Refinement and Validation of Soybean Looper (Chrysodeixis Includens) (Walker) Thresholds in Mississippi Soybeans (Glycine Max (L.) Merr.)

Total Page:16

File Type:pdf, Size:1020Kb

Refinement and Validation of Soybean Looper (Chrysodeixis Includens) (Walker) Thresholds in Mississippi Soybeans (Glycine Max (L.) Merr.) Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 5-1-2020 Refinement and alidationv of soybean looper (Chrysodeixis includens) (Walker) thresholds in Mississippi soybeans (Glycine max (L.) Merr.) Mary Huff Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Huff, Mary, "Refinement and alidationv of soybean looper (Chrysodeixis includens) (Walker) thresholds in Mississippi soybeans (Glycine max (L.) Merr.)" (2020). Theses and Dissertations. 3750. https://scholarsjunction.msstate.edu/td/3750 This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Refinement and validation of soybean looper, Chrysodeixis includens (Walker), thresholds in Mississippi soybean Glycine max (L.) Merr. By TITLE PAGE Mary Kathryn Huff A Thesis Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Agricultural Life Sciences in the Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology Mississippi State, Mississippi May 2020 Copyright by COPYRIGHT PAGE Mary Kathryn Huff 2020 Refinement and validation of soybean looper (Chrysodeixis includens) (Walker) thresholds in Mississippi soybeans (Glycine max (L.) Merr.) By APPROVAL PAGE Mary Kathryn Huff Approved: ____________________________________ Donald R. Cook (Major Professor) ____________________________________ Angus L. Catchot Jr. (Co-Major Professor) ____________________________________ Jeffrey Gore (Committee Member) ____________________________________ Fred R. Musser (Committee Member) ____________________________________ Jon Trenton Irby (Committee Member) ____________________________________ Kenneth O. Willeford (Graduate Coordinator) ____________________________________ George M. Hopper Dean College of Agriculture and Life Sciences Name: Mary Kathryn Huff ABSTRACT Date of Degree: May 1, 2020 Institution: Mississippi State University Major Field: Agricultural Life Sciences Major Professors: Donald R. Cook and Angus L. Catchot Jr. Title of Study: Refinement and validation of soybean looper (Chrysodeixis includens) (Walker) thresholds in Mississippi soybeans (Glycine max (L.) Merr.) Pages in Study: 88 Candidate for Degree of Master of Science Experiments were conducted to refine and validate the soybean looper, Chrysodeixis includens (Walker) threshold in Mississippi soybeans, Glycine max. (L.) Merr. Equivalencies between sweep net and drop cloth sampling methods were evaluated, overall the sweep net was more effective at capturing soybean looper larvae greater than third instar and larvae less than or equal to third instar when compared to the drop cloth method. Feeding studies were conducted to determine the feeding rates of each instar, results showed that fifth instar larvae consume the greatest amount of leaf tissue, and larvae greater than or equal to third instar consume more leaf tissue than larvae less than third instar. Observed and expected/predicted defoliation rates were calculated. Observed defoliation was lower than predicted defoliation possibly due to field environmental conditions. Using data in combination with published data from other studies, three prediction models were created for the R3, R5, and R6 growth stage. DEDICATION This thesis is dedicated to my late great-grandmother, Gwendolyn King. The memory of her unconditional love and her unshakable strength have always driven me and will continue to do so all the days of my life. I could spend the rest of my days describing the impact she made on my life, but her impact and her love are best summed up by Albus Dumbledore in the Harry Potter series by J.K. Rowling when he said, “…love as powerful as [her’s] for you leaves its own mark. Not a scar, no visible sign… to have been loved so deeply, even though the person who loved us is gone, will give us some protection forever.” And for her love, guidance, and presence I will be forever grateful. Her greatest wish in life was to see me graduate high school and although she never got to see that wish come to fruition, I can only hope that she is looking down on me now and that she is proud. This thesis is also dedicated to my family. To my parents, Watt and Susie Huff, I could not be more grateful for the two of you. Even though you still don’t know exactly what I’m getting a degree in, and for a time thought I was getting a master’s degree in soybeans, your support has never wavered. I am so incredibly thankful for the values you have instilled in me and for your unconditional love and support. To my cousins, Lauren, Sarah, and Rachel; the constant laughs and honest advice from the three of you has been the greatest support system I could ever ask for. ii ACKNOWLEDGEMENTS I would first like to acknowledge my advisors and committee members. I cannot thank you enough for giving me this opportunity to learn and to pursue a Master’s degree. The knowledge and advice you all have given me will never be taken for granted, nor will the patience and guidance you have shown me. Next I would like to acknowledge my fellow graduate students. To Joel Moor and Read Kelly, thank you for helping me navigate my way through classes and writing papers, I could not have passed without you. To Will Hardman, Sara Barrett, Russ Godbold, and Cade Francis, thank you for always being there when I needed a helping a hand. When I look back on my time in grad school I will always remember the laughs and long conversations, you all have been (and hopefully will continue to be) the very best of friends. To the full time staff and summer workers at DREC: Aaron Leininger, Meg Cutts, Neil Wright, Hauff Carpenter, Harper Horton, Rainer Hodges, Duncan Henson, Jamarion Merrill, Trey Freeland, Hunter Price, Jasmine Warren, and countless others that jumped in and lent a hand. I could not have built cages, pulled leaves off of hundreds of plants, weighed larvae, or sampled fields without you. No amount of lunches bought or thank you’s said will be enough to show my gratitude to all of you. iii TABLE OF CONTENTS DEDICATION ................................................................................................................................ ii ACKNOWLEDGEMENTS ........................................................................................................... iii TABLE OF CONTENTS ............................................................................................................... iv LIST OF TABLES ......................................................................................................................... vi LIST OF FIGURES ..................................................................................................................... viii CHAPTER I. LITERATURE REVIEW .................................................................................................1 Soybeans ............................................................................................................................1 Soybean Defoliation ..........................................................................................................3 Sampling Larvae on Soybeans ..........................................................................................4 Soybean Looper .................................................................................................................6 Soybean Thresholds .........................................................................................................11 References Cited ..............................................................................................................15 II. EVALUATION OF DROP CLOTH AND SWEEPNET SAMPLING METHODS FOR SOYBEAN LOOPER INFESTING SOYBEAN IN MISSISSIPPI ......................................................................................................22 Abstract ............................................................................................................................22 Introduction .....................................................................................................................22 Materials and Methods ....................................................................................................25 Results .............................................................................................................................27 Discussion ........................................................................................................................28 References Cited ..............................................................................................................38 III. EVALUATION OF SOYBEAN LOOPER LARVAL CONSUMPTION RATES ................................................................................................................40 Abstract ............................................................................................................................40 Introduction .....................................................................................................................41 Materials and Methods ....................................................................................................42 Results .............................................................................................................................44
Recommended publications
  • Sunday, March 4, 2012
    Joint Meeting of the Southeastern and Southwestern Branches Entomological Society of America 4-7 March 2012 Little Rock, Arkansas 0 Dr. Norman C. Leppla President, Southeastern Branch of the Entomological Society of America, 2011-2012 Dr. Allen E. Knutson President, Southwestern Branch of the Entomological Society of America, 2011-2012 1 2 TABLE OF CONTENTS Presidents Norman C. Leppla (SEB) and Allen E. 1 Knutson (SWB) ESA Section Names and Acronyms 5 PROGRAM SUMMARY 6 Meeting Notices and Policies 11 SEB Officers and Committees: 2011-2012 14 SWB Officers and Committees: 2011-2012 16 SEB Award Recipients 19 SWB Award Recipients 36 SCIENTIFIC PROGRAM SATURDAY AND SUNDAY SUMMARY 44 MONDAY SUMMARY 45 Plenary Session 47 BS Student Oral Competition 48 MS Student Oral Competition I 49 MS Student Oral Competition II 50 MS Student Oral Competition III 52 MS Student Oral Competition IV 53 PhD Student Oral Competition I 54 PhD Student Oral Competition II 56 BS Student Poster Competition 57 MS Student Poster Competition 59 PhD Student Poster Competition 62 Linnaean Games Finals/Student Awards 64 TUESDAY SUMMARY 65 Contributed Papers: P-IE (Soybeans and Stink Bugs) 67 Symposium: Spotted Wing Drosophila in the Southeast 68 Armyworm Symposium 69 Symposium: Functional Genomics of Tick-Pathogen 70 Interface Contributed Papers: PBT and SEB Sections 71 Contributed Papers: P-IE (Cotton and Corn) 72 Turf and Ornamentals Symposium 73 Joint Awards Ceremony, Luncheon, and Photo Salon 74 Contributed Papers: MUVE Section 75 3 Symposium: Biological Control Success
    [Show full text]
  • WO 2016/061206 Al 21 April 2016 (21.04.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/061206 Al 21 April 2016 (21.04.2016) P O P C T (51) International Patent Classification: (74) Agent: BAUER, Christopher; PIONEER HI-BRED IN C12N 15/82 (2006.01) A01N 65/00 (2009.01) TERNATIONAL, INC., 7100 N.W. 62nd Avenue, John C07K 14/415 (2006.01) ston, Iowa 5013 1-1014 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2015/055502 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) Date: International Filing BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 14 October 2015 (14.10.201 5) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 62/064,810 16 October 20 14 ( 16.10.20 14) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (71) Applicants: PIONEER HI-BRED INTERNATIONAL, INC. [US/US]; 7100 N.W.
    [Show full text]
  • Arkansas Soybean Research Studies 2017 Jeremy Ross University of Arkansas, Fayetteville
    University of Arkansas, Fayetteville ScholarWorks@UARK Research Series Arkansas Agricultural Experiment Station 12-2018 Arkansas Soybean Research Studies 2017 Jeremy Ross University of Arkansas, Fayetteville Follow this and additional works at: https://scholarworks.uark.edu/aaesser Part of the Agricultural Science Commons, Agronomy and Crop Sciences Commons, Botany Commons, and the Horticulture Commons Recommended Citation Ross, Jeremy, "Arkansas Soybean Research Studies 2017" (2018). Research Series. 150. https://scholarworks.uark.edu/aaesser/150 This Report is brought to you for free and open access by the Arkansas Agricultural Experiment Station at ScholarWorks@UARK. It has been accepted for inclusion in Research Series by an authorized administrator of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Arkansas SoybeanSoybean ResearchResearch StudiesStudies 20172017 Jeremy Ross, Editor ARKANSAS AGRICULTURAL EXPERIMENT STATION December 2018 Research Series 655 This publication is available on the internet at: http://arkansas-ag-news.uark.edu/research-series.aspx Cover photo: Arkansas soybean nearly overlapping middles. Photo credit: Kevin Lawson, University of Arkansas System Division of Agriculture, Fayetteville, Ark. Layout by Susan Scott; Technical editing and cover design by Gail Halleck. Arkansas Agricultural Experiment Station, University of Arkansas System Division of Agriculture, Fayetteville. Mark J. Cochran, Vice President for Agriculture; Jean-François Meullenet, AAES Director and Associate Vice-President for Agriculture–Research. WWW/CC2018. The University of Arkansas System Division of Agriculture offers all its Extension and Research programs and services without regard to race, color, sex, gender identity, sexual orientation, national origin, religion, age, disability, marital or veteran status, genetic information, or any other legally protected status, and is an Affirmative Action/Equal Opportunity Employer.
    [Show full text]
  • The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors
    biomolecules Review A Comparative Perspective on Functionally-Related, Intracellular Calcium Channels: The Insect Ryanodine and Inositol 1,4,5-Trisphosphate Receptors Umut Toprak 1,* , Cansu Do˘gan 1 and Dwayne Hegedus 2,3 1 Molecular Entomology Laboratory, Department of Plant Protection, Faculty of Agriculture, Ankara University, Ankara 06110, Turkey; [email protected] 2 Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada; [email protected] 3 Department of Food and Bioproduct Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada * Correspondence: [email protected] Abstract: Calcium (Ca2+) homeostasis is vital for insect development and metabolism, and the endoplasmic reticulum (ER) is a major intracellular reservoir for Ca2+. The inositol 1,4,5- triphosphate receptor (IP3R) and ryanodine receptor (RyR) are large homotetrameric channels associated with the ER and serve as two major actors in ER-derived Ca2+ supply. Most of the knowledge on these receptors derives from mammalian systems that possess three genes for each receptor. These studies have inspired work on synonymous receptors in insects, which encode a single IP3R and RyR. In the current review, we focus on a fundamental, common question: “why do insect cells possess two Ca2+ channel receptors in the ER?”. Through a comparative approach, this review covers the discovery of RyRs and IP3Rs, examines their structures/functions, the pathways that they interact with, and their Citation: Toprak, U.; Do˘gan,C.; potential as target sites in pest control. Although insects RyRs and IP3Rs share structural similarities, Hegedus, D. A Comparative they are phylogenetically distinct, have their own structural organization, regulatory mechanisms, Perspective on Functionally-Related, and expression patterns, which explains their functional distinction.
    [Show full text]
  • Moth Records
    MOTHS of the University of Guelph Arboretum Contributions by Candice Talbot (2012-2014) and Andrew Bendall (2013-present) Other contributors: Andalyne Tofflemire, Chris Earley, Fiona Reid, Mike Kent The 2018 edition of the Arboretum list contains 851 species of moth. Most adults were seen at or near the J.C. Taylor Nature Centre, being attracted to the white building lights, or to a black light and sheet hung by the building, or to painted bait on nearby trees. Semi-regular monitoring was started by Candice Talbot in the spring of 2012, with a small number of incidental observations pre-dating that time. First record dates, where known, are shown at right as YYYYMMDD. Those with an asterisk represent a first documented sighting if the date of an earlier record was not available. We now follow the taxonomy outlined in Pohl, Patterson & Pelham (2016) Annotated taxonomic checklist of the Lepidoptera of North America, North of Mexico, and adopt their revised numbering system for all valid North American species. Identifications are made (with varying degrees of certainty) from photographs using a variety of published print and online resources for comparison. This is a work in progress and identifications are revisited from time to time. We acknowledge that definitive identification of some species is not possible without dissection of the genitalia or, in the case of some microlepidoptera, rearing larvae collected from the host plant. Our uncertainty is indicated in various ways, including the use of [t] for a tentative identification, by indicating a group of species that can't be separated from external features, or by identifying to genus only.
    [Show full text]
  • Cell Line Platforms Support Research Into Arthropod Immunity
    insects Review Cell Line Platforms Support Research into Arthropod Immunity Cynthia L. Goodman , David S. Kang * and David Stanley Biological Control of Insects Research Laboratory, USDA/Agricultural Research Service, 1503 S. Providence Rd., Columbia, MO 65203, USA; [email protected] (C.L.G.); [email protected] (D.S.) * Correspondence: [email protected]; Tel.: +1-(573)-882-8087 Simple Summary: Many insect and tick species are serious pests, because insects damage crop plants and, along with ticks, transmit a wide range of human and animal diseases. One way of controlling these pests is by impairing their immune system, which protects them from bacterial, fungal, and viral infections. An important tool for studying immunity is using long-lasting cell cultures, known as cell lines. These lines can be frozen and thawed at will to be used in automated tests, and they provide consistent results over years. Questions that can be asked using cell lines include: How do insects or ticks recognize when they have been infected and by what organism? What kinds of defensive strategies do they use to contain or kill infectious agents? This article reviews research with insect or tick cell lines to answer these questions, as well as other questions relating to immunity. This review also discusses future research strategies for working with cell lines. Abstract: Innate immune responses are essential to maintaining insect and tick health and are the primary defense against pathogenic viruses, bacteria, and fungi. Cell line research is a powerful method for understanding how invertebrates mount defenses against pathogenic organisms and testing hypotheses on how these responses occur.
    [Show full text]
  • Control Strategies for Chrysodeixis Includens and Spodoptera Eridania Caterpillars (Lepidoptera: Noctuidae) and Selection of Resistant Cultivars in Soybean
    AJCS 13(03):367-371 (2019) ISSN:1835-2707 doi: 10.21475/ajcs.19.13.03.p1188 Control strategies for Chrysodeixis includens and Spodoptera eridania caterpillars (Lepidoptera: Noctuidae) and selection of resistant cultivars in soybean Paulo Vinicius de Sousa1, Adriana Gonçalves Vaz1, Debora Souza Miranda1, Patricia Vaz da Costa1, Andre Cirilo Sousa Almeida1, Marcio Silva Araújo2, Flávio Gonçalves de Jesus*1 1Instituto Federal Goiano, Campus Urutaí, Rodovia Prof. Geraldo Silva Nascimento, 75790-000, Urutaí, Goiás, Brazil 2Universidade Estadual de Goiás (UEG), GO 330, Km 241, Anel Viário, s/n, 75780-000, Ipameri, Goiás, Brazil *Corresponding author: [email protected] Abstract Chrysodeixis includens and Spodoptera eridania caterpillars have been considered the most important pests for Glycine max in Brazil. This study evaluated different control strategies for these two important soybean caterpillars and the effects on crop productivity. The control strategies adopted were: BC, IPM, PUI and C (without pest control) and 2 cultivars (BMX Desafio - conventional and TEC Power IPRO – transgenic – Cry 1Ac). The experimental design was in randomized blocks in a factorial scheme (2 x 4) with four replications. The transgenic cultivar TEC Power IPRO presents efficiency in the control of Chrysodeixis includens and low efficiency for Spodoptera eridania. Harmonious practices such as IPM are the best alternative for soybean crops, to minimize Chrysodeixis includens and Spodoptera eridania infestations. The control strategy adopted did not influence soybean productivity. Keywords: Integrated pest management, rational insecticide use, transgenic soybean, plant resistance to insects. Abbreviations: BC_biological control; IPM_integrated pest management; PUI_prophylactic insecticides use; C_control, PRI_plant resistance to insect; IGRs_insect-growth regulators; DAPE_days after plant emergence; PCLA_percentage of cut leaf area; ANOVA_analysis of variance.
    [Show full text]
  • Full Program
    International Congress on Invertebrate Pathology and Microbial Control & 52nd Annual Meeting of the Society for Invertebrate Pathology & 17th Meeting of the IOBC‐WPRS Working Group “Microbial and Nematode Control of Invertebrate Pests” 28th July - 1st August Programme and Abstracts https://congresos.adeituv.es/SIP-IOBC-2019 OFFICERS FROM THE SOCIETY FOR INVERTEBRATE PATHOLOGY Zhihong (Rose) Hu Helen Hesketh Wuhan Institute of Virology Centre for Ecology & Hydrology Chinese Academy of Sciences Maclean Building Wuhan 430071 Crowmarsh Gifford P.R. CHINA Wallingford, OX10 8BB Phone: +86-(27)-87197180 UNITED KINGDOM Email: [email protected] Phone: +44-1491-692574 PRESIDENT Trustee E-mail: [email protected] Christina Nielsen-LeRoux INRA UMR1319 MIcalis MICA, Sean Moore team Citrus Research International Genetique microbienne et Envi- PO Box 5095 ronnement Walmer, Port Elizabeth, 6065 INRA, Jouy en Josas, 78350 SOUTH AFRICA FRANCE Phone: +27-41-5835524 Phone: +33-1-34652101 Trustee E-mail: [email protected] Vice President Email: christina.nielsen-leroux@ inra.fr Martin Erlandson Agriculture & Agri-Food Canada Johannes Jehle Saskatoon Res Ctr Federal Research Ctr for Cultivated 107 Science Place Plants Saskatoon, SK S7N 0X2 Julius Kuehn Institute CANADA Institute for Biological Control Phone: 306-956-7276 Heinrichstr. 243 Email: [email protected] Darmstadt, 64287 Trustee GERMANY Kelly Bateman Phone: +49-(6151)-407 220 Cefas Past-President Email: johannes.jehle@ju- Pathology and Molecular Systemat- lius-kuehn.de ics Barrack Road Monique van Oers Weymouth, Dorset DT4 8UB Wageningen University UNITED KINGDOM Laboratory of Virology Phone: +01-305-206600 Droevendaalsesteeg 1 Trustee Email: [email protected] Wageningen, 6708 PB THE NETHERLANDS Phone: 31-317-485082 Secretary Email: [email protected] Surendra Dara University of California UC Cooperative Extension 2156 Sierra Way, Ste.
    [Show full text]
  • Host Plants of Chrysodeixis Includens (Walker) (Lepidoptera
    Revista Brasileira de Entomologia 59 (2015) 343–345 REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution w ww.rbentomologia.com Short Communication Host plants of Chrysodeixis includens (Walker) (Lepidoptera, Noctuidae, Plusiinae) a,∗ a b Alexandre Specht , Silvana Vieira de Paula-Moraes , Daniel Ricardo Sosa-Gómez a Embrapa Cerrados, Planaltina, DF, Brazil b Embrapa Soja, Londrina, PR, Brazil a r a b s t r a c t t i c l e i n f o Article history: This work has the objective to catalogue the information of Chrysodeixis includens (Walker, [1858]) (Lep- Received 2 December 2014 idoptera: Noctuidae: Plusiinae) host plants. The list of plants comprehends new reports of host plants in Accepted 4 August 2015 Brazil and information from literature review around the world. It is listed 174 plants which are from 39 Available online 9 October 2015 botanic families. The higher number of host plants of C. includens are in Asteraceae (29), Solanaceae (21), Associate Editor: Luis Parra Fabaceae (18) and Lamiaceae (12). © 2015 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open Keywords: Caterpillar access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Inventory Polyphagy Soybean looper The soybean looper, Chrysodeixis includens (Walker, [1858]) prospered. Among these species, C. includens had become a con- (Lepidoptera: Noctuidae: Plusiinae) used to be part of the genus stant problem, being considered a key pest, requiring control in Pseudoplusia McDonnung, 1944, which it is monoespecific with four most of the growing soybean seasons. Other possible explanation to synonmys (Poole, 1989).
    [Show full text]
  • WO 2015/120276 Al 13 August 2015 (13.08.2015)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/120276 Al 13 August 2015 (13.08.2015) (51) International Patent Classification: (74) Agent: BAUER, S. Christopher; E. I. du Pont de C07K 14/415 (2006.01) C12N 15/62 (2006.01) Nemours and Company, Legal Patent Records Center, C12N 15/29 (2006.01) A01N 65/04 (2009.01) Chestnut Run Plaza 721/2640, 974 Centre Road, PO Box C12N 15/82 (2006.01) 2915 Wilmington, Delaware 19805 (US). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/US2015/014824 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 6 February 2015 (06.02.2015) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (25) Filing Language: English HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (30) Priority Data: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 61/937,295 7 February 2014 (07.02.2014) US SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/05 1,720 17 September 2014 (17.09.2014) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Life Table Studies of Rachiplusia Nu (Guenée) and Chrysodeixis (= Pseudoplusia) Includens (Walker) (Lepidoptera: Noctuidae) on Artificial Diet Author(S): M
    Life Table Studies of Rachiplusia nu (Guenée) and Chrysodeixis (= Pseudoplusia) Includens (Walker) (Lepidoptera: Noctuidae) on Artificial Diet Author(s): M. José Barrionuevo , M. Gabriela Murúa , Lucía Goane , Robert Meagher and Fernando Navarro Source: Florida Entomologist, 95(4):944-951. 2012. Published By: Florida Entomological Society URL: http://www.bioone.org/doi/full/10.1653/024.095.0419 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. 944 Florida Entomologist 95(4) December 2012 LIFE TABLE STUDIES OF RACHIPLUSIA NU (GUENÉE) AND CHRYSODEIXIS (= PSEUDOPLUSIA) INCLUDENS (WALKER) (LEPIDOPTERA: NOCTUIDAE) ON ARTIFICIAL DIET M. JOSÉ BARRIONUEVO1, M.
    [Show full text]
  • Host Plants of Chrysodeixis Includens (Walker) (Lepidoptera
    Revista Brasileira de Entomologia 59 (2015) 343–345 REVISTA BRASILEIRA DE Entomologia A Journal on Insect Diversity and Evolution w ww.rbentomologia.com Short Communication Host plants of Chrysodeixis includens (Walker) (Lepidoptera, Noctuidae, Plusiinae) a,∗ a b Alexandre Specht , Silvana Vieira de Paula-Moraes , Daniel Ricardo Sosa-Gómez a Embrapa Cerrados, Planaltina, DF, Brazil b Embrapa Soja, Londrina, PR, Brazil a r a b s t r a c t t i c l e i n f o Article history: This work has the objective to catalogue the information of Chrysodeixis includens (Walker, [1858]) (Lep- Received 2 December 2014 idoptera: Noctuidae: Plusiinae) host plants. The list of plants comprehends new reports of host plants in Accepted 4 August 2015 Brazil and information from literature review around the world. It is listed 174 plants which are from 39 Available online 9 October 2015 botanic families. The higher number of host plants of C. includens are in Asteraceae (29), Solanaceae (21), Associate Editor: Luis Parra Fabaceae (18) and Lamiaceae (12). © 2015 Sociedade Brasileira de Entomologia. Published by Elsevier Editora Ltda. This is an open Keywords: Caterpillar access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Inventory Polyphagy Soybean looper The soybean looper, Chrysodeixis includens (Walker, [1858]) prospered. Among these species, C. includens had become a con- (Lepidoptera: Noctuidae: Plusiinae) used to be part of the genus stant problem, being considered a key pest, requiring control in Pseudoplusia McDonnung, 1944, which it is monoespecific with four most of the growing soybean seasons. Other possible explanation to synonmys (Poole, 1989).
    [Show full text]