Helicobacter Pylori: Comparative Genomics and Structure-Function Analysis of the Flagellum Biogenesis Protein HP0958

Total Page:16

File Type:pdf, Size:1020Kb

Helicobacter Pylori: Comparative Genomics and Structure-Function Analysis of the Flagellum Biogenesis Protein HP0958 UCC Library and UCC researchers have made this item openly available. Please let us know how this has helped you. Thanks! Title Helicobacter pylori: comparative genomics and structure-function analysis of the flagellum biogenesis protein HP0958 Author(s) de Lacy Clancy, Ceara A. Publication date 2014 Original citation de Lacy Clancy, C. A. 2014. Helicobacter pylori: comparative genomics and structure-function analysis of the flagellum biogenesis protein HP0958. PhD Thesis, University College Cork. Type of publication Doctoral thesis Rights © 2014, Ceara A. De Lacy Clancy. http://creativecommons.org/licenses/by-nc-nd/3.0/ Item downloaded http://hdl.handle.net/10468/1684 from Downloaded on 2021-10-10T14:33:51Z Helicobacter pylori: Comparative genomics and structure-function analysis of the flagellum biogenesis protein HP0958 A Thesis Presented in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy by Ceara de Lacy Clancy, B.Sc. School of Microbiology National University of Ireland, Cork Supervisor: Prof. Paul W. O’Toole Head of School of Microbiology: Prof. Gerald Fitzgerald February 2014 Table of Contents Table of Contents Abstract ........................................................................................................................ i Chapter 1 Literature Review....................................................................................................... 1 1 Helicobacter pylori .................................................................................................. 2 1.1 Discovery of H. pylori.............................................................................. 2 1.2 Morphology and Physiology .................................................................... 5 1.3 Genetics .................................................................................................... 7 2 Pathogenesis of Helicobacter pylori ...................................................................... 10 2.1 Epidemiology ......................................................................................... 10 2.2 Transmission .......................................................................................... 11 2.3 Infection and Inflammation .................................................................... 12 2.4 Virulence Factors ................................................................................... 14 2.5 Disease ................................................................................................... 20 2.6 Diagnostics ............................................................................................. 21 2.7 Treatment ............................................................................................... 22 3 Bacterial Secretion Systems .................................................................................. 24 3.1 Type I Secretion System ........................................................................ 26 3.2 Type II Secretion System ....................................................................... 26 3.3 Type III Secretion System ...................................................................... 27 3.4 Type IV Secretion System ..................................................................... 29 3.5 Type V Secretion System ....................................................................... 30 3.6 Type VI Secretion System ..................................................................... 31 3.7 Type VII Secretion System .................................................................... 32 4 Composition and Organization of the Bacterial Flagellum ................................... 33 4.1 Morphology of the flagellum in Enterobacteriaceae............................. 33 4.2 Flagellum Assembly in Enterobacteriaceae .......................................... 37 4.3 Regulation of Flagellar Assembly .......................................................... 39 4.4 Flagellar chaperones in Enterobacteriaceae .......................................... 40 4.5 Regulation of flagellum biogenesis in H. pylori .................................... 41 4.6 HP0958 ................................................................................................... 44 5 Aims of this Study ................................................................................................. 48 6 References ............................................................................................................. 50 Chapter 2 Genome Sequences and Comparative Genomics of Two Motile Helicobacter pylori Strains ....................................................................................... 83 Published Genome Announcement: Draft Genome Sequences of Helicobacter pylori Strains 17874 and P79............. 84 1 Abstract .................................................................................................................. 85 2 Genome Announcement ........................................................................................ 85 3 Nucleotide Sequence Accession Numbers ............................................................ 86 4 Acknowledgements ............................................................................................... 86 5 References ............................................................................................................. 87 Expanded Thesis Analysis: Comparative Genomics of Two Motile Helicobacter pylori Strains and Core Genome Analysis of 43 Strains ...................................................................... 88 1 Abstract .................................................................................................................. 89 Table of Contents 2 Introduction ........................................................................................................... 90 3 Methods ................................................................................................................. 92 3.1 Bacterial Strains and Culture Conditions ............................................... 92 3.2 Genomic DNA Extraction ...................................................................... 92 3.3 Genome Sequencing and Annotation ..................................................... 92 3.4 Genome Comparisons ............................................................................ 93 4 Results and Discussion .......................................................................................... 94 4.1 General Genome Features ...................................................................... 94 4.2 Plasticity Zones ...................................................................................... 95 4.3 Motility Genes, Virulence Factors and OMPs ....................................... 96 4.4 Homopolymeric Repeats ........................................................................ 98 4.5 Natural Competence ............................................................................... 99 4.6 The Core Genome of H. pylori ............................................................ 101 4.7 Unique Genes ....................................................................................... 103 5 Conclusions ......................................................................................................... 105 6 Tables and Figures ............................................................................................... 106 7 References ........................................................................................................... 138 Chapter 3 Structure-function analysis of the H. pylori flagellum biogenesis protein HP0958 .................................................................................................................... 145 1 Abstract ................................................................................................................ 146 2 Introduction ......................................................................................................... 147 3 Methods ............................................................................................................... 149 3.1 Bacterial Strains and Culture Conditions ............................................. 149 3.2 Molecular Cloning ............................................................................... 149 3.3 Site-Directed Mutagenesis ................................................................... 150 3.4 Allelic Exchange Mutagenesis ............................................................. 150 3.5 Natural Transformation of H. pylori .................................................... 151 3.6 Motility Assay ...................................................................................... 151 3.7 Electron Microscopy ............................................................................ 152 3.8 Preparation of Whole Cell Fractions .................................................... 152 3.9 Protein Electrophoresis and Western Blot ........................................... 152 3.10 Quantitative Analysis of Transcription by Real-Time PCR ................ 153 3.11 Protein Over-Expression and Purification ........................................... 153 3.12 GST Pull-Down Assay ......................................................................... 154 3.13 Yeast Two-Hybrid Assay ..................................................................... 154 3.14 Plate X-Gal Assay ................................................................................ 155 3.15
Recommended publications
  • Structural Characterization of Helicobacter Pylori Proteins Contributing to Stomach Colonization
    Università degli Studi di Padova Dipartimento di Biologia Scuola di Dottorato di Ricerca in Bioscienze e Biotecnologie Indirizzo: Biotecnologie Ciclo XXVIII STRUCTURAL CHARACTERIZATION OF HELICOBACTER PYLORI PROTEINS CONTRIBUTING TO STOMACH COLONIZATION Direttore della Scuola: Ch.mo Prof. Paolo Bernardi Coordinatore di Indirizzo: Ch.ma Prof.ssa Fiorella Lo Schiavo Supervisore: Ch.mo Prof. Giuseppe Zanotti Dottorando: Maria Elena Compostella 31 Gennaio 2016 Università degli Studi di Padova Department of Biology School of Biosciences and Biotechnology Curriculum: Biotechnology XXVIII Cycle STRUCTURAL CHARACTERIZATION OF HELICOBACTER PYLORI PROTEINS CONTRIBUTING TO STOMACH COLONIZATION Director of the Ph.D. School: Ch.mo Prof. Paolo Bernardi Coordinator of the Curriculum: Ch.ma Prof.ssa Fiorella Lo Schiavo Supervisor: Ch.mo Prof. Giuseppe Zanotti Ph.D. Candidate: Maria Elena Compostella 31 January 2016 Contents ABBREVIATIONS AND SYMBOLS IV SUMMARY 9 SOMMARIO 15 1. INTRODUCTION 21 1.1 HELICOBACTER PYLORI 23 1.2 GENETIC VARIABILITY 26 1.2.1 GENOME COMPARISON 26 1.2.1.1 HELICOBACTER PYLORI 26695 26 1.2.1.2 HELICOBACTER PYLORI J99 28 1.2.2 CORE GENOME 30 1.2.3 MECHANISMS GENERATING GENETIC VARIABILITY 31 1.2.3.1 MUTAGENESIS 32 1.2.3.2 RECOMBINATION 35 1.2.4 HELICOBACTER PYLORI AS A “QUASI SPECIES” 37 1.2.5 CLASSIFICATION OF HELICOBACTER PYLORI STRAINS 38 1.3 EPIDEMIOLOGY 40 1.3.1 INCIDENCE AND PREVALENCE OF HELICOBACTER PYLORI INFECTION 40 1.3.2 SOURCE AND TRANSMISSION 42 1.4 ADAPTATION AND GASTRIC COLONIZATION 47 1.4.1 ACID ADAPTATION 49 1.4.2 MOTILITY AND CHEMIOTAXIS 60 1.4.3 ADHESION 65 1.5 PATHOGENESIS AND VIRULENCE FACTORS 72 1.5.1 VACUOLATING CYTOTOXIN A 78 1.5.2 CAG PATHOGENICITY ISLAND AND CYTOTOXIN-ASSOCIATED GENE A 83 1.5.3 NEUTROPHIL-ACTIVATING PROTEIN 90 1.6 HELICOBACTER PYLORI AND GASTRODUODENAL DISEASES 92 1.7 ERADICATION AND POTENTIAL BENEFITS 97 2.
    [Show full text]
  • In Silico Evolutionary Analysis of Helicobacter Pylori Outer Membrane Phospholipase a (OMPLA) Hilde S Vollan1*, Tone Tannæs1, Yoshio Yamaoka2 and Geir Bukholm3,4
    Vollan et al. BMC Microbiology 2012, 12:206 http://www.biomedcentral.com/1471-2180/12/206 RESEARCH ARTICLE Open Access In silico evolutionary analysis of Helicobacter pylori outer membrane phospholipase A (OMPLA) Hilde S Vollan1*, Tone Tannæs1, Yoshio Yamaoka2 and Geir Bukholm3,4 Abstract Background: In the past decade, researchers have proposed that the pldA gene for outer membrane phospholipase A (OMPLA) is important for bacterial colonization of the human gastric ventricle. Several conserved Helicobacter pylori genes have distinct genotypes in different parts of the world, biogeographic patterns that can be analyzed through phylogenetic trees. The current study will shed light on the importance of the pldA gene in H. pylori. In silico sequence analysis will be used to investigate whether the bacteria are in the process of preserving, optimizing, or rejecting the pldA gene. The pldA gene will be phylogenetically compared to other housekeeping (HK) genes, and a possible origin via horizontal gene transfer (HGT) will be evaluated through both intra- and inter- species evolutionary analyses. Results: In this study, pldA gene sequences were phylogenetically analyzed and compared with a large reference set of concatenated HK gene sequences. A total of 246 pldA nucleotide sequences were used; 207 were from Norwegian isolates, 20 were from Korean isolates, and 19 were from the NCBI database. Best-fit evolutionary models were determined with MEGA5 ModelTest for the pldA (K80 + I + G) and HK (GTR + I + G) sequences, and maximum likelihood trees were constructed. Both HK and pldA genes showed biogeographic clustering. Horizontal gene transfer was inferred based on significantly different GC contents, the codon adaptation index, and a phylogenetic conflict between a tree of OMPLA protein sequences representing 171 species and a tree of the AtpA HK protein for 169 species.
    [Show full text]
  • Comparative Genomics and Functional Annotation of Bacterial Transporters
    Physics of Life Reviews 5 (2008) 22–49 www.elsevier.com/locate/plrev Review Comparative genomics and functional annotation of bacterial transporters Mikhail S. Gelfand a,b,∗, Dmitry A. Rodionov a,c a Institute for Information Transmission Problems, Russian Academy of Sciences, Bolshoi Karetny pereulok 19, Moscow 127994, Russia b Department of Bioengineering and Bioinformatics, Moscow State University, Russia c Burnham Institute for Medical Research, La Jolla, CA 92037, USA Received 6 October 2007; received in revised form 8 October 2007; accepted 10 October 2007 Available online 24 October 2007 Communicated by M. Frank-Kamenetskii Abstract Transport proteins are difficult to study experimentally, and because of that their functional characterization trails that of en- zymes. The comparative genomic analysis is a powerful approach to functional annotation of proteins, which makes it possible to utilize the genomic sequence data from thousands of organisms. The use of computational techniques allows one to identify candidate transporters, predict their structure and localization in the membrane, and perform detailed functional annotation, which includes substrate specificity and cellular role. We overview the main techniques of analysis of transporters’ structure and function. We consider the most popular algorithms to identify transmembrane segments in protein sequences and to predict topology of multispanning proteins. We describe the main approaches of the comparative genomics, and how they may be applied to the analysis of transporters, and provide examples showing how combinations of these techniques is used for functional annotation of new transporter specificities in known families, characterization of new families, and prediction of novel transport mechanisms. © 2007 Elsevier B.V.
    [Show full text]
  • Indagine Sulla Presenza Di Helicobacter Pullorum in Allevamenti Avicoli Italiani
    Alma Mater Studiorum – Università di Bologna DOTTORATO DI RICERCA IN “EPIDEMIOLOGIA E CONTROLLO DELLE ZOONOSI” Ciclo XX Settore scientifico disciplinare di afferenza: VET-05 TITOLO TESI Indagine sulla presenza di Helicobacter pullorum in allevamenti avicoli italiani Presentata da: Dr. Mirko Rossi Coordinatore Dottorato Relatore Prof.Luigi Morganti Prof. Renato Giulio Zanoni Esame finale anno 2008 1 2 Para a Joana Hà-de haver uma cor por descobrir Um juntar de palava escondido Hà-de haver uma chave para abrir A porta deste muro desmedido (Josè Saramago, Hà-de aver…) 3 4 INDICE PARTE GENERALE 7 Capitolo 1 Genere Helicobacter 9 Capitolo 2 Helicobacter pullorum 21 PARTE SPERIMENTALE 31 Presentazione 33 Capitolo 1 Ottimizzazione dei metodi di isolamento di Helicobacter pullorum da matrice policontaminata 35 Capitolo 2 Isolamento di Helicobacter pullorum da contenuto ciecale di broiler, galline ovaiole, tacchini e struzzo, caratterizzazione fenotipica e tipizzazione genotipica degli isolati 55 Capitolo 3 Indagine sulla presenza di Helicobacter pullorum da feci di pazienti umani affetti da patologia gastroenterica 85 Capitolo 4. Antibiotico resistenza in Helicobacter pullorum 93 Conclusioni 119 RINGRAZIAMENTI 123 BIBLIOGRAFIA 125 5 6 PARTE GENERALE 7 8 CAPITOLO 1 Genere Helicobacter 1.1 Tassonomia del genere Helicobacter Il genere Helicobacter è stato originariamente descritto nel 1989 da Goodwin et al . i quali, sulla base di caratteristiche fenotipiche e genotipiche quali la composizione in acidi grassi della membrana cellulare, la sensibilità ad alcuni antibiotici e la sequenza del rRNA, classificarono in questo nuovo genere le specie [Campylobacter pylori ] e [Campylobacter mustelae ], isolate rispettivamente dallo stomaco di uomo (Marshall et al. , 1985) e di furetto (Fox et al ., 1988).
    [Show full text]
  • The Genome and Genetics of a High Oxidative Stress Tolerant Serratia Sp
    Vicente et al. BMC Genomics (2016) 17:301 DOI 10.1186/s12864-016-2626-1 RESEARCH ARTICLE Open Access The genome and genetics of a high oxidative stress tolerant Serratia sp. LCN16 isolated from the plant parasitic nematode Bursaphelenchus xylophilus Claudia S. L. Vicente1,2, Francisco X. Nascimento1, Yoriko Ikuyo2, Peter J. A. Cock3, Manuel Mota1,4 and Koichi Hasegawa2* Abstract Background: Pine wilt disease (PWD) is a worldwide threat to pine forests, and is caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus. Bacteria are known to be associated with PWN and may have an important role in PWD. Serratia sp. LCN16 is a PWN-associated bacterium, highly resistant to oxidative stress in vitro, and which beneficially contributes to the PWN survival under these conditions. Oxidative stress is generated as a part of the basal defense mechanism used by plants to combat pathogenic invasion. Here, we studied the biology of Serratia sp. LCN16 through genome analyses, and further investigated, using reverse genetics, the role of two genes directly involved in the neutralization of H2O2,namelytheH2O2 transcriptional factor oxyR;andtheH2O2-targeting enzyme, catalase katA. Results: Serratia sp. LCN16 is phylogenetically most closely related to the phytosphere group of Serratia, which includes S. proteamaculans, S. grimessi and S. liquefaciens.Likewise,Serratia sp. LCN16 shares many features with endophytes (plant-associated bacteria), such as genes coding for plant polymer degrading enzymes, iron uptake/ transport, siderophore and phytohormone synthesis, aromatic compound degradation and detoxification enzymes. OxyR and KatA are directly involved in the high tolerance to H2O2 of Serratia sp. LCN16. Under oxidative stress, Serratia sp.
    [Show full text]
  • Evolutionary Dynamics of the Vapd Gene in Helicobacter Pylori and Its
    ISSN Online: 2372-0956 Symbiosis www.symbiosisonlinepublishing.com Research Article SOJ Microbiology & Infectious Diseases Open Access Evolutionary dynamics of the vapD gene in Helicobacter pylori and its wide distribution among bacterial phyla Gabriela Delgado-Sapién1, Rene Cerritos-Flores2, Alejandro Flores-Alanis1, José L Méndez1, Alejandro Cravioto1, Rosario Morales-Espinosa1* *1Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México 04510. 2Centro de Investigación en Políticas, Población y Salud, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, México 04510. Received: 12th August , 2020; Accepted: 15th November 2020 ; Published: 03rd December, 2020 *Corresponding author: RosarioMorales-Espinosa, PhD, MD, Laboratorio de Genómica Bacteriana, Departamento de Microbiología y Parasi- tología. Universidad Nacional Autónoma de México. Avenida Universidad 3000, Colonia Ciudad Universitaria, Delegación Coyoacán, C.P. 04510, México City, México.Tel.: +525 5523 2135; Fax: +525 5623 2114 E-mail: [email protected] factors [1,2,3]. Genetic diversity is seen among H. pylori strains Abstract from different origins and ethnic populations, as well as within The vapD gene is present in microorganisms from different phyla H. pylori populations within a single stomach. It is well known and encodes for the virulence-associated protein D (VapD). In some that H. pylori is a highly recombinant microorganism [4-8] and microorganisms, it has been suggested that vapD participates in either a natural transformant, which explains its genomic variability protecting the bacteria from respiratory burst within the macrophage and diversity that favour a better adaptive capacity and its or in facilitating the persistence of the microorganism within the permanence on the gastric mucosa for decades.
    [Show full text]
  • Analysis of Sequence Variation at Two Helicobacter Pylori Genetic Loci Potentially Involved in Virulence
    W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 2008 Analysis of Sequence Variation at Two Helicobacter pylori Genetic Loci Potentially involved in Virulence George Warren Liechti College of William & Mary - Arts & Sciences Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Microbiology Commons, and the Molecular Biology Commons Recommended Citation Liechti, George Warren, "Analysis of Sequence Variation at Two Helicobacter pylori Genetic Loci Potentially involved in Virulence" (2008). Dissertations, Theses, and Masters Projects. Paper 1539626867. https://dx.doi.org/doi:10.21220/s2-zrbg-b193 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Analysis of sequence variation atHelicobacter two pylori genetic loci potentially involved in virulence. George Warren Liechti Springfield, Virginia Bachelors of Science, College of William and Mary, 2003 A Thesis presented to the Graduate Faculty of the College of William and Mary in Candidacy for the Degree of Master of Science Department of Biology The College of William and Mary May, 2008 APPROVAL PAGE This Thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science George Warren Liechti Approved by^the Cq , April, 2008 Committee Chair Associate Professor Mark Forsyth, Biology, The College of William and Mary r Professor Margaret Saha, Biology, The College of William and Mary Associate Professor George Gilchrist, Biology, The College of William and Mary / J / ABSTRACT PAGE Helicobacter pylori colonizes the gastric mucosa of nearly half the world’s population and is a well documented etiologic agent of peptic ulcer disease (PUD) and a significant risk factor for the development of gastric cancer.
    [Show full text]
  • Transport Capabilities of Eleven Gram-Positive Bacteria: Comparative Genomic Analyses
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1768 (2007) 1342–1366 www.elsevier.com/locate/bbamem Review Transport capabilities of eleven gram-positive bacteria: Comparative genomic analyses Graciela L. Lorca 1,2, Ravi D. Barabote 1, Vladimir Zlotopolski, Can Tran, Brit Winnen, Rikki N. Hvorup, Aaron J. Stonestrom, Elizabeth Nguyen, ⁎ Li-Wen Huang, David S. Kim, Milton H. Saier Jr. Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA Received 5 October 2006; received in revised form 29 December 2006; accepted 7 February 2007 Available online 17 February 2007 Abstract The genomes of eleven Gram-positive bacteria that are important for human health and the food industry, nine low G+C lactic acid bacteria and two high G+C Gram-positive organisms, were analyzed for their complement of genes encoding transport proteins. Thirteen to 18% of their genes encode transport proteins, larger percentages than observed for most other bacteria. All of these bacteria possess channel proteins, some of which probably function to relieve osmotic stress. Amino acid uptake systems predominate over sugar and peptide cation symporters, and of the sugar uptake porters, those specific for oligosaccharides and glycosides often outnumber those for free sugars. About 10% of the total transport proteins are constituents of putative multidrug efflux pumps with Major Facilitator Superfamily (MFS)-type pumps (55%) being more prevalent than ATP-binding cassette (ABC)-type pumps (33%), which, however, usually greatly outnumber all other types. An exception to this generalization is Streptococcus thermophilus with 54% of its drug efflux pumps belonging to the ABC superfamily and 23% belonging each to the Multidrug/Oligosaccharide/Polysaccharide (MOP) superfamily and the MFS.
    [Show full text]
  • The Transcriptional Regulator Lysg (Rv1985c) of Mycobacterium Tuberculosis Activates Lyse (Rv1986) in a Lysine-Dependent Manner
    RESEARCH ARTICLE The transcriptional regulator LysG (Rv1985c) of Mycobacterium tuberculosis activates lysE (Rv1986) in a lysine-dependent manner Marie Schneefeld1, Tobias Busche2, Robert Geffers3, JoÈ rn Kalinowski2*, Franz- Christoph Bange1* 1 Department of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany, 2 Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany, 3 Research Group Genome Analytics, Helmholtz Center for Infection Research, Braunschweig, a1111111111 Germany a1111111111 a1111111111 * [email protected] (FCB); [email protected] (JK) a1111111111 a1111111111 Abstract The Mycobacterium tuberculosis protein encoded by the Rv1986 gene is a target for mem- ory T cells in patients with tuberculosis, and shows strong similarities to a lysine exporter OPEN ACCESS LysE of Corynebacterium glutamicum. During infection, the pathogen Mycobacterium tuber- Citation: Schneefeld M, Busche T, Geffers R, Kalinowski J, Bange F-C (2017) The transcriptional culosis adapts its metabolism to environmental changes. In this study, we found that the regulator LysG (Rv1985c) of Mycobacterium expression of Rv1986 is controlled by Rv1985c. Rv1985c is located directly upstream of tuberculosis activates lysE (Rv1986) in a lysine- Rv1986 with an overlapping promoter region between both genes. Semiquantitative reverse dependent manner. PLoS ONE 12(10): e0186505. transcription PCR using an isogenic mutant of Mycobacterium tuberculosis lacking Rv1985c
    [Show full text]
  • Supplemental Table 7. Every Significant Association
    Supplemental Table 7. Every significant association between an individual covariate and functional group (assigned to the KO level) as determined by CPGLM regression analysis. Variable Unit RelationshipLabel See also CBCL Aggressive Behavior K05914 + CBCL Emotionally Reactive K05914 + CBCL Externalizing Behavior K05914 + K15665 K15658 CBCL Total K05914 + K15660 K16130 KO: E1.13.12.7; photinus-luciferin 4-monooxygenase (ATP-hydrolysing) [EC:1.13.12.7] :: PFAMS: AMP-binding enzyme; CBQ Inhibitory Control K05914 - K12239 K16120 Condensation domain; Methyltransferase domain; Thioesterase domain; AMP-binding enzyme C-terminal domain LEC Family Separation/Social Services K05914 + K16129 K16416 LEC Poverty Related Events K05914 + K16124 LEC Total K05914 + LEC Turmoil K05914 + CBCL Aggressive Behavior K15665 + CBCL Anxious Depressed K15665 + CBCL Emotionally Reactive K15665 + K05914 K15658 CBCL Externalizing Behavior K15665 + K15660 K16130 KO: K15665, ppsB, fenD; fengycin family lipopeptide synthetase B :: PFAMS: Condensation domain; AMP-binding enzyme; CBCL Total K15665 + K12239 K16120 Phosphopantetheine attachment site; AMP-binding enzyme C-terminal domain; Transferase family CBQ Inhibitory Control K15665 - K16129 K16416 LEC Poverty Related Events K15665 + K16124 LEC Total K15665 + LEC Turmoil K15665 + CBCL Aggressive Behavior K11903 + CBCL Anxiety Problems K11903 + CBCL Anxious Depressed K11903 + CBCL Depressive Problems K11903 + LEC Turmoil K11903 + MODS: Type VI secretion system K01220 K01058 CBCL Anxiety Problems K11906 + CBCL Depressive
    [Show full text]
  • Diversity of Mat-Forming Sulfide-Oxidizing Bacteria at Continental Margins
    Diversity of Mat-forming Sulfide-oxidizing Bacteria at Continental Margins Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften - Dr. rer. nat. - dem Fachbereich Biologie/Chemie der Universität Bremen vorgelegt von Stefanie Grünke Bremen, April 2010 Die vorliegende Doktorarbeit wurde in der Zeit von Juni 2006 bis April 2010 am Max- Planck-Institut für Marine Mikrobiologie und am Alfred-Wegener-Institut für Polar- und Meeresforschung angefertigt. 1. Gutachterin: Prof. Dr. Antje Boetius 2. Gutachter: Prof. Dr. Rudolf Amann Tag des Promotionskolloquiums: 4. Juni 2010 Diese Arbeit ist all denjenigen gewidmet, die ihre Segel setzen, um neue Welten gu erkunden. Seien sie sich gewiss, dass auf Sturm immer ruhiges Wasserfolgt. Wertrauen sie auf ihr größtes Gut — ihre Freunde und Familie. Nutgen sie ihre Schwächen, um neue Stärken gu finden. Soll Zuversicht ihr Kompass sein! Summary In the oceans, microbial mats formed by chemosynthetic sulfide-oxidizing bacteria are mostly found in so-called ‘reduced habitats’ that are characterized by chemoclines where energy-rich, reduced substances, like hydrogen sulfide, are transported into oxic or suboxic zones. There, these organisms often thrive in narrow zones or gradients of their electron donor (sulfide) and their electron acceptor (mostly oxygen or nitrate). Through the build up of large biomasses, mat-forming sulfide oxidizers may significantly contribute to primary production in their habitats and dense mats represent efficient benthic filters against the toxic gas hydrogen sulfide. As gradient organisms, these mat-forming sulfide oxidizers seem to be adapted to very defined ecological niches with respect to oxygen (or nitrate) and sulfide gradients. However, many aspects regarding their diversity as well as their geological drivers in marine sulfidic habitats required further investigation.
    [Show full text]
  • Supplementary Table S1. the Key Enzymes for Autotrophic Growth in C
    Electronic Supplementary Material (ESI) for Metallomics. This journal is © The Royal Society of Chemistry 2015 Supplementary Table S1. The key enzymes for autotrophic growth in C. metallidurans Name Rmet-number Spec. Predicted Mass, (kDa) Determined Mass, (kDa) Activity HOS Rmet_1522 to Rmet_1525 28.7 65.2, 25.4, 23.4, 52.8 = 166.8 62.4±1.8, 26.4±1.3, 24.0±0.6, 54.1±2.5, =235±20a HOP Rmet_1297, Rmet_1298, 67.0 69.0 + 38.6 = 108 148±24a CAX Rmet_1500, Rmet_1501 2.82 8 * (13.6 + 52.5) = 529 475±36a PRK Rmet_1512 0.994 8 * 32.4 = 259 256±11a aMean value of masses determined by S300 size exclusion chromatography and sucrose gradient centrifugation. HOS, NAD-reducing soluble hydrogenase; HOP, membrane-bound hydrogenase; CAX, ribulose-bis-phosphate carboxylase/oxygenase; PRK, phosphoribulokinase. Specific activity in U/mg protein. Supplementary Table S2. Genes expressed differently in AE104 compared to CH34 wild typea Operon Region Name Gene Q D Description UP Op1321r Rmet_4594 zntA 1.72 2.88 Q1LEH0 Heavy metal translocating P -type ATPase Op1322f Rmet_4595 czcI2 2.03 2.92 Q1LEG9 Putative uncharacterized protein Op1322f Rmet_4596 czcC2 23.34 5.36 Q1LEG8 Outer membrane efflux protein Op1322f Rmet_4597 czcB2' 15.36 9.68 Q1LEG7 Secretion protein HlyD Op0075f Rmet_0260 - 2.31 2.48 Q1LRT0 Putative transmembrane protein Op0075f Rmet_0261 coxB 2.08 2.49 Q1LRS9 Cytochrome c oxidase subunit 2 Adjacent to CMGI-7 Op0335f Rmet_1171 tnpA 7.03 21.74 Q9F8S6 Transposase (Transposase, IS4 family) CMGI-2 Op0362r Rmet_1251 tnp 4.08 0.61 Q1LNY9 Putative uncharacterized
    [Show full text]