WO 2015/120276 Al 13 August 2015 (13.08.2015)
Total Page:16
File Type:pdf, Size:1020Kb
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/120276 Al 13 August 2015 (13.08.2015) (51) International Patent Classification: (74) Agent: BAUER, S. Christopher; E. I. du Pont de C07K 14/415 (2006.01) C12N 15/62 (2006.01) Nemours and Company, Legal Patent Records Center, C12N 15/29 (2006.01) A01N 65/04 (2009.01) Chestnut Run Plaza 721/2640, 974 Centre Road, PO Box C12N 15/82 (2006.01) 2915 Wilmington, Delaware 19805 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2015/014824 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 6 February 2015 (06.02.2015) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 61/937,295 7 February 2014 (07.02.2014) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/05 1,720 17 September 2014 (17.09.2014) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicants: PIONEER HI BRED INTERNATIONAL (84) Designated States (unless otherwise indicated, for every INC [US/US]; 7100 N.W. 62nd Avenue, Johnston, Iowa kind of regional protection available): ARIPO (BW, GH, 5013 1-1014 (US). E. I. DU PONT DE NEMOURS AND GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, COMPANY [US/US]; 1007 Market Street, Wilmington, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Delaware 19898 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventors: BARRY, Jennifer; 2102 Kildee Street, Ames, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Iowa 50014 (US). LIU, Lu; 2303 Middlefield Road, Palo SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Alto, California 94301 (US). LUM, Amy; 4010 Point GW, KM, ML, MR, NE, SN, TD, TG). Eden Way, Hayward, California 94545 (US). SCHEPERS, Published: Eric; 99 Water Wheel Drive, Port Deposit, Maryland 21904 (US). YALPANI, Nasser; 6041 North Winwood — with international search report (Art. 21(3)) Drive, Johnston, Iowa 5013 1 (US). ZHU, Genhai; 1282 — with sequence listing part of description (Rule 5.2(a)) Littleton Drive, San Jose, California 95 131 (US). o (54) Title: INSECTICIDAL PROTEINS AND METHODS FOR THEIR USE (57) Abstract: Compositions and methods for controlling pests are provided. The methods involve transforming organisms with a nucleic acid sequence encoding an insecticidal protein. In particular, the nucleic acid sequences are useful for preparing plants and o microorganisms that possess insecticidal activity. Thus, transformed bacteria, plants, plant cells, plant tissues and seeds are provided. Compositions are insecticidal nucleic acids and proteins of bacterial species. The sequences find use in the construction of expres sion vectors for subsequent transformation into organisms of interest including plants, as probes for the isolation of other homolog ous (or partially homologous) genes. The pesticidal proteins find use in controlling, inhibiting growth or killing Lepidopteran, Cole- opteran, Dipteran, fungal, Hemipteran and nematode pest populations and for producing compositions with insecticidal activity. INSECTICIDAL PROTEINS AND METHODS FOR THEIR USE CROSS REFERENCE This application claims the benefit of US Provisional Application No. 61/937,295 filed February 07, 2014, and US Provisional Application No. 62/051 ,720 filed September 17, 2014, which are incorporated herein by reference in its entirety. REFERENCE TO SEQUENCE LISTING SUBMITTED ELECTRONICALLY The official copy of the sequence listing is submitted electronically via EFS-Web as an ASCII formatted sequence listing with a file named "6054PCT_Sequence_Listing" created on January 26, 2015, and having a size of 3,705 kilobytes and is filed concurrently with the specification. The sequence listing contained in this ASCII formatted document is part of the specification and is herein incorporated by reference in its entirety. FIELD This disclosure relates to the field of molecular biology. Provided are novel genes that encode pesticidal proteins. These pesticidal proteins and the nucleic acid sequences that encode them are useful in preparing pesticidal formulations and in the production of transgenic pest-resistant plants. BACKGROUND Biological control of insect pests of agricultural significance using a microbial agent, such as fungi, bacteria or another species of insect affords an environmentally friendly and commercially attractive alternative to synthetic chemical pesticides. Generally speaking, the use of biopesticides presents a lower risk of pollution and environmental hazards and biopesticides provide greater target specificity than is characteristic of traditional broad- spectrum chemical insecticides. In addition, biopesticides often cost less to produce and thus improve economic yield for a wide variety of crops. Certain species of microorganisms of the genus Bacillus are known to possess pesticidal activity against a range of insect pests including Lepidoptera, Diptera, Coleoptera, Hemiptera and others. Bacillus thuringiensis (Bt) and Bacillus popilliae are among the most successful biocontrol agents discovered to date. Insect pathogenicity has also been attributed to strains of B. larvae, B. lentimorbus, B. sphaericus and B. cereus. Microbial insecticides, particularly those obtained from Bacillus strains, have played an important role in agriculture as alternatives to chemical pest control. Crop plants have been developed with enhanced insect resistance by genetically engineering crop plants to produce pesticidal proteins from Bacillus. For example, corn and cotton plants have been genetically engineered to produce pesticidal proteins isolated from strains of Bt. These genetically engineered crops are now widely used in agriculture and have provided the farmer with an environmentally friendly alternative to traditional insect- control methods. While they have proven to be very successful commercially, these genetically engineered, insect-resistant crop plants provide resistance to only a narrow range of the economically important insect pests. In some cases, insects can develop resistance to different insecticidal compounds, which raises the need to identify alternative biological control agents for pest control. Accordingly, there remains a need for new pesticidal proteins with different ranges of insecticidal activity against insect pests, e.g., insecticidal proteins which are active against a variety of insects in the order Lepidoptera and/or the order Coleoptera including but not limited to insect pests that have developed resistance to existing insecticides. SUMMARY Compositions and methods for conferring pesticidal activity to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include nucleic acid molecules encoding sequences for pesticidal and insecticidal polypeptides, vectors comprising those nucleic acid molecules, and host cells comprising the vectors. Compositions also include the pesticidal polypeptide sequences and antibodies to those polypeptides. The nucleic acid sequences can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. The nucleotide or amino acid sequences may be synthetic sequences that have been designed for expression in an organism including, but not limited to, a microorganism or a plant. Compositions also comprise transformed bacteria, plants, plant cells, tissues and seeds. In particular, isolated or recombinant nucleic acid molecules are provided encoding Pteridophyta Insecticidal Protein-83 (PtlP-83) polypeptides including amino acid substitutions, deletions, insertions, fragments thereof. Additionally, amino acid sequences corresponding to the PtlP-83 polypeptides are encompassed. Provided are isolated or recombinant nucleic acid molecules capable of encoding PtlP-83 polypeptides of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9 , SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 2 1, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761 , SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, and SEQ ID NO: 769, as well as amino acid substitutions, deletions, insertions, fragments thereof, and combinations thereof. Nucleic acid sequences that are complementary to a nucleic acid sequence of the embodiments or that hybridize to a sequence of the embodiments are also encompassed. Also provided are isolated or recombinant PtlP-83 polypeptides of SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 11, SEQ ID NO: 13, SEQ ID NO: 15, SEQ ID NO: 17, SEQ ID NO: 19, SEQ ID NO: 2 1, SEQ ID NO: 23, SEQ ID NO: 716, SEQ ID NO: 754, SEQ ID NO: 755, SEQ ID NO: 756, SEQ ID NO: 757, SEQ ID NO: 758, SEQ ID NO: 759, SEQ ID NO: 760, SEQ ID NO: 761 , SEQ ID NO: 762, SEQ ID NO: 763, SEQ ID NO: 764, SEQ ID NO: 765, SEQ ID NO: 766, SEQ ID NO: 767, SEQ ID NO: 768, and SEQ ID NO: 769, as well as amino acid substitutions, deletions, insertions, fragments thereof and combinations thereof. Methods are provided for producing the polypeptides and for using those polypeptides for controlling or killing a Lepidopteran, Coleopteran, nematode, fungi, and/or Dipteran pests.