Masayoshi Miyanishi

Masayoshi Miyanishi

Recent Titles in This Series 136 Masayosh i Miyanishi , Algebrai c geometry , 199 4 135 Masar u Takeuchi , Moder n spherica l functions , 199 4 134 V . V . Prasolov, Problem s an d theorem s i n linea r algebra , 199 4 133 P . I. Naumki n an d I. A . Shishmarev , Nonlinea r nonloca l equation s i n the theor y o f waves , 199 4 132 Hajim e Urakawa , Calculu s o f variations an d harmoni c maps , 199 3 131 V . V . Sharko, Functions o n manifolds : Algebrai c an d topologica l aspects , 199 3 130 V . V . Vershinin, Cobordisms an d spectra l sequences , 199 3 129 Mitsu o Morimoto , A n introductio n t o Sato' s hyperfunctions , 199 3 128 V . P. Orevkov , Complexit y o f proof s an d thei r transformation s i n axiomati c theories , 199 3 127 F . L. Zak , Tangent s an d secant s o f algebrai c varieties , 199 3 126 M . L . Agranovskii , Invarian t functio n space s o n homogeneou s manifold s o f Li e group s an d applications, 199 3 125 Masayosh i Nagata , Theor y o f commutativ e fields, 199 3 124 Masahis a Adachi , Embedding s an d immersions . 199 3 123 M . A . Akivi s an d B. A. Rosenfeld , Eli e Cartan (1869-1951) . 199 3 122 Zhan g Guan-Hou , Theory o f entir e an d meromorphi c functions : Deficien t an d asymptoti c value s and singula r directions , 199 3 121 I . B. Fesenko an d S. V . Vostokov, Loca l fields and thei r extensions : A constructive approach , 199 3 120 Takeyuk i Hid a an d Masuyuki Hitsuda , Gaussia n processes , 199 3 119 M . V . Karasev an d V . P. Maslov, Nonlinear Poisso n brackets . Geometr y an d quantization , 199 3 118 Kenkich i Iwasawa , Algebrai c functions . 199 3 117 Bori s Zilber , Uncountabl y categorica l theories . 199 3 116 G . M. Fel'dman , Arithmetic o f probabilit y distributions , an d characterizatio n problem s o n abelia n groups, 199 3 115 Nikola i V . Ivanov, Subgroup s o f Teichmiille r modula r groups , 199 2 114 Seiz o Ito , Diffusio n equations , 199 2 113 Michai l Zhitomirskii , Typica l singularitie s o f differentia l 1-form s an d Pfaffia n equations , 199 2 112 S . A . Lomov , Introduction t o th e genera l theor y o f singula r perturbations , 199 2 111 Simo n Gindikin , Tube domain s an d th e Cauch y problem , 199 2 110 B . V . Shabat, Introductio n t o comple x analysi s Par t II . Function s o f severa l variables , 199 2 109 Isa o Miyadera , Nonlinea r semigroups , 199 2 108 Take o Yokonuma , Tenso r space s an d exterio r algebra , 199 2 107 B . M. Makarov , M . G . Goluzina , A . A . Lodkin , an d A. N . Podkorytov , Selecte d problem s i n rea l analysis, 199 2 106 G.-C . Wen , Conformal mapping s an d boundar y valu e problems , 199 2 105 D . R. Yafaev , Mathematica l scatterin g theory : Genera l theory , 199 2 104 R . L . Dobrushin , R . Kotecky , an d S. Shlosman , Wulf f construction : A globa l shap e fro m loca l interaction, 199 2 103 A . K . Tsikh , Multidimensional residue s an d thei r applications , 199 2 102 A . M. Il'in , Matching o f asymptoti c expansion s o f solution s o f boundary valu e problems, 199 2 101 Zhan g Zhi-fen , Din g Tong-ren , Huan g Wen-zao , an d Don g Zhen-xi , Qualitativ e theory o f differentia l equations , 199 2 100 V . L. Popov , Groups, generators , syzygies , an d orbit s i n invarian t theory , 199 2 99 Nori o Shimakura , Partia l differentia l operator s o f ellipti c type , 199 2 98 V . A. Vassiliev , Complement s o f discriminant s o f smoot h maps : Topolog y an d applications , 199 2 (revised edition , 1994 ) 97 Itir o Tamura , Topology o f foliations : A n introduction . 199 2 96 A . I . Markushevich , Introductio n t o th e classica l theor y o f Abelian functions , 199 2 (Continued in the back of this publication) This page intentionally left blank Algebrai c Geometr y This page intentionally left blank 10.1090/mmono/136 TRANSLATIONS OF MATHEMATICAL MONOGRAPHS VOLUME 136 Masayoshi Miyanishi Algebrai c Geometr y Translated by Masayoshi Miyanishi && DAISU KIKAGAK U (Algebraic Geometry ) by Masayosh i Miyanish i Copyright © 199 0 b y Shokab o Publishin g Co. , Ltd . Originally publishe d i n Japanese b y Shokabo Publishin g Co. , Ltd., Toky o in 1990 . Translated fro m th e Japanes e b y Masayosh i Miyanish i 2000 Mathematics Subject Classification. Primar y 14-01 ; Secondary 13-01 , 14A10 , 14A15 . ABSTRACT. Thi s boo k cover s algebrai c geometr y fro m th e beginning s t o a n introductio n o f algebrai c surfaces, viz., t o th e gat e fro m whic h th e classificatio n o f algebrai c surface s starts . Th e boo k ha s thre e parts. Th e first par t provide s th e necessar y basi c result s fro m commutativ e algebra s an d th e theor y o f sheaves and its cohomologies. Th e second part i s on schemes and algebrai c varieties. Th e third part i s on algebraic curve s an d surfaces , placin g emphasi s o n th e us e o f linea r system s an d th e associate d rationa l mappings. Library o f Congres s Cataloging-in-Publicatio n Dat a Miyanishi, Masayoshi , 1940 - [Daisu kikagaku . English ] Algebraic geometry/Masayosh i Miyanishi ; translate d b y Masayosh i Miyanishi . p. cm . — (Translation s o f mathematical monographs , ISS N 0065-9282 ; v . 136 ) Includes bibliographica l reference s an d index . ISBN 0-8218-4615- 9 (acid-free ) 1. Geometry, Algebraic . I . Title . II . Series . QA564.M5713 199 4 94-201 8 516.3'5—dc20 CI P © Copyrigh t 199 4 b y th e America n Mathematica l Society . Al l right s reserved . Reprint wit h correction s 1998 . Translation authorize d b y th e Shokab o Publishin g Co. , Ltd . The America n Mathematica l Societ y retain s al l right s except thos e grante d t o th e Unite d State s Government . 0 Th e pape r use d i n thi s boo k i s acid-fre e an d fall s withi n th e guideline s established t o ensur e permanenc e an d durability . Information o n Copyin g an d Reprintin g ca n b e foun d i n th e bac k o f thi s volume . This volum e wa s typese t usin g AMS-T^X, the America n Mathematica l Society' s T^ X macr o system . Visit th e AM S hom e pag e a t URL : http://www.ams.org / 10 9 8 7 6 5 4 0 6 0 5 0 4 0 3 0 2 0 1 Contents Preface t o th e Englis h Editio n i x Preface x i Part I. Preliminarie s 1 Chapter 1 . Theore m o f Liirot h 3 Chapter 2 . Theor y o f Sheave s an d Cohomologie s 2 5 Part II . Scheme s an d Algebraic Varietie s 5 9 Chapter 3 . Affin e Scheme s an d Algebrai c Varietie s 6 1 Chapter 4 . Scheme s an d Algebrai c Varietie s 8 1 Chapter 5 . Projectiv e Scheme s an d Projectiv e Algebrai c Varietie s 10 5 Chapter 6 . Nonsingula r Algebrai c Varietie s 13 3 Part III . Algebrai c Surface s 15 7 Chapter 7 . Algebrai c Curve s 15 9 Chapter 8 . Intersectio n Theor y o n Algebrai c Surface s 16 5 Chapter 9 . Pencil s o f Curve s 17 5 Chapter 10 . Th e Riemann-Roc h Theore m fo r Algebrai c Surface s 19 1 Chapter 11 . Minima l Algebrai c Surface s 20 1 Chapter 12 . Rule d Surface s an d Rationa l Surface s 21 1 Solutions t o Problem s 22 1 Part I 22 1 Part I I 22 6 Part II I 23 0 List o f Notation 23 7 Bibliography 24 1 Index 24 3 This page intentionally left blank Preface t o th e Englis h Editio n The interesting theory, where one first experiences the beauty in learning algebraic geometry, i s perhaps the theory o f algebraic curves and surfaces . Th e theory o f alge- braic surfaces i s particularly important whe n on e further studie s higher-dimensiona l algebraic varieties . In orde r t o approac h thi s theor y throug h moder n algebrai c methods , on e i s required t o hav e a basic knowledge o f local rings , sheaves , cohomologies, projectiv e varieties, linear systems of divisors, etc. Thi s basic knowledge may include all results given i n introductory textbook s devote d to thes e subjects , an d i t takes som e time t o get familia r wit h them .

View Full Text

Details

  • File Type
    pdf
  • Upload Time
    -
  • Content Languages
    English
  • Upload User
    Anonymous/Not logged-in
  • File Pages
    27 Page
  • File Size
    -

Download

Channel Download Status
Express Download Enable

Copyright

We respect the copyrights and intellectual property rights of all users. All uploaded documents are either original works of the uploader or authorized works of the rightful owners.

  • Not to be reproduced or distributed without explicit permission.
  • Not used for commercial purposes outside of approved use cases.
  • Not used to infringe on the rights of the original creators.
  • If you believe any content infringes your copyright, please contact us immediately.

Support

For help with questions, suggestions, or problems, please contact us