SENATE BILL No. 95 _____
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ecological Consequences Artificial Night Lighting
Rich Longcore ECOLOGY Advance praise for Ecological Consequences of Artificial Night Lighting E c Ecological Consequences “As a kid, I spent many a night under streetlamps looking for toads and bugs, or o l simply watching the bats. The two dozen experts who wrote this text still do. This o of isis aa definitive,definitive, readable,readable, comprehensivecomprehensive reviewreview ofof howhow artificialartificial nightnight lightinglighting affectsaffects g animals and plants. The reader learns about possible and definite effects of i animals and plants. The reader learns about possible and definite effects of c Artificial Night Lighting photopollution, illustrated with important examples of how to mitigate these effects a on species ranging from sea turtles to moths. Each section is introduced by a l delightful vignette that sends you rushing back to your own nighttime adventures, C be they chasing fireflies or grabbing frogs.” o n —JOHN M. MARZLUFF,, DenmanDenman ProfessorProfessor ofof SustainableSustainable ResourceResource Sciences,Sciences, s College of Forest Resources, University of Washington e q “This book is that rare phenomenon, one that provides us with a unique, relevant, and u seminal contribution to our knowledge, examining the physiological, behavioral, e n reproductive, community,community, and other ecological effectseffects of light pollution. It will c enhance our ability to mitigate this ominous envirenvironmentalonmental alteration thrthroughough mormoree e conscious and effective design of the built environment.” -
Firefly Genomes Illuminate Parallel Origins of Bioluminescence in Beetles
Firefly genomes illuminate parallel origins of bioluminescence in beetles The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Fallon, Timothy R. et al. "Firefly genomes illuminate parallel origins of bioluminescence in beetles." eLife 7 (2018): e36495 © 2019 The Author(s) As Published 10.7554/elife.36495 Publisher eLife Sciences Publications, Ltd Version Final published version Citable link https://hdl.handle.net/1721.1/124645 Terms of Use Creative Commons Attribution 4.0 International license Detailed Terms https://creativecommons.org/licenses/by/4.0/ RESEARCH ARTICLE Firefly genomes illuminate parallel origins of bioluminescence in beetles Timothy R Fallon1,2†, Sarah E Lower3,4†, Ching-Ho Chang5, Manabu Bessho-Uehara6,7,8, Gavin J Martin9, Adam J Bewick10, Megan Behringer11, Humberto J Debat12, Isaac Wong5, John C Day13, Anton Suvorov9, Christian J Silva5,14, Kathrin F Stanger-Hall15, David W Hall10, Robert J Schmitz10, David R Nelson16, Sara M Lewis17, Shuji Shigenobu18, Seth M Bybee9, Amanda M Larracuente5, Yuichi Oba6, Jing-Ke Weng1,2* 1Whitehead Institute for Biomedical Research, Cambridge, United States; 2Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 3Department of Molecular Biology and Genetics, Cornell University, Ithaca, United States; 4Department of Biology, Bucknell University, Lewisburg, United States; 5Department of Biology, University of Rochester, Rochester, United States; 6Department of Environmental Biology, -
Conserving the Jewels of the Night Guidelines for Protecting Fireflies in the United States and Canada
Conserving the Jewels of the Night Guidelines for Protecting Fireflies in the United States and Canada Candace Fallon, Sarah Hoyle, Sara Lewis, Avalon Owens, Eric Lee-Mäder, Scott Hoffman Black, and Sarina Jepsen Conserving the Jewels of the Night Guidelines for Protecting Fireflies in the United States and Canada Candace Fallon Sarah Hoyle Sara Lewis Avalon Owens Eric Lee-Mäder Scott Hoffman Black Sarina Jepsen The Xerces Society is a nonprofit organization that protects the natural world by conserving invertebrates and their habitat. Established in 1971, the Society is a trusted source for science-based information and advice and plays a leading role in promoting the conservation of pollinators and many other invertebrates. We collaborate with people and institutions at all levels and our work to protect bees, butterflies, and other pollinators encompasses all landscapes. Our team draws together experts from the fields of habitat restoration, entomology, plant ecology, education, farming, and conservation biology with a single passion: Protecting the life that sustains us. The Xerces Society for Invertebrate Conservation 628 NE Broadway, Suite 200, Portland, OR 97232 Tel (855) 232-6639 Fax (503) 233-6794 www.xerces.org Regional offices from coast to coast The Xerces Society is an equal opportunity employer and provider. Xerces® is a trademark registered in the U.S. Patent and Trademark Office © 2019 by the Xerces Society for Invertebrate Conservation Authors The Xerces Society for Invertebrate Conservation: Candace Fallon, Sarah Hoyle, Eric Lee-Mäder, Scott Hoffman Black, and Sarina Jepsen. Tufts University Department of Biology: Sara Lewis and Avalon Owens. Acknowledgments These guidelines build on the work of many researchers and firefly enthusiasts, past and present. -
The Lampyridae (Coleoptera) of Atlantic Canada Christopher G
J. Acad. Entomol. Soc. 8: 11-29 (2012) The Lampyridae (Coleoptera) of Atlantic Canada Christopher G. Majka ABSTRACT Knowledge of the Lampyridae of Atlantic Canada is surveyed. Eleven native, Nearctic species and one adventive, Palaearctic species (Phosphaenus hemipterus known from three localities in Nova Scotia) are present. Nine new provincial records of lampyrids are reported including Pyractomena angulata, Lucidota atra, Photinus obscurellus, Pyropyga decipiens, and Photuris fairchildi, which are newly recorded in Prince Edward Island; Pyractomena linearis, Photinus obscurellus, and Photuris fairchildi newly recorded in New Brunswick; and Photinus obscurellus newly recorded in Labrador. Pyractomena borealis, Pyractomena linearis, and Photinus obscurellus, are newly recorded on Cape Breton Island in Nova Scotia, and Ellychnia corrusca is newly recorded in Labrador. Photuris pennsylvanica is removed from the faunal list of all the provinces of Atlantic Canada. This species does not occur in Newfoundland and Labrador and previous records in the Maritime Provinces are, instead, ascribable to Photuris fairchildi. Photinus ardens is also removed from the faunal list of Newfoundland and Labrador as the previous record of this species was erroneously based on specimens collected on Cape Breton Island, Nova Scotia, and incorrectly attributed to insular Newfoundland. The distribution, relative abundance, and seasonal occurrence of all species in Atlantic Canada are illustrated. Keys to species are provided as well as colour habitus photographs to assist with identification.T he biology of the family is briefly summarized and aspects of the biogeography, phenology, and bionomics of the individual species are discussed. RÉSUMÉ Les connaissances sur les Lampyridae du Canada Atlantique sont recensées. Onze espèces néarctiques indigènes et une espèce paléarctique adventive (Phosphaenus hemipterus,������������������������������������������ �����������������������������������������signalée dans trois localités de Nouvelle�-É����������������������������cosse) sont présentes. -
©Samantha Angela Cassata. All Rights Reserved
Identification of Fireflies (Coleoptera: Lampyridae) at Thayer Farm, Otsego County, NY Item Type Thesis Authors Cassata, Samantha Angela Citation Cassata, S. A. Identification of Fireflies (Coleoptera: Lampyridae) at Thayer Farm, Otsego County, NY. Master's Thesis, SUNY Oneonta, NY, USA. Publisher SUNY Oneonta Rights Attribution-NonCommercial-NoDerivatives 4.0 International Download date 02/10/2021 22:06:50 Item License http://creativecommons.org/licenses/by-nc-nd/4.0/ Link to Item http://hdl.handle.net/20.500.12648/1636 ©Samantha Angela Cassata. All rights reserved. 1 IDENTIFICATION OF FIREFLIES (COLEOPTERA: LAMPYRIDAE) AT THAYER FARM, OTSEGO COUNTY, NY BY SAMANTHA ANGELA CASSATA B.S., SUNY College at Oneonta, 2017 THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology in the Biology Department of the State University of New York, College at Oneonta, Oneonta, New York 2019 Approved by: ___________________________________ Dr. Jeffrey S Heilveil DATE Professor State University of New York, College at Oneonta, Oneonta, New York ___________________________________ Dr. Donna Vogler DATE Professor State University of New York, College at Oneonta, Oneonta, New York ___________________________________ Dr. Daniel Stich DATE Assistant Professor State University of New York, College at Oneonta, Oneonta, New York ii 1 TABLE OF CONTENTS 2 3 Preface............................................................................................................................................. ii 4 Literature -
Appendix 5: Fauna Known to Occur on Fort Drum
Appendix 5: Fauna Known to Occur on Fort Drum LIST OF FAUNA KNOWN TO OCCUR ON FORT DRUM as of January 2017. Federally listed species are noted with FT (Federal Threatened) and FE (Federal Endangered); state listed species are noted with SSC (Species of Special Concern), ST (State Threatened, and SE (State Endangered); introduced species are noted with I (Introduced). INSECT SPECIES Except where otherwise noted all insect and invertebrate taxonomy based on (1) Arnett, R.H. 2000. American Insects: A Handbook of the Insects of North America North of Mexico, 2nd edition, CRC Press, 1024 pp; (2) Marshall, S.A. 2013. Insects: Their Natural History and Diversity, Firefly Books, Buffalo, NY, 732 pp.; (3) Bugguide.net, 2003-2017, http://www.bugguide.net/node/view/15740, Iowa State University. ORDER EPHEMEROPTERA--Mayflies Taxonomy based on (1) Peckarsky, B.L., P.R. Fraissinet, M.A. Penton, and D.J. Conklin Jr. 1990. Freshwater Macroinvertebrates of Northeastern North America. Cornell University Press. 456 pp; (2) Merritt, R.W., K.W. Cummins, and M.B. Berg 2008. An Introduction to the Aquatic Insects of North America, 4th Edition. Kendall Hunt Publishing. 1158 pp. FAMILY LEPTOPHLEBIIDAE—Pronggillled Mayflies FAMILY BAETIDAE—Small Minnow Mayflies Habrophleboides sp. Acentrella sp. Habrophlebia sp. Acerpenna sp. Leptophlebia sp. Baetis sp. Paraleptophlebia sp. Callibaetis sp. Centroptilum sp. FAMILY CAENIDAE—Small Squaregilled Mayflies Diphetor sp. Brachycercus sp. Heterocloeon sp. Caenis sp. Paracloeodes sp. Plauditus sp. FAMILY EPHEMERELLIDAE—Spiny Crawler Procloeon sp. Mayflies Pseudocentroptiloides sp. Caurinella sp. Pseudocloeon sp. Drunela sp. Ephemerella sp. FAMILY METRETOPODIDAE—Cleftfooted Minnow Eurylophella sp. Mayflies Serratella sp. -
Allegheny National Forest June 2012 Firefly Survey Forest and Warren Counties, PA
Allegheny National Forest June 2012 Firefly Survey Forest and Warren Counties, PA In cooperation with the U.S. Forest Service, Department of Agriculture, Allegheny National Forest Under the Secure Rural Schools Act, P.L.110-343 and Forest Service Agreement 12-DG-11091900-011 ©Ted Faust 2012 Conducted by the FIRE Team: (Firefly International Research and Education) Lynn Faust, Raphael De Cock, Kathrin Stanger Hall, Zach Marion, Sarah Sander Team leader and corresponding author: Lynn Faust 11828 Couch Mill Road Knoxville, TN 37932-1217 [email protected] (865) 690-2852 ©Lynn Faust Oct 2012 1 Table of Contents Firefly Survey Summary.................................................................................................................................................... 3 General Firefly Biology ..................................................................................................................................................... 4 Habitat Photos of ANF ...................................................................................................................................................... 5 Study Sites of ANF, table .................................................................................................................................................. 6 Study Sites, map ............................................................................................................................................................... 7 Photinus carolinus, the synchronous firefly ..................................................................................................................... -
Coleoptera Collected Using Three Trapping Methods at Grass River Natural Area, Antrim County, Michigan
The Great Lakes Entomologist Volume 53 Numbers 3 & 4 - Fall/Winter 2020 Numbers 3 & Article 9 4 - Fall/Winter 2020 December 2020 Coleoptera Collected Using Three Trapping Methods at Grass River Natural Area, Antrim County, Michigan Robert A. Haack USDA Forest Service, [email protected] Bill Ruesink [email protected] Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons, and the Forest Biology Commons Recommended Citation Haack, Robert A. and Ruesink, Bill 2020. "Coleoptera Collected Using Three Trapping Methods at Grass River Natural Area, Antrim County, Michigan," The Great Lakes Entomologist, vol 53 (2) Available at: https://scholar.valpo.edu/tgle/vol53/iss2/9 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Haack and Ruesink: Coleoptera Collected at Grass River Natural Area 138 THE GREAT LAKES ENTOMOLOGIST Vol. 53, Nos. 3–4 Coleoptera Collected Using Three Trapping Methods at Grass River Natural Area, Antrim County, Michigan Robert A. Haack1, * and William G. Ruesink2 1 USDA Forest Service, Northern Research Station, 3101 Technology Blvd., Suite F, Lansing, MI 48910 (emeritus) 2 Illinois Natural History Survey, 1816 S Oak St, Champaign, IL 61820 (emeritus) * Corresponding author: (e-mail: [email protected]) Abstract Overall, 409 Coleoptera species (369 identified to species, 24 to genus only, and 16 to subfamily only), representing 275 genera and 58 beetle families, were collected from late May through late September 2017 at the Grass River Natural Area (GRNA), Antrim Coun- ty, Michigan, using baited multi-funnel traps (210 species), pitfall traps (104 species), and sweep nets (168 species). -
Miscellaneous Notes on the Fireflies (Coleoptera: Lampyridae) in Mcdermott’S 1966 Catalogue of Lampyridae" (2018)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2018 Miscellaneous notes on the fireflies C( oleoptera: Lampyridae) in McDermott’s 1966 catalogue of Lampyridae Oliver Keller University of Florida, [email protected] Marc A. Branham University of Florida, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Keller, Oliver and Branham, Marc A., "Miscellaneous notes on the fireflies (Coleoptera: Lampyridae) in McDermott’s 1966 catalogue of Lampyridae" (2018). Insecta Mundi. 1168. http://digitalcommons.unl.edu/insectamundi/1168 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. September 5 2018 INSECTA 0656 1–10 urn:lsid:zoobank.org:pub:7E417D13-02D5-4931-A1FD- A Journal of World Insect Systematics D7A230536984 MUNDI 0656 Miscellaneous notes on the fireflies (Coleoptera: Lampyridae) in McDermott’s 1966 catalogue of Lampyridae Oliver Keller University of Florida Department of Entomology and Nematology 1881 Natural Area Drive Gainesville, FL 32611 Marc A. Branham University of Florida Department of Entomology and Nematology 1881 Natural Area Drive Gainesville, FL 32611 Date of issue: September 5, 2018 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Oliver Keller and Marc A. Branham Miscellaneous notes on the fireflies (Coleoptera: Lampyridae) in McDermott’s 1966 catalogue of Lampyridae Insecta Mundi 0656: 1–10 ZooBank Registered: urn:lsid:zoobank.org:pub:7E417D13-02D5-4931-A1FD-D7A230536984 Published in 2018 by Center for Systematic Entomology, Inc. -
Coleoptera Collected Using Three Trapping Methods at Grass River Natural Area, Antrim County, Michigan Robert A
Haack and Ruesink: Coleoptera Collected at Grass River Natural Area 138 THE GREAT LAKES ENTOMOLOGIST Vol. 53, Nos. 3–4 Coleoptera Collected Using Three Trapping Methods at Grass River Natural Area, Antrim County, Michigan Robert A. Haack1, * and William G. Ruesink2 1 USDA Forest Service, Northern Research Station, 3101 Technology Blvd., Suite F, Lansing, MI 48910 (emeritus) 2 Illinois Natural History Survey, 1816 S Oak St, Champaign, IL 61820 (emeritus) * Corresponding author: (e-mail: [email protected]) Abstract Overall, 409 Coleoptera species (369 identified to species, 24 to genus only, and 16 to subfamily only), representing 275 genera and 58 beetle families, were collected from late May through late September 2017 at the Grass River Natural Area (GRNA), Antrim Coun- ty, Michigan, using baited multi-funnel traps (210 species), pitfall traps (104 species), and sweep nets (168 species). All three collecting methods were used in three distinct habitats: a rich conifer swamp (cedar), near the edge of a red pine plantation (pine), and within a mesic northern hardwood forest (hardwoods). Additional collections were made along two trails and in an open field by sweep netting only. Of the 409 species, 322 were collected in one or more of the cedar, hardwoods, and pine habitats, and 152 were collected along the two trails and the grassland site. Of the 322 species collected in the three main habitats, 40 species (36 genera and 14 families) were collected in all three habitats, 105 species (80 genera and 32 families) were collected in the cedar, 176 (131 genera and 38 families) in the hardwoods, and 199 (158 genera and 47 families) in the pine habitats. -
(Amended) a RESOLUTION to SUPPORT the ADOPTION OF
Sponsored by Councilor Keen Resolution No. 11-16 (Amended) A RESOLUTION TO SUPPORT THE ADOPTION OF THE SAY’S FIREFLY AS THE STATE INSECT A RESOLUTION TO SUPPORT THE ADOPTION OF THE SAY’S FIREFLY AS THE STATE INSECT WHEREAS, the State of Indiana does not have any insect named as its official state insect, and WHEREAS, Indiana is one of only three states that do not have an official state insect, and WHEREAS, there has been significant interest in adopting an insect as the official state insect; and WHEREAS, the faculty and students of Cumberland Elementary school, in West Lafayette, Indiana, have conducted substantial research into the life of the Say’s Firefly, (Pyractomena angulata), and WHEREAS, it was named by Indiana’s eminent naturalist, Thomas Say, in 1824, who lived and worked in New Harmony in Posey County, and is considered the Father of American Entomology, and WHEREAS, the department of Entomology, at Purdue University supports having an official state insect, because of the contribution insects make to the quality of the lives of Indiana citizens, and WHEREAS, insects constitute eighty percent of the world’s animal species, and they are critical to the ecological balance of our earth, and WHEREAS, Indiana has a state tree (the Tulip Poplar), a state flower (the Peony), and a state bird (the Cardinal), and WHEREAS, the firefly (also called the “lightning bug fireflies”), are widely recognized, and beautiful and beneficial insects, and WHEREAS, the Say’s Firefly would be an excellent representative of Indiana’s natural wildlife heritage, and WHEREAS, by naming this particular species as the state insect, it also honors one of the greatest people in Indiana history, and WHEREAS, by adopting the Say’s Firefly as the state insect, it supports agriculture, and business, which in turn builds Indiana’s economy. -
Correlated Evolution of Female Neoteny and Flightlessness with Male Spermatophore Production in Fireflies (Coleoptera: Lampyridae)
ORIGINAL ARTICLE doi:10.1111/j.1558-5646.2010.01199.x CORRELATED EVOLUTION OF FEMALE NEOTENY AND FLIGHTLESSNESS WITH MALE SPERMATOPHORE PRODUCTION IN FIREFLIES (COLEOPTERA: LAMPYRIDAE) Adam South,1,2 Kathrin Stanger-Hall,2,3 Ming-Luen Jeng,4 and Sara M. Lewis1,5 1Department of Biology, Tufts University, Medford, Massachusetts 02155 3Department of Plant Biology, University of Georgia, Athens, Georgia 30602 4National Museum of Natural Science, Taichung, Taiwan 5E-mail: [email protected] Received June 30, 2009 Accepted October 12, 2010 The beetle family Lampyridae (fireflies) encompasses 100 genera worldwide with considerable diversity in life histories and ∼ signaling modes. Some lampyrid males use reproductive accessory glands to produce spermatophores, which have been shown to increase female lifetime fecundity. Sexual dimorphism in the form of neotenic and flightless females is also common in this family. Amajorgoalofthisstudywastotestahypothesizedlinkbetweenfemaleflightabilityandmalespermatophoreproduction.We examined macroevolutionary patterns to test for correlated evolution among different levels of female neoteny (and associated loss of flight ability), male accessory gland number (and associated spermatophore production), and sexual signaling mode. Trait reconstruction on a molecular phylogeny indicated that flying females and spermatophores were ancestral traits and that female neoteny increased monotonically and led to flightlessness within multiple lineages. In addition, male spermatophore production was lost multiple times. Our evolutionary trait analysis revealed significant correlations between increased female neoteny and male accessory gland number, as well as between flightlessness and spermatophore loss. In addition, female flightlessness was positively correlated with the use of glows as female sexual signal. Transition probability analysis supported an evolutionary se- quence of female flightlessness evolving first, followed by loss of male spermatophores.