Masayoshi Miyanishi

Total Page:16

File Type:pdf, Size:1020Kb

Masayoshi Miyanishi Recent Titles in This Series 136 Masayosh i Miyanishi , Algebrai c geometry , 199 4 135 Masar u Takeuchi , Moder n spherica l functions , 199 4 134 V . V . Prasolov, Problem s an d theorem s i n linea r algebra , 199 4 133 P . I. Naumki n an d I. A . Shishmarev , Nonlinea r nonloca l equation s i n the theor y o f waves , 199 4 132 Hajim e Urakawa , Calculu s o f variations an d harmoni c maps , 199 3 131 V . V . Sharko, Functions o n manifolds : Algebrai c an d topologica l aspects , 199 3 130 V . V . Vershinin, Cobordisms an d spectra l sequences , 199 3 129 Mitsu o Morimoto , A n introductio n t o Sato' s hyperfunctions , 199 3 128 V . P. Orevkov , Complexit y o f proof s an d thei r transformation s i n axiomati c theories , 199 3 127 F . L. Zak , Tangent s an d secant s o f algebrai c varieties , 199 3 126 M . L . Agranovskii , Invarian t functio n space s o n homogeneou s manifold s o f Li e group s an d applications, 199 3 125 Masayosh i Nagata , Theor y o f commutativ e fields, 199 3 124 Masahis a Adachi , Embedding s an d immersions . 199 3 123 M . A . Akivi s an d B. A. Rosenfeld , Eli e Cartan (1869-1951) . 199 3 122 Zhan g Guan-Hou , Theory o f entir e an d meromorphi c functions : Deficien t an d asymptoti c value s and singula r directions , 199 3 121 I . B. Fesenko an d S. V . Vostokov, Loca l fields and thei r extensions : A constructive approach , 199 3 120 Takeyuk i Hid a an d Masuyuki Hitsuda , Gaussia n processes , 199 3 119 M . V . Karasev an d V . P. Maslov, Nonlinear Poisso n brackets . Geometr y an d quantization , 199 3 118 Kenkich i Iwasawa , Algebrai c functions . 199 3 117 Bori s Zilber , Uncountabl y categorica l theories . 199 3 116 G . M. Fel'dman , Arithmetic o f probabilit y distributions , an d characterizatio n problem s o n abelia n groups, 199 3 115 Nikola i V . Ivanov, Subgroup s o f Teichmiille r modula r groups , 199 2 114 Seiz o Ito , Diffusio n equations , 199 2 113 Michai l Zhitomirskii , Typica l singularitie s o f differentia l 1-form s an d Pfaffia n equations , 199 2 112 S . A . Lomov , Introduction t o th e genera l theor y o f singula r perturbations , 199 2 111 Simo n Gindikin , Tube domain s an d th e Cauch y problem , 199 2 110 B . V . Shabat, Introductio n t o comple x analysi s Par t II . Function s o f severa l variables , 199 2 109 Isa o Miyadera , Nonlinea r semigroups , 199 2 108 Take o Yokonuma , Tenso r space s an d exterio r algebra , 199 2 107 B . M. Makarov , M . G . Goluzina , A . A . Lodkin , an d A. N . Podkorytov , Selecte d problem s i n rea l analysis, 199 2 106 G.-C . Wen , Conformal mapping s an d boundar y valu e problems , 199 2 105 D . R. Yafaev , Mathematica l scatterin g theory : Genera l theory , 199 2 104 R . L . Dobrushin , R . Kotecky , an d S. Shlosman , Wulf f construction : A globa l shap e fro m loca l interaction, 199 2 103 A . K . Tsikh , Multidimensional residue s an d thei r applications , 199 2 102 A . M. Il'in , Matching o f asymptoti c expansion s o f solution s o f boundary valu e problems, 199 2 101 Zhan g Zhi-fen , Din g Tong-ren , Huan g Wen-zao , an d Don g Zhen-xi , Qualitativ e theory o f differentia l equations , 199 2 100 V . L. Popov , Groups, generators , syzygies , an d orbit s i n invarian t theory , 199 2 99 Nori o Shimakura , Partia l differentia l operator s o f ellipti c type , 199 2 98 V . A. Vassiliev , Complement s o f discriminant s o f smoot h maps : Topolog y an d applications , 199 2 (revised edition , 1994 ) 97 Itir o Tamura , Topology o f foliations : A n introduction . 199 2 96 A . I . Markushevich , Introductio n t o th e classica l theor y o f Abelian functions , 199 2 (Continued in the back of this publication) This page intentionally left blank Algebrai c Geometr y This page intentionally left blank 10.1090/mmono/136 TRANSLATIONS OF MATHEMATICAL MONOGRAPHS VOLUME 136 Masayoshi Miyanishi Algebrai c Geometr y Translated by Masayoshi Miyanishi && DAISU KIKAGAK U (Algebraic Geometry ) by Masayosh i Miyanish i Copyright © 199 0 b y Shokab o Publishin g Co. , Ltd . Originally publishe d i n Japanese b y Shokabo Publishin g Co. , Ltd., Toky o in 1990 . Translated fro m th e Japanes e b y Masayosh i Miyanish i 2000 Mathematics Subject Classification. Primar y 14-01 ; Secondary 13-01 , 14A10 , 14A15 . ABSTRACT. Thi s boo k cover s algebrai c geometr y fro m th e beginning s t o a n introductio n o f algebrai c surfaces, viz., t o th e gat e fro m whic h th e classificatio n o f algebrai c surface s starts . Th e boo k ha s thre e parts. Th e first par t provide s th e necessar y basi c result s fro m commutativ e algebra s an d th e theor y o f sheaves and its cohomologies. Th e second part i s on schemes and algebrai c varieties. Th e third part i s on algebraic curve s an d surfaces , placin g emphasi s o n th e us e o f linea r system s an d th e associate d rationa l mappings. Library o f Congres s Cataloging-in-Publicatio n Dat a Miyanishi, Masayoshi , 1940 - [Daisu kikagaku . English ] Algebraic geometry/Masayosh i Miyanishi ; translate d b y Masayosh i Miyanishi . p. cm . — (Translation s o f mathematical monographs , ISS N 0065-9282 ; v . 136 ) Includes bibliographica l reference s an d index . ISBN 0-8218-4615- 9 (acid-free ) 1. Geometry, Algebraic . I . Title . II . Series . QA564.M5713 199 4 94-201 8 516.3'5—dc20 CI P © Copyrigh t 199 4 b y th e America n Mathematica l Society . Al l right s reserved . Reprint wit h correction s 1998 . Translation authorize d b y th e Shokab o Publishin g Co. , Ltd . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o th e Unite d State s Government . 0 Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . Information o n Copyin g an d Reprintin g ca n b e foun d i n th e bac k o f thi s volume . This volum e wa s typese t usin g AMS-T^X, the America n Mathematica l Society' s T^ X macr o system . Visit th e AM S hom e pag e a t URL : http://www.ams.org / 10 9 8 7 6 5 4 0 6 0 5 0 4 0 3 0 2 0 1 Contents Preface t o th e Englis h Editio n i x Preface x i Part I. Preliminarie s 1 Chapter 1 . Theore m o f Liirot h 3 Chapter 2 . Theor y o f Sheave s an d Cohomologie s 2 5 Part II . Scheme s an d Algebraic Varietie s 5 9 Chapter 3 . Affin e Scheme s an d Algebrai c Varietie s 6 1 Chapter 4 . Scheme s an d Algebrai c Varietie s 8 1 Chapter 5 . Projectiv e Scheme s an d Projectiv e Algebrai c Varietie s 10 5 Chapter 6 . Nonsingula r Algebrai c Varietie s 13 3 Part III . Algebrai c Surface s 15 7 Chapter 7 . Algebrai c Curve s 15 9 Chapter 8 . Intersectio n Theor y o n Algebrai c Surface s 16 5 Chapter 9 . Pencil s o f Curve s 17 5 Chapter 10 . Th e Riemann-Roc h Theore m fo r Algebrai c Surface s 19 1 Chapter 11 . Minima l Algebrai c Surface s 20 1 Chapter 12 . Rule d Surface s an d Rationa l Surface s 21 1 Solutions t o Problem s 22 1 Part I 22 1 Part I I 22 6 Part II I 23 0 List o f Notation 23 7 Bibliography 24 1 Index 24 3 This page intentionally left blank Preface t o th e Englis h Editio n The interesting theory, where one first experiences the beauty in learning algebraic geometry, i s perhaps the theory o f algebraic curves and surfaces . Th e theory o f alge- braic surfaces i s particularly important whe n on e further studie s higher-dimensiona l algebraic varieties . In orde r t o approac h thi s theor y throug h moder n algebrai c methods , on e i s required t o hav e a basic knowledge o f local rings , sheaves , cohomologies, projectiv e varieties, linear systems of divisors, etc. Thi s basic knowledge may include all results given i n introductory textbook s devote d to thes e subjects , an d i t takes som e time t o get familia r wit h them .
Recommended publications
  • A Surface of Maximal Canonical Degree 11
    A SURFACE OF MAXIMAL CANONICAL DEGREE SAI-KEE YEUNG Abstract. It is known since the 70's from a paper of Beauville that the degree of the rational canonical map of a smooth projective algebraic surface of general type is at most 36. Though it has been conjectured that a surface with optimal canonical degree 36 exists, the highest canonical degree known earlier for a min- imal surface of general type was 16 by Persson. The purpose of this paper is to give an affirmative answer to the conjecture by providing an explicit surface. 1. Introduction 1.1. Let M be a minimal surface of general type. Assume that the space of canonical 0 0 sections H (M; KM ) of M is non-trivial. Let N = dimCH (M; KM ) = pg, where pg is the geometric genus. The canonical map is defined to be in general a rational N−1 map ΦKM : M 99K P . For a surface, this is the most natural rational mapping to study if it is non-trivial. Assume that ΦKM is generically finite with degree d. It is well-known from the work of Beauville [B], that d := deg ΦKM 6 36: We call such degree the canonical degree of the surface, and regard it 0 if the canonical mapping does not exist or is not generically finite. The following open problem is an immediate consequence of the work of [B] and is implicitly hinted there. Problem What is the optimal canonical degree of a minimal surface of general type? Is there a minimal surface of general type with canonical degree 36? Though the problem is natural and well-known, the answer remains elusive since the 70's.
    [Show full text]
  • Arxiv:2006.16553V2 [Math.AG] 26 Jul 2020
    ON ULRICH BUNDLES ON PROJECTIVE BUNDLES ANDREAS HOCHENEGGER Abstract. In this article, the existence of Ulrich bundles on projective bundles P(E) → X is discussed. In the case, that the base variety X is a curve or surface, a close relationship between Ulrich bundles on X and those on P(E) is established for specific polarisations. This yields the existence of Ulrich bundles on a wide range of projective bundles over curves and some surfaces. 1. Introduction Given a smooth projective variety X, polarised by a very ample divisor A, let i: X ֒→ PN be the associated closed embedding. A locally free sheaf F on X is called Ulrich bundle (with respect to A) if and only if it satisfies one of the following conditions: • There is a linear resolution of F: ⊕bc ⊕bc−1 ⊕b0 0 → OPN (−c) → OPN (−c + 1) →···→OPN → i∗F → 0, where c is the codimension of X in PN . • The cohomology H•(X, F(−pA)) vanishes for 1 ≤ p ≤ dim(X). • For any finite linear projection π : X → Pdim(X), the locally free sheaf π∗F splits into a direct sum of OPdim(X) . Actually, by [18], these three conditions are equivalent. One guiding question about Ulrich bundles is whether a given variety admits an Ulrich bundle of low rank. The existence of such a locally free sheaf has surprisingly strong implications about the geometry of the variety, see the excellent surveys [6, 14]. Given a projective bundle π : P(E) → X, this article deals with the ques- tion, what is the relation between Ulrich bundles on the base X and those on P(E)? Note that answers to such a question depend much on the choice arXiv:2006.16553v3 [math.AG] 15 Aug 2021 of a very ample divisor.
    [Show full text]
  • The Cones of Effective Cycles on Projective Bundles Over Curves
    The cones of effective cycles on projective bundles over curves Mihai Fulger 1 Introduction The study of the cones of curves or divisors on complete varieties is a classical subject in Algebraic Geometry (cf. [10], [9], [4]) and it still is an active research topic (cf. [1], [11] or [2]). However, little is known if we pass to higher (co)dimension. In this paper we study this problem in the case of projective bundles over curves and describe the cones of effective cycles in terms of the numerical data appearing in a Harder–Narasimhan filtration. This generalizes to higher codimension results of Miyaoka and others ([15], [3]) for the case of divisors. An application to projective bundles over a smooth base of arbitrary dimension is also given. Given a smooth complex projective variety X of dimension n, consider the real vector spaces The real span of {[Y ] : Y is a subvariety of X of codimension k} N k(X) := . numerical equivalence of cycles We also denote it by Nn−k(X) when we work with dimension instead of codimension. The direct sum n k N(X) := M N (X) k=0 is a graded R-algebra with multiplication induced by the intersection form. i Define the cones Pseff (X) = Pseffn−i(X) as the closures of the cones of effective cycles in i N (X). The elements of Pseffi(X) are usually called pseudoeffective. Dually, we have the nef cones k k Nef (X) := {α ∈ Pseff (X)| α · β ≥ 0 ∀β ∈ Pseffk(X)}. Now let C be a smooth complex projective curve and let E be a locally free sheaf on C of rank n, deg E degree d and slope µ(E) := rankE , or µ for short.
    [Show full text]
  • Algebraic Cycles and Fibrations
    Documenta Math. 1521 Algebraic Cycles and Fibrations Charles Vial Received: March 23, 2012 Revised: July 19, 2013 Communicated by Alexander Merkurjev Abstract. Let f : X → B be a projective surjective morphism between quasi-projective varieties. The goal of this paper is the study of the Chow groups of X in terms of the Chow groups of B and of the fibres of f. One of the applications concerns quadric bundles. When X and B are smooth projective and when f is a flat quadric fibration, we show that the Chow motive of X is “built” from the motives of varieties of dimension less than the dimension of B. 2010 Mathematics Subject Classification: 14C15, 14C25, 14C05, 14D99 Keywords and Phrases: Algebraic cycles, Chow groups, quadric bun- dles, motives, Chow–K¨unneth decomposition. Contents 1. Surjective morphisms and motives 1526 2. OntheChowgroupsofthefibres 1530 3. A generalisation of the projective bundle formula 1532 4. On the motive of quadric bundles 1534 5. Onthemotiveofasmoothblow-up 1536 6. Chow groups of varieties fibred by varieties with small Chow groups 1540 7. Applications 1547 References 1551 Documenta Mathematica 18 (2013) 1521–1553 1522 Charles Vial For a scheme X over a field k, CHi(X) denotes the rational Chow group of i- dimensional cycles on X modulo rational equivalence. Throughout, f : X → B will be a projective surjective morphism defined over k from a quasi-projective variety X of dimension dX to an irreducible quasi-projective variety B of di- mension dB, with various extra assumptions which will be explicitly stated. Let h be the class of a hyperplane section in the Picard group of X.
    [Show full text]
  • NOTES on CARTIER and WEIL DIVISORS Recall: Definition 0.1. A
    NOTES ON CARTIER AND WEIL DIVISORS AKHIL MATHEW Abstract. These are notes on divisors from Ravi Vakil's book [2] on scheme theory that I prepared for the Foundations of Algebraic Geometry seminar at Harvard. Most of it is a rewrite of chapter 15 in Vakil's book, and the originality of these notes lies in the mistakes. I learned some of this from [1] though. Recall: Definition 0.1. A line bundle on a ringed space X (e.g. a scheme) is a locally free sheaf of rank one. The group of isomorphism classes of line bundles is called the Picard group and is denoted Pic(X). Here is a standard source of line bundles. 1. The twisting sheaf 1.1. Twisting in general. Let R be a graded ring, R = R0 ⊕ R1 ⊕ ::: . We have discussed the construction of the scheme ProjR. Let us now briefly explain the following additional construction (which will be covered in more detail tomorrow). L Let M = Mn be a graded R-module. Definition 1.1. We define the sheaf Mf on ProjR as follows. On the basic open set D(f) = SpecR(f) ⊂ ProjR, we consider the sheaf associated to the R(f)-module M(f). It can be checked easily that these sheaves glue on D(f) \ D(g) = D(fg) and become a quasi-coherent sheaf Mf on ProjR. Clearly, the association M ! Mf is a functor from graded R-modules to quasi- coherent sheaves on ProjR. (For R reasonable, it is in fact essentially an equiva- lence, though we shall not need this.) We now set a bit of notation.
    [Show full text]
  • Stability and Extremal Metrics on Toric and Projective Bundles
    STABILITY AND EXTREMAL METRICS ON TORIC AND PROJECTIVE BUNDLES VESTISLAV APOSTOLOV, DAVID M. J. CALDERBANK, PAUL GAUDUCHON, AND CHRISTINA W. TØNNESEN-FRIEDMAN Abstract. This survey on extremal K¨ahlermetrics is a synthesis of several recent works—of G. Sz´ekelyhidi [39, 40], of Ross–Thomas [35, 36], and of our- selves [5, 6, 7]—but embedded in a new framework for studying extremal K¨ahler metrics on toric bundles following Donaldson [13] and Szekelyhidi [40]. These works build on ideas Donaldson, Tian, and many others concerning stability conditions for the existence of extremal K¨ahler metrics. In particular, we study notions of relative slope stability and relative uniform stability and present ex- amples which suggest that these notions are closely related to the existence of extremal K¨ahlermetrics. Contents 1. K-stability for extremal K¨ahlermetrics 2 1.1. Introduction to stability 2 1.2. Finite dimensional motivation 2 1.3. The infinite dimensional analogue 3 1.4. Test configurations 3 1.5. The modified Futaki invariant 4 1.6. K-stability 5 2. Rigid toric bundles with semisimple base 6 2.1. The rigid Ansatz 6 2.2. The semisimple case 8 2.3. The isometry Lie algebra in the semisimple case 8 2.4. The extremal vector field 9 2.5. K-energy and the Futaki invariant 9 2.6. Stability under small perturbations 10 2.7. Existence? 14 2.8. The homogeneous formalism and projective invariance 15 2.9. Examples 16 3. K-stability for rigid toric bundles 19 3.1. Toric test configurations 19 3.2.
    [Show full text]
  • The Birational Isomorphism Types of Smooth Real Elliptic Curves
    Rose-Hulman Institute of Technology Rose-Hulman Scholar Mathematical Sciences Technical Reports (MSTR) Mathematics 8-17-2004 The Birational Isomorphism Types of Smooth Real Elliptic Curves Sean A. Broughton Rose-Hulman Institute of Technology, [email protected] Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr Part of the Algebraic Geometry Commons, and the Geometry and Topology Commons Recommended Citation Broughton, Sean A., "The Birational Isomorphism Types of Smooth Real Elliptic Curves" (2004). Mathematical Sciences Technical Reports (MSTR). 44. https://scholar.rose-hulman.edu/math_mstr/44 This Article is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact [email protected]. The Birational Isomorphism Types of Smooth Real Elliptic Curves S.A. Broughton Mathematical Sciences Technical Report Series MSTR 04-05 August 17, 2004 Department of Mathematics Rose-Hulman Institute of Technology http://www.rose-hulman.edu/math Fax (812)-877-8333 Phone (812)-877-8193 The Birational Isomorphism Types of Smooth Real Elliptic Curves S. Allen Broughton Department of Mathtematics Rose-Hulman Institute of Technology August 17, 2004 Contents 1 Introduction 1 2Definitions and background information 2 3 Weierstrass form, double covers, and invariants 4 4 Reduction to a Weierstrass normal form 5 5 The real moduli space in complex moduli space 8 6 Real forms and real birational isomorphism 9 7 Real forms and symmetries of elliptic curves 12 8 The birational isomorphism types of real elliptic curves 13 1Introduction In this note we determine all birational isomorphism types of real elliptic curves and show that it is the same as the orbit space of smooth cubic real curves in P 2(R) under linear projective equivalence.
    [Show full text]
  • Arxiv:1409.5404V2 [Math.AG]
    MOTIVIC CLASSES OF SOME CLASSIFYING STACKS DANIEL BERGH Abstract. We prove that the class of the classifying stack B PGLn is the multiplicative inverse of the class of the projective linear group PGLn in the Grothendieck ring of stacks K0(Stackk) for n = 2 and n = 3 under mild conditions on the base field k. In particular, although it is known that the multiplicativity relation {T } = {S} · {PGLn} does not hold for all PGLn- torsors T → S, it holds for the universal PGLn-torsors for said n. Introduction Recall that the Grothendieck ring of varieties over a field k is defined as the free group on isomorphism classes {X} of varieties X subject to the scissors relations {X} = {X \ Z} + {Z} for closed subvarieties Z ⊂ X. We denote this ring by K0(Vark). Its multiplicative structure is induced by {X}·{Y } = {X × Y } for varieties X and Y . A fundamental question regarding K0(Vark) is for which groups G the multi- plicativity relation {T } = {G}·{S} holds for all G-torsors T → S. If G is special, in the sense of Serre and Grothendieck, this relation always holds. However, it was shown by Ekedahl that if G is a non-special connected linear group, then there exists a G-torsor T → S for which {T } 6= {G}·{S} in the ring K0(VarC) and its completion K0(VarC) [12, Theorem 2.2]. One can also construct a Grothendieck ring K (Stack ) for the larger 2-category b 0 k of algebraic stacks. We will recall its precise definition in Section 2.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Cox Rings and Partial Amplitude Permalink https://escholarship.org/uc/item/7bs989g2 Author Brown, Morgan Veljko Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Cox Rings and Partial Amplitude by Morgan Veljko Brown A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Mathematics in the Graduate Division of the University of California, BERKELEY Committee in charge: Professor David Eisenbud, Chair Professor Martin Olsson Professor Alistair Sinclair Spring 2012 Cox Rings and Partial Amplitude Copyright 2012 by Morgan Veljko Brown 1 Abstract Cox Rings and Partial Amplitude by Morgan Veljko Brown Doctor of Philosophy in Mathematics University of California, BERKELEY Professor David Eisenbud, Chair In algebraic geometry, we often study algebraic varieties by looking at their codimension one subvarieties, or divisors. In this thesis we explore the relationship between the global geometry of a variety X over C and the algebraic, geometric, and cohomological properties of divisors on X. Chapter 1 provides background for the results proved later in this thesis. There we give an introduction to divisors and their role in modern birational geometry, culminating in a brief overview of the minimal model program. In chapter 2 we explore criteria for Totaro's notion of q-amplitude. A line bundle L on X is q-ample if for every coherent sheaf F on X, there exists an integer m0 such that m ≥ m0 implies Hi(X; F ⊗ O(mL)) = 0 for i > q.
    [Show full text]
  • On the Group of Automorphisms of a Quasi-Affine Variety 3
    ON THE GROUP OF AUTOMORPHISMS OF A QUASI-AFFINE VARIETY ZBIGNIEW JELONEK Abstract. Let K be an algebraically closed field of characteristic zero. We show that if the automorphisms group of a quasi-affine variety X is infinite, then X is uniruled. 1. Introduction. Automorphism groups of an open varieties have always attracted a lot of attention, but the nature of this groups is still not well-known. For example the group of automorphisms of Kn is understood only in the case n = 2 (and n = 1, of course). Let Y be a an open variety. It is natural to ask when the group of automorphisms of Y is finite. We gave a partial answer to this questions in our papers [Jel1], [Jel2], [Jel3] and [Jel4]. In [Iit2] Iitaka proved that Aut(Y ) is finite if Y has a maximal logarithmic Kodaira dimension. Here we focus on the group of automorphisms of an affine or more generally quasi-affine variety over an algebraically closed field of characteristic zero. Let us recall that a quasi-affine variety is an open subvariety of some affine variety. We prove the following: Theorem 1.1. Let X be a quasi-affine (in particular affine) variety over an algebraically closed field of characteristic zero. If Aut(X) is infinite, then X is uniruled, i.e., X is covered by rational curves. This generalizes our old results from [Jel3] and [Jel4]. Our proof uses in a significant way a recent progress in a minimal model program ( see [Bir], [BCHK], [P-S]) and is based on our old ideas from [Jel1], [Jel2], [Jel3] and [Jel4].
    [Show full text]
  • Introduction to Algebraic Geometry
    Introduction to Algebraic Geometry Jilong Tong December 6, 2012 2 Contents 1 Algebraic sets and morphisms 11 1.1 Affine algebraic sets . 11 1.1.1 Some definitions . 11 1.1.2 Hilbert's Nullstellensatz . 12 1.1.3 Zariski topology on an affine algebraic set . 14 1.1.4 Coordinate ring of an affine algebraic set . 16 1.2 Projective algebraic sets . 19 1.2.1 Definitions . 19 1.2.2 Homogeneous Nullstellensatz . 21 1.2.3 Homogeneous coordinate ring . 22 1.2.4 Exercise: plane curves . 22 1.3 Morphisms of algebraic sets . 24 1.3.1 Affine case . 24 1.3.2 Quasi-projective case . 26 2 The Language of schemes 29 2.1 Sheaves and locally ringed spaces . 29 2.1.1 Sheaves on a topological spaces . 29 2.1.2 Ringed space . 34 2.2 Schemes . 36 2.2.1 Definition of schemes . 36 2.2.2 Morphisms of schemes . 40 2.2.3 Projective schemes . 43 2.3 First properties of schemes and morphisms of schemes . 49 2.3.1 Topological properties . 49 2.3.2 Noetherian schemes . 50 2.3.3 Reduced and integral schemes . 51 2.3.4 Finiteness conditions . 53 2.4 Dimension . 54 2.4.1 Dimension of a topological space . 54 2.4.2 Dimension of schemes and rings . 55 2.4.3 The noetherian case . 57 2.4.4 Dimension of schemes over a field . 61 2.5 Fiber products and base change . 62 2.5.1 Sum of schemes . 62 2.5.2 Fiber products of schemes .
    [Show full text]
  • Arxiv:1708.05877V4 [Math.AC]
    NORMAL HYPERPLANE SECTIONS OF NORMAL SCHEMES IN MIXED CHARACTERISTIC JUN HORIUCHI AND KAZUMA SHIMOMOTO Abstract. The aim of this article is to prove that, under certain conditions, an affine flat normal scheme that is of finite type over a local Dedekind scheme in mixed characteristic admits infinitely many normal effective Cartier divisors. For the proof of this result, we prove the Bertini theorem for normal schemes of some type. We apply the main result to prove a result on the restriction map of divisor class groups of Grothendieck-Lefschetz type in mixed characteristic. Dedicated to Prof. Gennady Lyubeznik on the occasion of his 60th birthday. 1. Introduction Let X be a connected Noetherian normal scheme. Then does X have sufficiently many normal Cartier divisors? The existence of such a divisor when X is a normal projective variety over an algebraically closed field is already known. This fact follows from the classical Bertini theorem due to Seidenberg. In birational geometry, it is often necessary to compare the singularities of X with the singularities of a divisor D X, which is ⊂ known as adjunction (see [12] for this topic). In this article, we prove some results related to this problem in the mixed characteristic case. The main result is formulated as follows (see Corollary 5.4 and Remark 5.5). Theorem 1.1. Let X be a normal connected affine scheme such that there is a surjective flat morphism of finite type X Spec A, where A is an unramified discrete valuation ring → of mixed characteristic p > 0. Assume that dim X 2, the generic fiber of X Spec A ≥ → is geometrically connected and the residue field of A is infinite.
    [Show full text]