(Allium Sativum L.): a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nutritional and Therapeutic Potential of Allium Vegetables
18 Journal of Nutritional Therapeutics, 2017, 6, 18-37 Nutritional and Therapeutic Potential of Allium Vegetables Ravi Kant Upadhyay* Department of Zoology, D D U Gorakhpur University, Gorakhpur 273009, U.P., India Abstract: Allium vegetables are highly nutritional, its dietary use improves digestion and mental health and lower down cholesterol level. Use of onions, garlic, scallions, chives and leeks show therapeutic efficacy against cardiovascular disease, hyperglycemia, and stomach cancer, Onions contain allylsulfides and flavonoids particularly quercetin that is an important anti-oxidative and reduces hepatocytes apoptosis in streptozotocin-induced diabetic rat. Steroid saponins and sapogenins present in garlic bulbs are used to prepare soft soaps. β-chlorogenin is a characteristic steroid sapogenin from garlic that is used for skin ointment and as a shiner. Both garlic paste and soft garlic preparations are used for flavoring the food items. Garlic products that contain the most safe, effective, stable, and odorless components are the most valuable as dietary supplements. Garlic also contains non sulfur compounds such as steroid saponins. Alliums showed antimicrobial, antithrombotic, antitumor, anti-hyperlipidaemic, antiarthritic, anti-hyperglycemic anticarcinogenic potential. Allium vegetables contain organosulfur compounds, including DATS, diallyl disulfide (DADS), ajoene, and S- allylmercaptocysteine (SAMC), have been found to induce cell cycle arrest in cancer cells. Alliums have great ethnomedicinal importance as these are used as native remedies against wide spectrum of diseases including diabetes. Allium origin natural products are of great therapeutic and dietary use. These are most preferred items used by nutritionists, physicians, food technologists, food chemists. Green allium vegetables are good source of natural pharmaceutics which are good for health and act against nutritionally induced acute and chronic diseases. -
Sunda Classics Signature Nigiri Commence Salads Dim
COMMENCE ASIAN GRILL SUNDA CLASSICS EDAMAME 5 GRILLED VEGETABLES 22 SIGNATURE CRISPY RICE SPICY EDAMAME 7 mushrooms, eggplant, bok choy, broccolini, onion, okra, carrots, coconut curry khao soi, crispy rice noodles pan fried sushi rice glazed with tamari TSUKEMONO 12 seasonal pickled vegetables CHICKEN INASAL 27 and topped with: vinegar, lemongrass, garlic, cherry tomatoes, red onion, MISO SOUP 4 achiote glaze, chili lime sauce, grilled lemon SPICY TUNA* 17 tofu, wakame, scallions WAGYU SKIRT* 45 masago, chives, sriracha, rayu, jalapeño ENOKI MUSHROOMS 5 black garlic soy, sweet potato strings, chives CRAB 8 WAGYU* 17 NEW YORK STRIP STEAK* 36 WOK FIRED SHISHITO PEPPERS 12 sambal, chives, red chili, asian pesto thin soy sauce sprouts, carrots, spinach, cucumber, sesame soy marinade FILET MIGNON* 42 TUNA POKE* 19 SALADS shishito peppers, red onion tuna, masago, wakame, red onion, avocado, CRISPY BRUSSELS SPROUTS 17 sesame soy, tostones brussels sprouts, red cabbage, carrots, chilies, MAIN FLAVORS fried shallots, minced shrimp, nuoc cham vinaigrette SZECHUAN CHICKEN 23 TUNA TRUFFLE PIZZA* 21 dry chinese chilis, green beans, scallions, sesame chili oil BURMESE TEA SALAD 16 roti prata, black truffle, foie gras aioli, red onion, bibb, romaine, grape tomatoes, crispy shallots, puffed CRISPY PATA 24 truffle tare rice, pickled beet strings, sunflower seeds, peanuts, confit pork shank, garlic vinaigrette, foie gravy oolong tea dressing PHO BRAISED SHORT RIBS 36 CHILI ALBACORE SASHIMI* 18 MISO BEETS 16 crispy rice noodles, cilantro, basil, lemon balm, hoisin, seasonal roasted beets, mache, shiro miso dressing, seared chili marinated albacore tuna, crispy leeks, sambal, lemongrass-herb broth honey almond crème, almonds rayu ponzu GREEN CURRY SQUASH 22 seasonal squash, red pepper, pineapple, coconut green DIM SUM YELLOWTAIL JALAPEÑO* 18 curry. -
Boletín De Pasuchaca Patentes Extranjeras
BOLETÍN DE PASUCHACA Septiembre 2014 PATENTES EXTRANJERAS Número de solicitud: JP200173253A Título: COMPOSITION FOR ENHANCING GLTATHIONE | The composition for a glutathione increase|augmentation Fecha de solicitud: 2001-03-15 Solicitante: FANCL CORP Abstract: Compositions for increasing glutathione are new. Compositions for increasing glutathione contain at least one of Filipendula ulmaria, Valeriana fauriei, Sanbucus nigra, Granium dielsianum, Carthamus tinctorius, Foeniculum vulgare, Eriobotrya japonica, Phyllostachys bambusoides, Coriandrum sativum, Satureja hortensis, Zanthoxylum piperitum, Eucommia ulmoides, Olea europaea, Camellia japonica, Agaricus blasei, Actinidia polygama, Glehnia littoralis, Althaea rosea, Crataegus cuneate, Coixlachryma- jobi, Centaurea cyanus, Gentianella alborocea, Allium cepa, Sesamum indicum, Illicium verum, Anethum graveolens, Beta vulgaris, Trigonella foenum-graecum, Lonicera caerulea, Glycine max, Lactuca formosana, Lepidiemmeyenii, Malva sylvestris, Dioscorea batatas, Phaseolus vulgaris, Allium fistulosum, Capsicum annuum, Brassica oleracea, and Cannabis sativa. The compositions are useful as foods and pharmaceuticals especially for liver diseases, e.g., alcoholic liver disease, pulmonary diseases, and cataracts. The compositions increase supply of glutathione in vivo, and the glutathione increasing activity largely increases when using with cysteine. Número de solicitud: JP2002241369A Título: AGENT FOR INHIBITING DIFFERENTIATION OF LIPOCYTE | Fat-cell differential inhibition agent Fecha de solicitud: -
Colorado Agricultural College I EXTENSION SERVICE Fort Collin •• Colorado
mmm.IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII_IIIIID"iiii"" !iif!!i!!m'IIII1_IIIIIIIIIIIIIIII_IIIIIIII_lIIImmlll = February, 1919 Extension Bulletin Series I, No. 155-A 1= Reprint of Extension Bulletin No. 147 1I Colorado Agricultural College I EXTENSION SERVICE Fort Collin •• Colorado H. T. FRENCH. Dir~ct()r 1IIIIIIII1IIIIIIIII'lIIIii!!iDIII""lIIIIII'IIIImIllllii"IIIIIIIIIIIIIIIIIIII"lIIIiiiillllii"'lIIIiiiillllhiiilllll!iiilllll!iiilllll!!!!1III"IIImmI,jjii!!iiiiiiiii!ii!,i!i!ii 'iiii"!!I!ii!iiii!mih_mlll'" !!Iiii'''' IIII IIII i1/1 IIII ID IIII D I ~ R I c::=::::aU:=U:::::UI:I!II::C:::=:::I"IIIIl":IIII!iiiIllllii!i:llll!!iiIlllli!iiIlll!iiiillll"'.IIIIIIIIIIIIIIIiIII"'IiIC ·!i:::;:·3:1111!!iiIl:!·:::l'::::,lII:w:::::a'mmlmDlIII"a:'IIIiIj,jIli:" m'" ~. CO·OPERATIV. aXTENSION aERY.ell IN AGRICULTUA. AND HOME ECONOMIC.- a COLORADO AOIIICULTURAL COLLEGE AND U . S. DEPARTMENT OF' D IIII AGRICULTUR~ Co-OP."ATING III IIIl11allllii!iIlll"":IIII!llIIIIIIIlIIIIIIIlIIIIIIIlIIIlmmm"'lIIl11l111i! j~· i!~, :IIII!iiiDlllli lilllli!"IIII"!ii1llll'IIIIIIII:IIII!!iU"illlli!!iIlll!i"~'::::I"IIII... gmm"i!lIIIl!.i!lIIIij,:::I'1III!ii·:IIII!iiiIlll!!i1lllllll1lllllll1llllm1ll1ll1ll Colorado Agricultural College FORT COLLINS. COLORADO Term Expires THE STATE BOARD OF AGRICULTURE HON. CHAS. PEARSON ..................................... Durango. 1919 HON. R. W. CORWIN ........................................ Pueblo. 1919 HON. A. A. EDWARDS. President. ....................... Fort Collins. 1921 RON.. T. S. CALKTNS ................................... Westmlnster. 1921 HON. H. D. PARKER ........................................ Greeley. 1923 MRS. AGNES L. RIDDLE .................................... Denver. 1923 HON. J. C. BELL .......................................... Montrose. 1926 HON. E. M. AMMONS ......................................... Denver. 1926 PRESIDENT CHAS. A. LORY \, Ex-otl'lcio GOVERNOR .JULTUS C. GUNTER. --- L. M. TAYLOR. Secretary CHAS. H. SHELDON. Treasurer EXECUTIVE CO:nMITTEE A. A. EDWARDS. Chairman Eo M. AMMONS H.D. PARKER EXTENSION SERVICE CHAS. A. -
H Igh-Performance Ion-Pair Chromatography Method For
Journal of Chromatography A, 991 (2003) 69–75 www.elsevier.com/locate/chroma H igh-performance ion-pair chromatography method for simultaneous analysis of alliin, deoxyalliin, allicin and dipeptide precursors in garlic products using multiple mass spectrometry and q UV detection I. Arnaultaaabc,1a, , J.P. Christides` , N. Mandon , T. Haffner , R. Kahane , J. Auger * aUniversite´ Franc¸ois Rabelais, IRBI, CNRS UMR 6035, Parc de Grandmont, 37200 Tours France bHead Product Development, Lichtwer Pharma AG, Wallenroder Strasse 8-10, D-13435 Berlin, Germany cCoopd’Or R&D, INRA, Laboratory of Physiology and In Vitro Culture, 21100 Bretenieres, France Received 9 February 2002; received in revised form 14 January 2003; accepted 22 January 2003 Abstract The quality of garlic and garlic products is usually related to their alliin content and allicin release potential. Until now no analytical method was able to quantify simultaneously allicin, its direct precursor alliin (S-allyl-L-cysteine sulfoxide), SAC (S-allyl-L-cysteine) as well as various dipeptides that apparently serve as storage compounds in garlic. It is well known that all these intermediates are involved in the allicin biosynthetic pathway. A simple and rapid HPLC method suitable for routine analysis was developed using eluents containing an ion-pairing reagent. Particularly, heptanesulfonate as ion-pairing reagent guarantees a sufficient separation between alliin and the more retained dipeptides at very low pH. Allicin was eluted after 18 min on a 15033 mm column. Synthetic reference compounds were characterized by the same chromatographic method using a diode-array UV detector and an ion trap mass spectrometer (electrospray ionization) in the multiple MS mode. -
Mémoire Pour Le Diplôme DU ASM
________________________________________________________ Mémoire Pour le diplôme DU ASM (Diplôme Universitaire Alimentation Santé Micronutrition) Gilles DONGUY Session 2013-2014 ___________________________________________________________________________ Titre : Les vertus Santé de l’Ail Traditions et vérités scientifiques 1 Merci au Dr Olivier COUDRON, Responsable D.U. ASM, pour son enseignement d’une grande clarté, émaillé d’humour et de bonne humeur ! 2 Table des matières Table des illustrations ............................................................................................................................. 4 Acronymes de composés de l’Ail ............................................................................................................ 4 1. Introduction ........................................................................................................................................ 5 2. Généralités et historique .................................................................................................................... 6 2.1 Un peu d’histoire ........................................................................................................................... 6 1.2 L’ail et sa culture de nos jours ....................................................................................................... 7 3. Composition nutritionnelle et micronutritionnelle de l’Ail .............................................................. 8 3.1 Généralités ................................................................................................................................... -
Food Compounds Activating Thermosensitive TRP Channels in Asian Herbal and Medicinal Foods
J Nutr Sci Vitaminol, 61, S86–S88, 2015 Food Compounds Activating Thermosensitive TRP Channels in Asian Herbal and Medicinal Foods Tatsuo WATANABE and Yuko TERADA School of Food and Nutritional Sciences, University of Shizuoka, 52–1 Yada, Suruga-ku, Shizuoka 422–8526, Japan Summary There are several thermosensitive transient receptor potential (TRP) ion chan- nels including capsaicin receptor, TRPV1. Food components activating TRPV1 inhibit body fat deposition through sympathetic nerve stimulation. TRPA1 is another pungency sensor for pungent compounds and is mainly coexpressed with TRPV1 in sensory nerve endings. Therefore, TRPA1 activation is expected to have an anti-obesity effect similar to TRPV1 activation. We have searched for agonists for TRPV1 and TRPA1 in vitro from Asian spices by the use of TRPV1- and TRPA1-expressing cells. Further, we performed food component addition tests to high-fat and high-sucrose diets in mice. We found capsiate, capsiconiate, capsainol from hot and sweet peppers, several piperine analogs from black pepper, gingeriols and shogaols from ginger, and sanshools and hydroxysanshools from sansho (Japanese pep- per) to be TRPV1 agonists. We also identified several sulfides from garlic and durian, hydroxy fatty acids from royal jelly, miogadial and miogatrial from mioga (Zingiber mioga), piper- ine analogs from black pepper, and acetoxychavicol acetate (ACA) from galangal (Alpinia galanga) as TRPA1 agonists. Piperine addition to diets diminished visceral fats and increased the uncoupling protein 1 (UCP1) in interscapular brown adipose tissue (IBAT), and black pepper extract showed stronger effects than piperine. Cinnamaldehyde and ACA as TRPA1 agonists inhibited fat deposition and increased UCP1. We found that several agonists of TRPV1 and TRPA1 and some agonists of TRPV1 and TRPA1 inhibit visceral fat deposition in mice. -
Analysis of Essential Oil from Leaves and Bulbs of Allium Atroviolaceum
Brief Communication and Method report 2020;3(1):e8 Analysis of essential oil from leaves and Bulbs of Allium atroviolaceum a a b c* Parniyan Sebtosheikh , Mahnaz Qomi , Shima Ghadami , Faraz Mojab a. Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran. b. Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran. c. School of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Article Info: Abstract: Received: September 2020 Introduction: Medicinal plants used in traditional medicine as prevention and treatment Accepted: September 2020 of disease and illness or use in foods, has a long history. Plants belonging to genera Published online: Allium have widely been acquired as food and medicine. In many countries, including September 2020 Iran, a variety of species of the genus Allium such as garlic, onions, leeks, shallots, etc use for food and medicinal uses. Methods and Results: The leaves and bulbs of Allium atroviolaceum, collected from * Corresponding Author: Borujerd (Lorestan Province, Iran) in May 2015 and their essential oils of were obtained Faraz Mojab Email: [email protected] by hydro-distillation. The oils were analyzed by gas chromatography coupled with mass spectrometry (GC/MS) and their chemical composition was identified. The major constituents of A. atroviolaceum leaves oil were dimethyl trisulfide (59.0%), ethyl linolenate (12.4%), phytol (11.4%) and in bulb oil were methyl methyl thiomethyl disulfide (61.3%), dimethyl trisulfide (15.1%) and methyl allyl disulfide (4.3%). The major constituents of both essential oils are sulfur compounds. Conclusion: The results of the present study can help to increase of our information about composition of an edible herb in Iran. -
Note: the Letters 'F' and 'T' Following the Locators Refers to Figures and Tables
Index Note: The letters ‘f’ and ‘t’ following the locators refers to figures and tables cited in the text. A Acyl-lipid desaturas, 455 AA, see Arachidonic acid (AA) Adenophostin A, 71, 72t aa, see Amino acid (aa) Adenosine 5-diphosphoribose, 65, 789 AACOCF3, see Arachidonyl trifluoromethyl Adlea, 651 ketone (AACOCF3) ADP, 4t, 10, 155, 597, 598f, 599, 602, 669, α1A-adrenoceptor antagonist prazosin, 711t, 814–815, 890 553 ADPKD, see Autosomal dominant polycystic aa 723–928 fragment, 19 kidney disease (ADPKD) aa 839–873 fragment, 17, 19 ADPKD-causing mutations Aβ, see Amyloid β-peptide (Aβ) PKD1 ABC protein, see ATP-binding cassette protein L4224P, 17 (ABC transporter) R4227X, 17 Abeele, F. V., 715 TRPP2 Abbott Laboratories, 645 E837X, 17 ACA, see N-(p-amylcinnamoyl)anthranilic R742X, 17 acid (ACA) R807X, 17 Acetaldehyde, 68t, 69 R872X, 17 Acetic acid-induced nociceptive response, ADPR, see ADP-ribose (ADPR) 50 ADP-ribose (ADPR), 99, 112–113, 113f, Acetylcholine-secreting sympathetic neuron, 380–382, 464, 534–536, 535f, 179 537f, 538, 711t, 712–713, Acetylsalicylic acid, 49t, 55 717, 770, 784, 789, 816–820, Acrolein, 67t, 69, 867, 971–972 885 Acrosome reaction, 125, 130, 301, 325, β-Adrenergic agonists, 740 578, 881–882, 885, 888–889, α2 Adrenoreceptor, 49t, 55, 188 891–895 Adult polycystic kidney disease (ADPKD), Actinopterigy, 223 1023 Activation gate, 485–486 Aframomum daniellii (aframodial), 46t, 52 Leu681, amino acid residue, 485–486 Aframomum melegueta (Melegueta pepper), Tyr671, ion pathway, 486 45t, 51, 70 Acute myeloid leukaemia and myelodysplastic Agelenopsis aperta (American funnel web syndrome (AML/MDS), 949 spider), 48t, 54 Acylated phloroglucinol hyperforin, 71 Agonist-dependent vasorelaxation, 378 Acylation, 96 Ahern, G. -
Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders
REVIEW published: 21 August 2018 doi: 10.3389/fphar.2018.00557 Berberine: Botanical Occurrence, Traditional Uses, Extraction Methods, and Relevance in Cardiovascular, Metabolic, Hepatic, and Renal Disorders Maria A. Neag 1, Andrei Mocan 2*, Javier Echeverría 3, Raluca M. Pop 1, Corina I. Bocsan 1, Gianina Cri¸san 2 and Anca D. Buzoianu 1 1 Department of Pharmacology, Toxicology and Clinical Pharmacology, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 2 Department of Pharmaceutical Botany, “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania, 3 Department of Environmental Sciences, Universidad de Santiago de Chile, Santiago de Chile, Chile Edited by: Berberine-containing plants have been traditionally used in different parts of the world for Anna Karolina Kiss, the treatment of inflammatory disorders, skin diseases, wound healing, reducing fevers, Medical University of Warsaw, Poland affections of eyes, treatment of tumors, digestive and respiratory diseases, and microbial Reviewed by: Pinarosa Avato, pathologies. The physico-chemical properties of berberine contribute to the high diversity Università degli Studi di Bari Aldo of extraction and detection methods. Considering its particularities this review describes Moro, Italy various methods mentioned in the literature so far with reference to the most important Sylwia Zielinska, Wroclaw Medical University, Poland factors influencing berberine extraction. Further, the common separation and detection *Correspondence: methods like thin layer chromatography, high performance liquid chromatography, and Andrei Mocan mass spectrometry are discussed in order to give a complex overview of the existing [email protected] methods. Additionally, many clinical and experimental studies suggest that berberine Specialty section: has several pharmacological properties, such as immunomodulatory, antioxidative, This article was submitted to cardioprotective, hepatoprotective, and renoprotective effects. -
Amuse Bouche Starters Mains
AMUSE BOUCHE Sanchoku Carpaccio Soy Mayonnaise, black garlic, pickled shiitakes NV Perrier Jouët Grand Brut Champagne, France STARTERS Fresh Seasonal Oysters (half dozen) Natural or buttermilk battered Sherry shallot dressing, balsamic vinegar, chilli jam Seafood Bisque Tomato, white fish, clams, mussels, squid, scallop, lemon, grilled bread Coconut Prawn Salad Lychee & lime salsa, cashew nuts, mango gel, squid ink tapioca crisp Crispy Soft Shell Crab XO sauce, spring onion, cucumber, peanuts, coriander, mint, pickled radish Venison Tataki Yuzu koshu, daikon, cabbage, spring onion, almonds Big Glory Bay Salmon & Avocado Tartare Chilli, coriander, cucumber, capers, beetroot paint, quail egg Pan Seared Canadian Scallops Crispy pork belly, cauliflower purée, braised apple, buttered mushrooms, chicken jus Botswana Peking Duck Cucumber, carrot, spring onion salad, steamed pancakes, hoisin Seared Ostrich Loin Venison black pudding, Otago cherry chutney, rhubarb puree, pickled ginger, labneh MAINS Crispy Half Duckling Blackberries, parsnip purée, baby vegetables, watercress, duck jus Grilled Hapuka Balinese curry paste, bok choy, sesame rice wafer, prawn & coconut fritter Braised Sanchoku Short Rib Black beer glaze, red cabbage puree, potato, bacon & onion, persillade & horseradish Semolina Gnocchi Caponata, grilled halloumi, rocket, herb verde FROM THE BUTCHERS BLOCK 250gm Eye Fillet Savannah Angus, Grass Fed 300gm Wagyu Sirloin Grain Finished, Queensland 450gm Ribeye on the Bone Savannah Angus, Grass Fed 250gm Signature Black Angus Rump Cap -
Garlic {Allium Sativum), and Garlic Constituents Allyl Alcohol and Diallyl Disulphide
C a r d if f UNIVERSITY PR! FYSGOL QVRDv^ BINDING SERVICES Tel+44 (0)29 2087 4949 Fax+44 (0)29 20371921 e-mail [email protected] Cell death in the human pathogen Candida albicans: effects of garlic {Allium sativum), and garlic constituents allyl alcohol and diallyl disulphide. Thesis submitted for the degree of Doctor of Philosophy Katey M. Lemar BSc. (Hons) Cardiff School of Biosciences, Cardiff University, May 2005. UMI Number: U584725 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. Dissertation Publishing UMI U584725 Published by ProQuest LLC 2013. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106-1346 Abstract Garlic extract is very complex, yielding a number of organic sulphur constituents that are thought to be responsible for its anticandidal properties. Many of these are now being investigated in an attempt to determine the mechanisms by which they act. The effects of fresh and freeze dried extracts of Allium sativum (garlic) on the physiology and morphology ofCandida albicans were compared. Inhibition of growth and loss of structural integrity was observed for both; fresh garlic extract (FGE) has a greater efficacy than garlic powder extract (GPE) as indicated both by its effects on morphology and inhibition of growth.