS AND (58 ) Field of Classification Search METHODS OF USE THEREOF FOR None TREATMENT OF IMMUNE SYSTEM See application file for complete search history . DISORDERS ( 56 ) References Cited (71 ) Applicant : Seres Therapeutics , Inc. , Cambridge , U . S . PATENT DOCUMENTS MA (US ) 3 ,009 , 864 A 11 / 1961 Gordon - Aldterton et al . 3 , 228 , 838 A 1 / 1966 Rinfret (72 ) Inventors : David N . Cook , Brooklyn , NY (US ) ; 3 ,608 ,030 A 11/ 1971 Grant David Arthur Berry , Brookline, MA 4 ,077 , 227 A 3 / 1978 Larson 4 ,205 , 132 A 5 / 1980 Sandine (US ) ; Geoffrey von Maltzahn , Boston , 4 ,655 , 047 A 4 / 1987 Temple MA (US ) ; Matthew R . Henn , 4 ,689 ,226 A 8 / 1987 Nurmi Somerville , MA (US ) ; Han Zhang , 4 ,839 , 281 A 6 / 1989 Gorbach et al. Oakton , VA (US ); Brian Goodman , 5 , 196 , 205 A 3 / 1993 Borody 5 , 425 , 951 A 6 / 1995 Goodrich Boston , MA (US ) 5 ,436 , 002 A 7 / 1995 Payne 5 ,443 , 826 A 8 / 1995 Borody ( 73 ) Assignee : Seres Therapeutics , Inc. , Cambridge , 5 ,599 ,795 A 2 / 1997 McCann 5 . 648 , 206 A 7 / 1997 Goodrich MA (US ) 5 , 951 , 977 A 9 / 1999 Nisbet et al. 5 , 965 , 128 A 10 / 1999 Doyle et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 ,589 , 771 B1 7 /2003 Marshall patent is extended or adjusted under 35 6 , 645 , 530 B1 . 11 /2003 Borody U .
    [Show full text]
  • From Genotype to Phenotype: Inferring Relationships Between Microbial Traits and Genomic Components
    From genotype to phenotype: inferring relationships between microbial traits and genomic components Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Heinrich-Heine-Universit¨atD¨usseldorf vorgelegt von Aaron Weimann aus Oberhausen D¨usseldorf,29.08.16 aus dem Institut f¨urInformatik der Heinrich-Heine-Universit¨atD¨usseldorf Gedruckt mit der Genehmigung der Mathemathisch-Naturwissenschaftlichen Fakult¨atder Heinrich-Heine-Universit¨atD¨usseldorf Referent: Prof. Dr. Alice C. McHardy Koreferent: Prof. Dr. Martin J. Lercher Tag der m¨undlichen Pr¨ufung: 24.02.17 Selbststandigkeitserkl¨ arung¨ Hiermit erkl¨areich, dass ich die vorliegende Dissertation eigenst¨andigund ohne fremde Hilfe angefertig habe. Arbeiten Dritter wurden entsprechend zitiert. Diese Dissertation wurde bisher in dieser oder ¨ahnlicher Form noch bei keiner anderen Institution eingereicht. Ich habe bisher keine erfolglosen Promotionsversuche un- ternommen. D¨usseldorf,den . ... ... ... (Aaron Weimann) Statement of authorship I hereby certify that this dissertation is the result of my own work. No other person's work has been used without due acknowledgement. This dissertation has not been submitted in the same or similar form to other institutions. I have not previously failed a doctoral examination procedure. Summary Bacteria live in almost any imaginable environment, from the most extreme envi- ronments (e.g. in hydrothermal vents) to the bovine and human gastrointestinal tract. By adapting to such diverse environments, they have developed a large arsenal of enzymes involved in a wide variety of biochemical reactions. While some such enzymes support our digestion or can be used for the optimization of biotechnological processes, others may be harmful { e.g. mediating the roles of bacteria in human diseases.
    [Show full text]
  • Analysis of Sequence Variation at Two Helicobacter Pylori Genetic Loci Potentially Involved in Virulence
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2008 Analysis of Sequence Variation at Two Helicobacter pylori Genetic Loci Potentially involved in Virulence George Warren Liechti College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Microbiology Commons, and the Molecular Biology Commons Recommended Citation Liechti, George Warren, "Analysis of Sequence Variation at Two Helicobacter pylori Genetic Loci Potentially involved in Virulence" (2008). Dissertations, Theses, and Masters Projects. Paper 1539626867. https://dx.doi.org/doi:10.21220/s2-zrbg-b193 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Analysis of sequence variation atHelicobacter two pylori genetic loci potentially involved in virulence. George Warren Liechti Springfield, Virginia Bachelors of Science, College of William and Mary, 2003 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Department of Biology The College of William and Mary May, 2008 APPROVAL PAGE This Thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science George Warren Liechti Approved by^the Cq , April, 2008 Committee Chair Associate Professor Mark Forsyth, Biology, The College of William and Mary r Professor Margaret Saha, Biology, The College of William and Mary Associate Professor George Gilchrist, Biology, The College of William and Mary / J / ABSTRACT PAGE Helicobacter pylori colonizes the gastric mucosa of nearly half the world’s population and is a well documented etiologic agent of peptic ulcer disease (PUD) and a significant risk factor for the development of gastric cancer.
    [Show full text]
  • Insights Into 6S RNA in Lactic Acid Bacteria (LAB) Pablo Gabriel Cataldo1,Paulklemm2, Marietta Thüring2, Lucila Saavedra1, Elvira Maria Hebert1, Roland K
    Cataldo et al. BMC Genomic Data (2021) 22:29 BMC Genomic Data https://doi.org/10.1186/s12863-021-00983-2 RESEARCH ARTICLE Open Access Insights into 6S RNA in lactic acid bacteria (LAB) Pablo Gabriel Cataldo1,PaulKlemm2, Marietta Thüring2, Lucila Saavedra1, Elvira Maria Hebert1, Roland K. Hartmann2 and Marcus Lechner2,3* Abstract Background: 6S RNA is a regulator of cellular transcription that tunes the metabolism of cells. This small non-coding RNA is found in nearly all bacteria and among the most abundant transcripts. Lactic acid bacteria (LAB) constitute a group of microorganisms with strong biotechnological relevance, often exploited as starter cultures for industrial products through fermentation. Some strains are used as probiotics while others represent potential pathogens. Occasional reports of 6S RNA within this group already indicate striking metabolic implications. A conceivable idea is that LAB with 6S RNA defects may metabolize nutrients faster, as inferred from studies of Echerichia coli.Thismay accelerate fermentation processes with the potential to reduce production costs. Similarly, elevated levels of secondary metabolites might be produced. Evidence for this possibility comes from preliminary findings regarding the production of surfactin in Bacillus subtilis, which has functions similar to those of bacteriocins. The prerequisite for its potential biotechnological utility is a general characterization of 6S RNA in LAB. Results: We provide a genomic annotation of 6S RNA throughout the Lactobacillales order. It laid the foundation for a bioinformatic characterization of common 6S RNA features. This covers secondary structures, synteny, phylogeny, and product RNA start sites. The canonical 6S RNA structure is formed by a central bulge flanked by helical arms and a template site for product RNA synthesis.
    [Show full text]
  • Gain and Loss of Multiple Genes During the Evolution of Helicobacter Pylori
    Gain and Loss of Multiple Genes During the Evolution of Helicobacter pylori Helga Gressmann1, Bodo Linz1, Rohit Ghai2, Klaus-Peter Pleissner3, Ralph Schlapbach4, Yoshio Yamaoka5, Christian Kraft6, Sebastian Suerbaum6, Thomas F. Meyer1, Mark Achtman1* 1 Department of Molecular Biology, Max-Planck-Institut fu¨r Infektionsbiologie, Berlin, Germany, 2 Institut fu¨r Medizinische Mikrobiologie, Justus-Liebig-Universita¨t, Giessen, Germany, 3 Core Facility Bioinformatics, Max-Planck-Institut fu¨r Infektionsbiologie, Berlin, Germany, 4 Functional Genomics Center Zurich, ETH Zurich/University of Zurich, Zurich, Switzerland, 5 Department of Medicine, M.E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Houston, Texas, United States of America, 6 Medizinische Hochschule Hannover, Institut fu¨r Medizinische Mikrobiologie und Krankenhaushygiene, Hannover, Germany Sequence diversity and gene content distinguish most isolates of Helicobacter pylori. Even greater sequence differences differentiate distinct populations of H. pylori from different continents, but it was not clear whether these populations also differ in gene content. To address this question, we tested 56 globally representative strains of H. pylori and four strains of Helicobacter acinonychis with whole genome microarrays. Of the weighted average of 1,531 genes present in the two sequenced genomes, 25% are absent in at least one strain of H. pylori and 21% were absent or variable in H. acinonychis. We extrapolate that the core genome present in all isolates of H. pylori contains 1,111 genes. Variable genes tend to be small and possess unusual GC content; many of them have probably been imported by horizontal gene transfer. Phylogenetic trees based on the microarray data differ from those based on sequences of seven genes from the core genome.
    [Show full text]
  • Helicobacter Suis
    Vermoote et al. Veterinary Research 2011, 42:51 http://www.veterinaryresearch.org/content/42/1/51 VETERINARY RESEARCH RESEARCH Open Access Genome sequence of Helicobacter suis supports its role in gastric pathology Miet Vermoote1*, Tom Theo Marie Vandekerckhove2, Bram Flahou1, Frank Pasmans1, Annemieke Smet1, Dominic De Groote3, Wim Van Criekinge2, Richard Ducatelle1, Freddy Haesebrouck1 Abstract Helicobacter (H.) suis has been associated with chronic gastritis and ulcers of the pars oesophagea in pigs, and with gastritis, peptic ulcer disease and gastric mucosa-associated lymphoid tissue lymphoma in humans. In order to obtain better insight into the genes involved in pathogenicity and in the specific adaptation to the gastric environment of H. suis, a genome analysis was performed of two H. suis strains isolated from the gastric mucosa of swine. Homologs of the vast majority of genes shown to be important for gastric colonization of the human pathogen H. pylori were detected in the H. suis genome. H. suis encodes several putative outer membrane proteins, of which two similar to the H. pylori adhesins HpaA and HorB. H. suis harbours an almost complete comB type IV secretion system and members of the type IV secretion system 3, but lacks most of the genes present in the cag pathogenicity island of H. pylori. Homologs of genes encoding the H. pylori neutrophil-activating protein and g-glutamyl transpeptidase were identified in H. suis. H. suis also possesses several other presumptive virulence- associated genes, including homologs for mviN, the H. pylori flavodoxin gene, and a homolog of the H. pylori vacuolating cytotoxin A gene. It was concluded that although genes coding for some important virulence factors in H.
    [Show full text]
  • Understanding Biological Factors Associated with Pelvic Organ Prolapse in Late Gestation Sows
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2021 Understanding biological factors associated with pelvic organ prolapse in late gestation sows Zoe E. Kiefer Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Recommended Citation Kiefer, Zoe E., "Understanding biological factors associated with pelvic organ prolapse in late gestation sows" (2021). Graduate Theses and Dissertations. 18526. https://lib.dr.iastate.edu/etd/18526 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Understanding biological factors associated with pelvic organ prolapse in late gestation sows by Zoë Elizabeth Kiefer A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Animal Physiology (Reproductive Physiology) Program of Study Committee: Jason W. Ross, Major Professor Aileen F. Keating Stephan Schmitz-Esser The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this thesis. The Graduate College will ensure this thesis is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2021 Copyright © Zoë Elizabeth Kiefer, 2021. All rights reserved. ii DEDICATION I dedicate this thesis to everyone who has encouraged and supported me throughout this journey.
    [Show full text]