Investigating the Causes of the Decline of the Urban House Sparrow Passer Domesticus Population in Britain

Total Page:16

File Type:pdf, Size:1020Kb

Investigating the Causes of the Decline of the Urban House Sparrow Passer Domesticus Population in Britain Investigating the causes of the decline of the urban House Sparrow Passer domesticus population in Britain Kate E. Vincent (BSc.) A thesis submitted for the degree of Doctor of Philosophy Awarded by De Montfort University Funded by English Nature, RSPB and De Montfort University October 2005 ABSTRACT In Britain and parts of northwest Europe, House Sparrow Passer domesticus populations have declined markedly in urban-suburban landscapes since the mid-1980s. Little is known about the demographic mechanisms or environmental causes of these population declines, although lack of winter seed has been implicated as a cause of the decline in House Sparrow numbers on English farmland (Hole, 2001). This study focused on factors affecting nesting success and annual productivity of nesting House Sparrows along an urban-suburban-rural gradient centred on the city of Leicester, England. Chick diet (inferred from faecal remains), habitat selection by foraging adults and over-winter survival were also studied. Data were collected during 2001-2003 from 9 study areas spread along the urbanisation gradient. Most sparrows in most study areas nested in or close to domestic gardens. Counts of territorial males declined by 28% between 2001 and 2003, with the largest declines in rural villages (25%) and suburban fringe (16%) and a small increase (4%) in the urban centre. Annual productivity (the estimated number of fledged young/pair/year) was 25% lower in suburban areas and 18% lower in rural areas than that measured during a recent study of farmland House Sparrows in Oxfordshire. The main cause of this lower productivity was starvation of chicks, (usually the first 5-6 days after hatching) during June and July. Chicks were more likely to starve if their diet contained a high proportion of vegetable material (mainly supplementary food) or ants, and less likely to starve if their diet contained a high proportion of spiders. The number of young sparrows successfully fledging, and the aggregate chick biomass, per nesting attempt were greater in home ranges containing relatively high proportions of deciduous shrub, trees and grass, and relatively little concrete. During June and July 2003, more young fledged from home ranges containing a higher density of aphids. Dipteran prey (Tipulids and other flies) constituted a higher proportion of the chick diet in rural localities than in urban-suburban localities, while Homopteran prey (mainly aphids) constituted a higher proportion of chick diet in urban-suburban localities. After allowing for effects of weather, nestling body mass and condition were negatively correlated to local levels of nitrogen dioxide air pollution. Since body mass at fledging is known to be a good predictor of immediate post-fledging survival, I predicted that the lower average body mass at fledging among suburban broods (compared to rural broods) would result in lower survival during the first 10 days after fledging (57% for suburban fledglings, compared to 70% for rural fledglings). The combined effects of lower annual productivity and lower predicted post-fledging survival in suburban localities were large enough to result in rapid predicted population decline, given plausible annual survival rates of adults and first-year sparrows and no net immigration. Under the same set of assumptions, productivity and predicted post- fledging survival were high enough in rural localities to maintain and even increase adult population size. Deciduous shrubbery, grassy areas and concrete were the main summer foraging habitats of suburban and rural House Sparrows, with trees being heavily utilised in 2003. Ornamental and evergreen shrubs were strongly avoided by foraging sparrows. Stable isotope ratios of nitrogen (δ15N scores) in chick feathers are proposed to constitute a useful integrated measure of the quality of the chick diet. δ15N scores differed markedly between the vegetable (2.7), herbivorous invertebrate (4.7-6.4) and carnivorous invertebrate (7.1-7.7) components of chick diet. δ15N scores in sparrow chick feathers averaged 7.7 1 suggesting that the average δ15N score of ingested diet was approximately 4.7 (i.e. was probably dominated by vegetable material and herbivorous invertebrates). Feather δ15N scores were lower in home ranges containing relatively large areas of concrete and evergreen vegetation, and were a positive predictor of chick growth rate and body condition. The data presented in this thesis suggest that the abundance of invertebrate prey within home ranges of House Sparrows breeding within suburban and rural garden habitats limits the quantity and quality of chicks raised to fledging. The combined effects of relatively high rates of chick starvation and low body masses at fledging (and consequently low post-fledging survival) observed in suburban localities are large enough to result in rapid population declines. Invertebrate abundance in suburban areas is probably determined, at least in part, by the availability of suitable habitat including native deciduous shrubbery, tress and grassland. Although there is no evidence that the abundance of key invertebrate prey have declined in urban-suburban landscapes, such declines do provide a plausible mechanism for the observed declines in urban-suburban House Sparrow populations. Management techniques, which increase densities of key invertebrate prey during summer, have the potential to increase the annual productivity and possibly the breeding densities of House Sparrows in urban-suburban landscapes. 2 DEDICATION Janet Linda Vincent 1949 - 2005 This thesis is dedicated with love to the memory of my Mum, who instilled in me the drive and determination to follow my dreams and pursue my goals and realise my full potential. Thank you for your enduring encouragement throughout my life. I hope I have made you proud. ACKNOWLEDGEMENTS ‘The spirited horse which will try to win the race of its own accord, will run even faster if encouraged’ - Publius Ovidius Naso Thank you to all my family, for their financial help and encouragement. They never gave up on me in what seemed like a never-ending quest. Because of them all, I came out the other end in one piece. There are a number of people without whom this thesis might not have been written. Firstly, I must thank all the householders who kindly allowed me to put nest boxes on their houses and gave me access to their properties. Without them all, the fundamental task of gathering data would not have been possible. Secondly, my sincerest thanks must go to my supervisors, Jim Fowler of De Montfort University and Will Peach of the RSPB, for their guidance, support and ultimately their faith in this worthwhile project. Particular thanks must go to Phil Grice of English Nature who also supported me throughout this undertaking by giving his time, knowledge and expertise. These three institutions have supported me financially throughout the project. I must thank those people who aided me when out in the field – Alison Smith, Kim Fenton, Rosie Cleary, Louise Cussen and Kelly Thomas, for making those three years carrying out fieldwork so much more enjoyable and easier. I am also grateful to Derek Gruar of the RSPB and David Hole of Oxford University for giving their assistance and expertise so willingly. All the Leicester and Rutland Ornithological Society members must be thanked. In particular, a mention must go to Ken and Jean Goodrich, whose time, enthusiasm and interest for this project showed no bounds. I must not fail to mention the sparrow guru himself, Denis Summers-Smith, whose passion and enthusiasm for the House Sparrow has rubbed off on me. His immense knowledge on the subject was given to me so freely and he has always been available whenever I needed ideas, advice and opinions. Finally, thank you to all my friends for still talking to me, after what must seem like a never- ending excuse for not coming out for a beer. So now I can turn round and say get the drinks in! 3 CONTENTS Abstract 1 Acknowledgements 3 Contents 4 Chapter 1: General Introduction 9 1.1 Thesis aim and objectives 10 1.2 The urban environment 11 1.3 The House Sparrow 15 1.3.1 Habitat 16 1.3.2 Behaviour 16 1.3.3 Diet 17 1.3.4 Breeding ecology 18 1.3.5 Dispersal 20 1.3.6 Population trends 20 1.4 Suggested causes of decline 24 1.4.1 Predation 24 1.4.2 Competition 30 1.4.3 Lack of nest sites 32 1.4.4 Disease 34 1.4.5 Food availability 39 1.4.6 Environmental pollutants 42 1.4.6.1 The possible link between pollution and invertebrate abundance 44 1.4.7 Multiple environmental causes 46 Chapter 2: Methodology of Fieldwork 48 2.1 Establishing the study sites 50 2.2 Field methodologies 52 2.2.1 Erection of nest-boxes 52 2.2.2 Nest recording and biometric data collected 53 2.2.3 Census methodology 54 2.2.4 Habitat selection and utilisation 55 2.2.5 Provisioning watches 56 2.2.6 Aphid abundance 57 2.2.7 Habitat composition 59 2.2.8 Capture and resighting 61 2.3 Collecting and processing the air pollution data 62 2.4 Intercorrelates and associations between variables used in multivariate analyses 64 Tables and Figures 66 Chapter 3: The status of the House Sparrow Passer domesticus across a number of study areas within Leicester between 2001 and 2003 74 3.1 Introduction 76 3.2 Methods 76 3.2.1 Census methodology 76 4 3.2.2 Statistical analysis of the census data 2001-2003 78 3.3 Results 79 3.3.1 Population change at each site over study period 79 3.3.2 Temporal changes in relative abundance 80 3.4 Discussion 81 3.4.1 Population changes of House Sparrows within Leicester 81
Recommended publications
  • Beyond Fish Edna Metabarcoding: Field Replicates Disproportionately Improve the Detection of Stream Associated Vertebrate Specie
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437227; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 2 3 Beyond fish eDNA metabarcoding: Field replicates 4 disproportionately improve the detection of stream 5 associated vertebrate species 6 7 8 9 Till-Hendrik Macher1, Robin Schütz1, Jens Arle2, Arne J. Beermann1,3, Jan 10 Koschorreck2, Florian Leese1,3 11 12 13 1 University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141 Essen, 14 Germany 15 2German Environmental Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany 16 3University of Duisburg-Essen, Centre for Water and Environmental Research (ZWU), Universitätsstr. 17 3, 45141 Essen, Germany 18 19 20 21 22 Keywords: birds, biomonitoring, bycatch, conservation, environmental DNA, mammals 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.26.437227; this version posted March 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 24 Abstract 25 Fast, reliable, and comprehensive biodiversity monitoring data are needed for 26 environmental decision making and management. Recent work on fish environmental 27 DNA (eDNA) metabarcoding shows that aquatic diversity can be captured fast, reliably, 28 and non-invasively at moderate costs.
    [Show full text]
  • In Vitro Antimicrobial and Antimycobacterial Activity and HPLC–DAD Screening of Phenolics from Chenopodium Ambrosioides L
    b r a z i l i a n j o u r n a l o f m i c r o b i o l o g y 4 9 (2 0 1 8) 296–302 ht tp://www.bjmicrobiol.com.br/ Food Microbiology In vitro antimicrobial and antimycobacterial activity and HPLC–DAD screening of phenolics from Chenopodium ambrosioides L. a,∗ a a a Roberta S. Jesus , Mariana Piana , Robson B. Freitas , Thiele F. Brum , a a a a Camilla F.S. Alves , Bianca V. Belke , Natália Jank Mossmann , Ritiel C. Cruz , b c c c Roberto C.V. Santos , Tanise V. Dalmolin , Bianca V. Bianchini , Marli M.A. Campos , a,∗ Liliane de Freitas Bauermann a Universidade Federal de Santa Maria, Departamento de Farmácia Industrial, Laboratório de Pesquisa Fitoquímica, Santa Maria, RS, Brazil b Centro Universitário Franciscano, Laboratório de Pesquisa em Microbiologia, Santa Maria, RS, Brazil c Universidade Federal de Santa Maria, Departamento de Análise Clínica e Toxicológica, Laboratório de Pesquisa Mycobacteriana, Santa Maria, RS, Brazil a r t i c l e i n f o a b s t r a c t Article history: The main objective of this study was to demonstrate the antimicrobial potential of the Received 25 January 2016 crude extract and fractions of Chenopodium ambrosioides L., popularly known as Santa- Accepted 11 February 2017 Maria herb, against microorganisms of clinical interest by the microdilution technique, Available online 19 July 2017 and also to show the chromatographic profile of the phenolic compounds in the species. Associate Editor: Luis Henrique The Phytochemical screening revealed the presence of cardiotonic, anthraquinone, alka- Guimarães loids, tannins and flavonoids.
    [Show full text]
  • Beyond Fish Edna Metabarcoding: Field Replicates Disproportionately Improve the Detection of Stream Associated Vertebrate Species
    Metabarcoding and Metagenomics 5: 59–71 DOI 10.3897/mbmg.5.66557 Research Article Beyond fish eDNA metabarcoding: Field replicates disproportionately improve the detection of stream associated vertebrate species Till-Hendrik Macher1, Robin Schütz1, Jens Arle2, Arne J. Beermann1,3, Jan Koschorreck2, Florian Leese1,3 1 University of Duisburg-Essen, Aquatic Ecosystem Research, Universitätsstr. 5, 45141 Essen, Germany 2 German Environment Agency, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany 3 University of Duisburg-Essen, Centre for Water and Environmental Research (ZWU), Universitätsstr. 3, 45141 Essen, Germany Corresponding author: Till-Hendrik Macher ([email protected]) Academic editor: Pieter Boets | Received 26 March 2021 | Accepted 10 June 2021 | Published 13 July 2021 Abstract Fast, reliable, and comprehensive biodiversity monitoring data are needed for environmental decision making and management. Recent work on fish environmental DNA (eDNA) metabarcoding shows that aquatic diversity can be captured fast, reliably, and non-invasively at moderate costs. Because water in a catchment flows to the lowest point in the landscape, often a stream, it can col- lect traces of terrestrial species via surface or subsurface runoff along its way or when specimens come into direct contact with water (e.g., when drinking). Thus, fish eDNA metabarcoding data can provide information on fish but also on other vertebrate species that live in riparian habitats. This additional data may offer a much more comprehensive approach for assessing vertebrate diversity at no additional costs. Studies on how the sampling strategy affects species detection especially of stream-associated communities, however, are scarce. We therefore performed an analysis on the effects of biological replication on both fish as well as (semi-)terrestrial species detection.
    [Show full text]
  • A Review of Botany, Phytochemical, and Pharmacological Effects of Dysphania Ambrosioides
    Indonesian Journal of Life Sciences Vol. 02 | Number 02 | September (2020) http://journal.i3l.ac.id/ojs/index.php/IJLS/ REVIEW ARTICLE A Review of Botany, Phytochemical, and Pharmacological Effects of Dysphania ambrosioides Lavisiony Gracius Hewis1, Giovanni Batista Christian Daeli1, Kenjiro Tanoto1, Carlos1, Agnes Anania Triavika Sahamastuti1* 1Pharmacy study program, Indonesia International Institute for Life-sciences, Jakarta, Indonesia *corresponding author. Email: [email protected] ABSTRACT Traditional medicine is widely used worldwide due to its benefits and healthier components that these natural herbs provide. Natural products are substances produced or retrieved from living organisms found in nature and often can exert biological or pharmacological activity, thus making them a potential alternative for synthetic drugs. Natural products, especially plant-derived products, have been known to possess many beneficial effects and are widely used for the treatment of various diseases and conditions. Dysphania ambrosioides is classified as an annual or short-lived perennial herb commonly found in Central and South America with a strong aroma and a hairy characteristic. Major components in this herb are ascaridole, p-cymene, α-terpinene, terpinolene, carvacrol, and trans-isoascaridole. Active compounds isolated from this herb are found to exert various pharmacological effects including schistosomicidal, nematicidal, antimalarial, antileishmanial, cytotoxic, antibacterial, antiviral, antifungal, antioxidant, anticancer, and antibiotic modulatory activity. This review summarizes the phytochemical compounds found in the Dysphania ambrosioides, together with their pharmacological and toxicological effects. Keywords: Dysphania ambrosioides; phytochemicals; pharmacological effect; secondary metabolites; toxicity INTRODUCTION pharmacologically-active compound, morphine, Natural products have been used by a wide was isolated from plants by Serturner spectrum of populations to alleviate and treat (Krishnamurti & Rao, 2016).
    [Show full text]
  • Origin and Age of Australian Chenopodiaceae
    ARTICLE IN PRESS Organisms, Diversity & Evolution 5 (2005) 59–80 www.elsevier.de/ode Origin and age of Australian Chenopodiaceae Gudrun Kadereita,Ã, DietrichGotzek b, Surrey Jacobsc, Helmut Freitagd aInstitut fu¨r Spezielle Botanik und Botanischer Garten, Johannes Gutenberg-Universita¨t Mainz, D-55099 Mainz, Germany bDepartment of Genetics, University of Georgia, Athens, GA 30602, USA cRoyal Botanic Gardens, Sydney, Australia dArbeitsgruppe Systematik und Morphologie der Pflanzen, Universita¨t Kassel, D-34109 Kassel, Germany Received 20 May 2004; accepted 31 July 2004 Abstract We studied the age, origins, and possible routes of colonization of the Australian Chenopodiaceae. Using a previously published rbcL phylogeny of the Amaranthaceae–Chenopodiaceae alliance (Kadereit et al. 2003) and new ITS phylogenies of the Camphorosmeae and Salicornieae, we conclude that Australia has been reached in at least nine independent colonization events: four in the Chenopodioideae, two in the Salicornieae, and one each in the Camphorosmeae, Suaedeae, and Salsoleae. Where feasible, we used molecular clock estimates to date the ages of the respective lineages. The two oldest lineages both belong to the Chenopodioideae (Scleroblitum and Chenopodium sect. Orthosporum/Dysphania) and date to 42.2–26.0 and 16.1–9.9 Mya, respectively. Most lineages (Australian Camphorosmeae, the Halosarcia lineage in the Salicornieae, Sarcocornia, Chenopodium subg. Chenopodium/Rhagodia, and Atriplex) arrived in Australia during the late Miocene to Pliocene when aridification and increasing salinity changed the landscape of many parts of the continent. The Australian Camphorosmeae and Salicornieae diversified rapidly after their arrival. The molecular-clock results clearly reject the hypothesis of an autochthonous stock of Chenopodiaceae dating back to Gondwanan times.
    [Show full text]
  • Understanding the Weedy Chenopodium Complex in the North Central States
    UNDERSTANDING THE WEEDY CHENOPODIUM COMPLEX IN THE NORTH CENTRAL STATES BY SUKHVINDER SINGH DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Crop Sciences in the Graduate College of the University of Illinois at Urbana-Champaign, 2010 Urbana, Illinois Doctoral Committee: Professor Patrick J. Tranel, Chair Associate Professor Aaron G. Hager Associate Professor Geoffrey A. Levin Assistant Professor Matthew E. Hudson ABSTRACT The genus Chenopodium consists of several important weed species, including Chenopodium album, C. berlandieri, C. strictum, and C. ficifolium. All of these species share similar vegetative morphology and high phenotypic plasticity, which makes it difficult to correctly identify these species. All of these weedy Chenopodium species have developed resistance to one or more classes of herbicides. An experiment was conducted to determine if there is variability in response of Chenopodium species present in the North Central states to glyphosate. Our results indicate variable responses within and among the Chenopodium species. Species such as C. berlandieri and C. ficifolium had higher levels of tolerance to glyphosate than did various accessions of C. album. In another experiment, 33 populations of Chenopodium sampled across six North Central states were screened with glyphosate. The results showed variable responses to glyphosate within and among the Chenopodium populations. In general, the Chenopodium populations from Iowa were more tolerant, but some biotypes from North Dakota, Indiana and Kansas also had significantly high tolerance to glyphosate. Given there are species other than C. album that have high tolerance to glyphosate, and there are Chenopodium populations across the North Central states that showed tolerance to glyphosate, one intriguing question was to whether the Chenopodium populations were either biotypes of C.
    [Show full text]
  • Lipandra Polysperma Var. Acutifolia (Chenopodiaceae): a Correction and Validation
    Mosyakin, S.L. 2016. Lipandra polysperma var. acutifolia (Chenopodiaceae): A correction and validation. Phytoneuron 2016- 61: 1–2. Published 15 September 2016. ISSN 2153 733X LIPANDRA POLYSPERMA VAR. ACUTIFOLIA (CHENOPODIACEAE): A CORRECTION AND VALIDATION SERGEI L. MOSYAKIN M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine 2 Tereshchenkivska Street Kiev (Kyiv), 01601 Ukraine [email protected] ABSTRACT Lipandra polysperma (L.) var. acutifolia (Sm.) Mosyakin (Chenopodium acutifolium Sm.) (Chenopodiaceae) is validated with the correct citation of the basionym. The combination was published invalidly (Art. 41.5 of ICN ) in 2013, with an incorrect citation of Smith's publication. Corrected citations (grammatical gender, Art. 21.2 of ICN ) of two section-level combinations in Oxybasis Kar. & Kir. are also provided. Following the taxonomic re-circumscription of Chenopodium L. (Chenopodiaceae) and some other genera (including Lipandra Moq.) earlier usually considered synonyms of Chenopodium (Fuentes-Bazan & al. 2012), I proposed the new nomenclatural combination Lipandra polysperma var. acutifolia (Mosyakin 2013) for a widespread and rather distinct variety of the species. However, it has been done with an incorrect citation of the basionym: "Lipandra polysperma (L.) S. Fuentes, Uotila & Borsch var. acutifolia (Sm.) Mosyakin, comb. nov. Chenopodium acutifolium Sm., Comp. Fl. Brit.: 42. 1800." In fact, the cited publication did not contain the name Chenopodium acutifolium , which was published by Smith (1805) later. According to Art. 41.5 of ICN (McNeill & al. 2010), "[o]n or after 1 January 1953, a new combination, name at new rank, or replacement name is not validly published unless its basionym or replaced synonym is clearly indicated and a full and direct reference given to its author and place of valid publication, with page or plate reference and date." Art.
    [Show full text]
  • Dunnock the Days Are Starting to Get Longer This Month; in Response to This Birds’ Bodies Are Gearing up for Breeding
    Bird Watch January Welcome to this month’s Bird Watch. I’m one of two volunteer Ambassadors for the British Trust for Ornithology’s (BTO) Garden BirdWatch Scheme in South Wales. Each month I introduce you to a bird or other animal that you might see in your garden. Bird of the Month: Dunnock The days are starting to get longer this month; in response to this birds’ bodies are gearing up for breeding. By January the Dunnock will have started singing its sweet and wistful warble and, by the end of the month, it will have been joined by the voices of many other species. Whilst the Dunnock is often referred to as a Hedge Sparrow, it is not a sparrow and doesn’t even belong to the same family! It is a member of the accentor family which originated in the Himalayas. The Dunnock is most commonly seen foraging under bushes and has mouse-like movements. This bird is often referred to as dull, but seen up close you’ll notice that the Dunnock has a rich brown plumage streaked with black on top, and slate grey under parts; adults have brilliant mahogany- red eyes. Did you know? The Dunnock is not considered a garden bird in other parts of Europe. Some Cuckoos choose to lay their egg in the nests of the Dunnock; even though the egg looks nothing like that of her own the surrogate mother doesn’t seem to notice. The Welsh name is Llwyd y Gwyrch. How to attract them to your garden: Dunnocks will take seeds, fats and grated cheese from the ground; they rarely visit bird tables.
    [Show full text]
  • Chenopodioideae, Chenopodiaceae/ Amaranthaceae): Implications for Evolution and Taxonomy
    Fruit and Seed Anatomy of Chenopodium and Related Genera (Chenopodioideae, Chenopodiaceae/ Amaranthaceae): Implications for Evolution and Taxonomy Alexander P. Sukhorukov1,2*, Mingli Zhang1,3 1 Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, Xinjiang, China, 2 Department of Higher Plants, Biological Faculty, Moscow Lomonosov State University, Moscow, Russia, 3 Institute of Botany, Chinese Academy of Sciences, Beijing, China Abstract A comparative carpological study of 96 species of all clades formerly considered as the tribe Chenopodieae has been conducted for the first time. The results show important differences in the anatomical structure of the pericarp and seed coat between representatives of terminal clades including Chenopodium s.str.+Chenopodiastrum and the recently recognized genera Blitum, Oxybasis and Dysphania. Within Chenopodium the most significant changes in fruit and seed structure are found in members of C. sect. Skottsbergia. The genera Rhagodia and Einadia differ insignificantly from Chenopodium. The evolution of heterospermy in Chenopodium is discussed. Almost all representatives of the tribe Dysphanieae are clearly separated from other Chenopodioideae on the basis of a diverse set of characteristics, including the small dimensions of the fruits (especially in Australian taxa), their subglobose shape (excl. Teloxys and Suckleya), and peculiarities of the pericarp indumentum. The set of fruit and seed characters evolved within the subfamily Chenopodioideae is described. A recent phylogenetic hypothesis is employed to examine the evolution of three (out of a total of 21) characters, namely seed color, testa-cell protoplast characteristics and embryo orientation. Citation: Sukhorukov AP, Zhang M (2013) Fruit and Seed Anatomy of Chenopodium and Related Genera (Chenopodioideae, Chenopodiaceae/Amaranthaceae): Implications for Evolution and Taxonomy.
    [Show full text]
  • Observations of Jerdon's Babbler Chrysomma Altirostre and Rufous-Vented Prinia Prinia Burnesii in Punjab and North-West Fronti
    FORKTAIL 15 (1999): 66-76 Observations of Jerdon’s Babbler Chrysomma altirostre and Rufous-vented Prinia Prinia burnesii in Punjab and North-West Frontier Provinces, Pakistan D. A. SHOWLER AND P. DAVIDSON The conservation status, distribution and habitat of two threatened bird species, Jerdon’s Babbler Chrysomma altirostre and Rufous-vented Prinia Prinia burnesii, with special reference to Pakistan, are summarized. An account of observations of these relatively little-known species during a survey in Punjab and North-West Frontier Province, Pakistan, in February 1996, is given. Jerdon’s Babbler was observed 250 km further north along the Indus floodplain than the most northerly locality previously known in Pakistan. The threats to the remaining tall grassland habitat occupied by these species are discussed. A list is provided of 144 bird species observed during the survey, including two additional globally threatened species: Ferruginous Pochard Aythya nyroca and Black-bellied Tern Sterna acuticauda. INTRODUCTION Chrysomma altirostre scindicum (Harington) is confined to the River Indus and its tributaries in Pakistan (see From 15-19 February 1996 apparently suitable tracts Figure 1). The type specimen is from Mangrani, between of tall grassland habitat along the Indus floodplain in Sukkur and Shikarpur in Sind province, fide Ticehurst Punjab and North-West Frontier Province (NWFP), 1922 (Deignan 1964). In Pakistan, Jerdon’s Babbler is Pakistan, were searched for two threatened bird species, known from three core areas: Jerdon’s Babbler Chrysomma altirostre and Rufous- vented Prinia Prinia burnesii. The primary aim of the i) South-east Sind in the East Narra, Sanghar and visit was to establish the presence of populations of Tharparkar districts, where K.
    [Show full text]
  • An Illustrated Key to the Amaranthaceae of Alberta
    AN ILLUSTRATED KEY TO THE AMARANTHACEAE OF ALBERTA Compiled and writen by Lorna Allen & Linda Kershaw April 2019 © Linda J. Kershaw & Lorna Allen This key was compiled using informaton primarily from Moss (1983), Douglas et. al. (1998a [Amaranthaceae], 1998b [Chenopodiaceae]) and the Flora North America Associaton (2008). Taxonomy follows VASCAN (Brouillet, 2015). Please let us know if there are ways in which the key can be improved. The 2015 S-ranks of rare species (S1; S1S2; S2; S2S3; SU, according to ACIMS, 2015) are noted in superscript (S1;S2;SU) afer the species names. For more details go to the ACIMS web site. Similarly, exotc species are followed by a superscript X, XX if noxious and XXX if prohibited noxious (X; XX; XXX) according to the Alberta Weed Control Act (2016). AMARANTHACEAE Amaranth Family [includes Chenopodiaceae] Key to Genera 01a Flowers with spiny, dry, thin and translucent 1a (not green) bracts at the base; tepals dry, thin and translucent; separate ♂ and ♀ fowers on same the plant; annual herbs; fruits thin-walled (utricles), splitting open around the middle 2a (circumscissile) .............Amaranthus 01b Flowers without spiny, dry, thin, translucent bracts; tepals herbaceous or feshy, greenish; fowers various; annual or perennial, herbs or shrubs; fruits various, not splitting open around the middle ..........................02 02a Leaves scale-like, paired (opposite); stems feshy/succulent, with fowers sunk into stem; plants of saline habitats ... Salicornia rubra 3a ................. [Salicornia europaea] 02b Leaves well developed, not scale-like; stems not feshy; plants of various habitats. .03 03a Flower bracts tipped with spine or spine-like bristle; leaves spine-tipped, linear to awl- 5a shaped, usually not feshy; tepals winged from the lower surface ..............
    [Show full text]
  • Towards a Species Level Tree of the Globally Diverse Genus
    Molecular Phylogenetics and Evolution 62 (2012) 359–374 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Towards a species level tree of the globally diverse genus Chenopodium (Chenopodiaceae) ⇑ Susy Fuentes-Bazan a,b, Guilhem Mansion a, Thomas Borsch a, a Botanischer Garten und Botanisches Museum Berlin-Dahlem und Institut für Biologie, Freie Universität Berlin, Dahlem Centre of Plant Sciences, Königin-Luise-Straße 6-8, 14195 Berlin, Germany b Herbario Nacional de Bolivia, Universidad Mayor de San Andrés (UMSA), La Paz, Bolivia article info abstract Article history: Chenopodium is a large and morphologically variable genus of annual and perennial herbs with an almost Received 21 March 2011 global distribution. All subgenera and most sections of Chenopodium were sampled along with other gen- Revised 28 September 2011 era of Chenopodieae, Atripliceae and Axyrideae across the subfamily Chenopodioideae (Chenopodiaceae), Accepted 11 October 2011 totalling to 140 taxa. Using Maximum parsimony and Bayesian analyses of the non-coding trnL-F Available online 24 October 2011 (cpDNA) and nuclear ITS regions, we provide a comprehensive picture of relationships of Chenopodium sensu lato. The genus as broadly classified is highly paraphyletic within Chenopodioideae, consisting of Keywords: five major clades. Compared to previous studies, the tribe Dysphanieae with three genera Dysphania, Tel- Chenopodium oxys and Suckleya (comprising the aromatic species of Chenopodium s.l.) is now shown to form one of the Chenopodioideae Chenopodieae early branches in the tree of Chenopodioideae. We further recognize the tribe Spinacieae to include Spina- TrnL-F cia, several species of Chenopodium, and the genera Monolepis and Scleroblitum.
    [Show full text]