Tracing Amines to Their Receptors: a Synopsis in Light of Recent Literature

Total Page:16

File Type:pdf, Size:1020Kb

Tracing Amines to Their Receptors: a Synopsis in Light of Recent Literature Babusyte and Krautwurst, Cell Biol: Res Ther 2013, 2:2 http://dx.doi.org/10.4172/2324-9293.1000103 Cell Biology: Research & Therapy Short Communication a SciTechnol journal In two very recent papers using primary cells, the detection of Tracing Amines to their amines, especially 2-PEA, by Taar4 [29], TAAR1 and TAAR2 [30], was reported to occur at concentrations five to six orders of magnitude Receptors: A Synopsis in Light lower than the amine concentrations used previously for cell cultures. Zhang et al. used perforated patch-clamp current recordings from the of Recent Literature dendritic knobs of olfactory sensory neurons from isolated mouse 1 Agne Babusyte and Dietmar Krautwurst * main olfactory epithelium (Figure 1A) [29]. By this method they were able to characterize eg. Taar4-expressing olfactory sensory neurons to be broadly tuned and highly sensitive towards certain amines. For Abstract instance, the most potent amine 2-PEA induced currents in Taar4- Trace amine-associated receptors (TAAR) have been an elusive olfactory sensory neurons at concentrations ranging from 1x10-14 M species of G protein-coupled receptors (GPCR), so far, mainly to 3x10-9 M. In the work presented by Babusyte et al., the same amine because of their suboptimal expression in heterologous cell systems. Little connection could be established between the name- 2-PEA induced immune cell functions at concentrations ranging -11 -8 giving low physiological concentrations of their putative amine from 1x10 M to 1x10 M [30].When applied to neutrophils, T-cells agonists, and their tissue-specific biological function. At the same or B-cells, 2-PEA potently induced immune cell functions, such as time, there is growing evidence that suggests ectopic expression chemotactic migration, cytokine or immunoglobulin production, of certain TAAR, beyond their supposed typical tissue expression respectively (Figure 1B) [30]. Notably, TAAR1 and TAAR2 were as olfactory receptors in the olfactory epithelium, at least in mice. Two recent publications now shed light on the potent activation the receptors that mediated the 2-PEA-induced cellular responses by specific amines of certain TAAR in different primary cells: in in leukocytes. Both groups used gene-targeted approaches to olfactory sensory neurons (OSN) of the main olfactory epithelium (MOE) of mice, and, unexpectedly, in human peripheral blood leukocytes. Biogenic amines are bioactive compounds. They are derived from enzymatic de carboxylation of e.g. certain amino acids, and are metabolized by monoamine oxidases. Certain amines can be found in the plasma and in the central nervous system at low pico-to nanomolar concentra tions [1-6], and thus have been termed ‘trace amines’ [7,8]. Receptors, that specifically recog nise trace amines, initially have been found in the brain [7,9,10]. These ‘trace amine-associated receptors’ are members of rhodopsin-like Family A of GPCR. Recently, they have been identified in neurons of olfactory epithelia of mouse and zebrafish, where they may detect volatile amines as odorants or phero- mones [11-14]. Gene expression for 4 out of the six intact human TAAR genes was reported in human nasal mucosa at trace levels [15]. The impact of certain biogenicamines, such as β-phenylethylamine (2-PEA) and tyramine, on blood pressure, cardiac function, brain monoaminergic systems, and olfaction-guided behaviour has been demonstrated, mainly in studies with rodents [2,10,13,14,16-18]. Gene-targeted receptor knock-out mice revealed Taar1 as modulator of dopaminergic neurotransmission [19,20]. This animal model encouraged many laboratories to engage in a further characterization of e.g. human TAAR1 and its agonists in heterologous cell systems, such as HEK293, COS-7, CHO, and HGA16 cells, mainly using cAMP assays [7,9,21-27]. However, in these cell cultures expressing TAAR1, EC50 values (the concentration that yields 50% of maximum effect) for its gold standard agonist 2-PEA ranged from 0.1 µM to 1.9 µM, which is one to two orders of magnitude higher than the concentration of Figure 1: Ultrasensitive detection of amines by TAAR-expressing 2-PEA in plasma of healthy individuals [5,28]. primary cells. A) Amines, e.g. 2-PEA, potently activated Taar4 determined by means of patch-clamp current recordings from dendritic knobs of mouse *Corresponding author: Dietmar Krautwurst, German Research Center for OSN in isolated MOE, as reported by Zhang et al. [29]. B) Amines, e.g. 2-PEA, Food Chemistry – Leibniz Institute, Physiology, Freising, Germany, Tel: 08161- potently activated TAAR1- and TAAR2-dependent immune cell functions in 712634; Fax: 08161-712970; E-mail: [email protected] isolated human blood leukocytes, determined by chemotactic migration assay, and cytokine and immunoglobulin ELISA, as reported by Babusyte et al. [30]. Received: May 03, 2013 Accepted: June 27, 2013 Published: July 01, 2013 All articles published in Cell Biology: Research & Therapy are the property of SciTechnol, and is protected by copyright laws. International Publisher of Science, Copyright © 2013, SciTechnol, All Rights Reserved. Technology and Medicine Citation: Babusyte A, Krautwurst D (2013) Tracing Amines to their Receptors: A Synopsis in Light of Recent Literature. Cell Biol: Res Ther 2:3. doi:http://dx.doi.org/10.4172/2324-9293.1000103 demonstrate a receptor-dependent activation of the primary cells immune cell functions. Notably, mouse Taar1 and Taar2 were also investigated. detected in B-cells and NK-cells, but Taar1/TAAR1 is absent from the main olfactory epithelium (Figure 2). Whether a tissue expression of TAAR genes in general is considered ‘typical’ or ‘ectopic’ may, however, be merely a point of Taken together, the works published by Zhang et al. [29] and view, and depends on the data set available. For instance, expression Babusyte et al. [30] are important demonstrations of TAAR agonist- in the olfactory epithelium was shown for 14 of the 15 intact mouse mediated activities at physiological relevant amine concentrations, Taar genes [14], as well as for 4 of the 6 intact human TAAR genes suggesting that the major advantage of primary cells over cell [15]. Thus, and at least supported by experiments with Taar knock- cultures may be their sensitivity for agonists. The reason may be an out mice [31], TAAR are considered to typically function as olfactory optimal functional receptor expression, and the employment of the receptors. However, mouse Taar expression was also reported in the original receptor signal transduction cascade. On the other hand, gastrointestinal tract, spleen B-cells and NK-cells, spleen, and testis hard to obtain primary cells may be limited to investigation of rather [32-34]. Human TAAR expression was reported for the brain and small families of receptors, especially when considering the effort a variety of non-olfactory peripheral tissues (Figure 2) [7,34-39]. to establish large numbers of e.g. gene-targeted animals. Moreover, In different types of blood leukocytes, for instance, Babusyte et al. complexity due to co-expression of receptors may be a limiting factor recently now show expression of 5 out of the 6 intact human TAAR for any receptor deorphanization endeavor using primary cells. What [30]. Of these, TAAR1 and TAAR2 appear to be most abundantly are the amine concentrations that induce cellular functions in-vivo remains as an open question for the time being. These two recent expressed receptors in leukocytes. In contrast to mouse olfactory publications, nevertheless, encourage an optimistic view on the soon sensory neurons, TAAR1 and TAAR2 appear to dimerize in human identification of the specific agonists for TAAR, and other orphan leukocytes, where they play a major role in mediating amine-induced olfactory receptors. References 1. Galli E, Marchini M, Saba A, Berti S, Tonacchera M, et al. (2012) Detection of 3-iodothyronamine in human patients: a preliminary study. J Clin Endocrinol Metab 97: E69-74. 2. Berry MD (2004) Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 90: 257-271. 3. D’Andrea G, Terrazzino S, Fortin D, Farruggio A, Rinaldi L, et al. (2003) HPLC electrochemical detection of trace amines in human plasma and platelets and expression of mRNA transcripts of trace amine receptors in circulating leukocytes. Neurosci Lett 346: 89-92. 4. Hoefig CS, Köhrle J, Brabant G, Dixit K, Yap B, et al. (2011) Evidence for extrathyroidal formation of 3-iodothyronamine in humans as provided by a novel monoclonal antibody-based chemiluminescent serum immunoassay. J Clin Endocrinol Metab 96: 1864-1872. 5. Miura Y (2000) Plasma beta-phenylethylamine in Parkinson’s disease. Kurume Med J 47: 267-272. 6. Scanlan TS, Suchland KL, Hart ME, Chiellini G, Huang Y, et al. (2004) 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med 10: 638-642. 7. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, et al. (2001) Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A 98: 8966-8971. 8. Boulton AA (1984) Trace Amines and the Neurosciences, in Neurobiology of the Trace Amines, Human Press: Clifton, NJ, USA. 9. Lindemann L, Ebeling M, Kratochwil NA, Bunzow JR, Grandy DK, et al. (2005) Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors. Genomics 85: 372- 385. 10. Miller GM (2011) The emerging role of trace amine-associated receptor 1 in the functional regulation of monoamine transporters and dopaminergic activity. J Neurochem 116: 164-176. Figure 2: Typical versus ectopic tissue expression of mouse Taar and human TAAR. Amino acid identity between 15 Taar and 6 human TAAR 11. Fleischer J, Schwarzenbacher K, Breer H (2007) Expression of trace amine- (protein sequences obtained from NCBI) was calculated using the progressive associated receptors in the Grueneberg ganglion. Chem Senses 32: 623- alignment algorithm from CLC Main Workbench (Version 6.8.2) software.
Recommended publications
  • Is TAAR1 a Potential Therapeutic Target for Immune Dysregulation In
    Graduate Physical and Life Sciences PhD Pharmacology Abstract ID# 1081 Is TAAR1 a Potential Therapeutic Target for Immune Dysregulation in Drug Abuse? Fleischer, Lisa M; Tamashunas, Nina and Miller, Gregory M Addiction Sciences Laboratory, Northeastern University, Boston MA 02115 Abstract Discovered in 2001, Trace Amine Associated Receptor 1 (TAAR1) is a direct target of Data and Results amphetamine, methamphetamine and MDMA. It is expressed in the brain reward circuity and modulates dopamine transporter function and dopamine neuron firing rates. Newly-developed compounds that specifically target TAAR1 have recently been investigated in animal models In addition to brain, TAAR1 is expressed in immune cells METH promotes PKA and PKC Phosphorylation through TAAR1 as candidate therapeutics for methamphetamine, cocaine and alcohol abuse. These studies • We treated HEK/TAAR1 cells and HEK293 involving classic behavioral measures of drug response, as well as drug self-administration, Rhesus and Human cells with vehicle or METH, with and without strongly implicate TAAR1 as a potential therapeutic target for the treatment of addiction. In activators and inhibitors of PKA and PKC. addition to its central actions, we demonstrated that TAAR1 is upregulated in peripheral blood Cells Lines mononuclear cells (PBMC) and B cells following immune activation, and that subsequent • We performed Western blotting experiments to activation of TAAR1 by methamphetamine stimulates cAMP, similar to the function of measure levels of phospho-PKA and phospho- adenosine A2 receptors which are also present in immune cells and play a critical role in the PKC. immune response. Here, we are investigating the relationship between TAAR1 and the • We found that specific activators of PKA and adenosine A2 receptor at the level of cellular signaling and receptor dimerization.
    [Show full text]
  • Jenna K. Caines, Sherri L. Christian, Mark D. Berry Department of Biochemistry, Memorial University of Newfoundland, St. John'
    Trace Amine-Associated Receptors in Monocytes: A Constant Low-Level Expression Jenna K. Caines, Sherri L. Christian, Mark D. Berry Department of Biochemistry, Memorial University of Newfoundland, St. John’s NL Trace amine-associated receptors (TAARs) Is TAAR1 differentially expressed in response to Pro- and Are any TAARs differentially expressed between § G protein-coupled receptors anti-inflammatory stimuli? monocyte and macrophage lineages? § Established throughout the body in vertebrates Table 1: Datasets with n ≥ 3 examining human and mice macrophages Table 2: Datasets with n ≥ 3 containing several monocyte and § Humans have 6 functional isoforms: TAAR1, TAAR2, TAAR5, TAAR6, TAAR8, and TAAR9 treated with pro- and anti-inflammatory stimuli macrophage lineages from mice TAARs and the immune system Dataset Treatment Time TAAR1 p-value Dataset Cell type Number of lineages Treatment § Found in leukocyte populations1 GSE53986 Untreated (control) 0h examined INFγ 24h 0.8 GSE15907 Lung Macrophage 2 NA 1 § TAAR1 suspected of regulating immune response GSE60290 Untreated (control) 0h Peritoneal Macrophage 6 NA § Potential target for pharmacological treatment of immune disorders2 INFγ 18h 0.3 Spleen Macrophage NA GSE43075 Untreated (control) 0h Blood Monocyte 2 NA Hypothesis LPS 4h 0.45 Mesenteric LN monocyte 1 NA GSE121646 Untreated (control) 0h Oral Salmonella § TAAR1 will show differential expression upon activation and LPS 8h 0.7 Small intestine macrophage 2 Typhimurium(72 h) GSE19315 Untreated (control) 0h between leukocyte populations
    [Show full text]
  • Functions of Olfactory Receptors Are Decoded from Their Sequence
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.06.895540; this version posted January 6, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Functions of olfactory receptors are decoded from their sequence Xiaojing Cong,1,†* Wenwen Ren,5,† Jody Pacalon1, Claire A. de March,6 Lun Xu,2 Hiroaki Matsunami,6 Yiqun Yu,2,3* Jérôme Golebiowski1,4* 1 Université Côte d’Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108, France 2 Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031, People's Republic of China 3 School of Life Sciences, Shanghai University, Shanghai 200444, People's Republic of China 4 Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, South Korea 5 Institutes of Biomedical Sciences, Fudan University, Shanghai 200031, People's Republic of China 6 Department of Molecular Genetics and Microbiology, and Department of Neurobiology, and Duke Institute for Brain Sciences, Duke University Medical Center, Research Drive, Durham, NC 27710, USA † These authors contributed equally. * Correspondence may be addressed to: [email protected], [email protected] or [email protected] Abstract G protein-coupled receptors (GPCRs) conserve common structural folds and activation mechanisms, yet their ligand spectra and functions are highly diversified. This work investigated how the functional variations in olfactory GPCRs (ORs)−the largest GPCR family−are encoded in the primary sequence.
    [Show full text]
  • Olfactory Receptor Proteins in Axonal Processes of Chemosensory Neurons
    7754 • The Journal of Neuroscience, September 1, 2004 • 24(35):7754–7761 Cellular/Molecular Olfactory Receptor Proteins in Axonal Processes of Chemosensory Neurons Joerg Strotmann, Olga Levai, Joerg Fleischer, Karin Schwarzenbacher, and Heinz Breer Institute of Physiology, University of Hohenheim, 70593 Stuttgart, Germany Olfactoryreceptorsaresupposedtoactnotonlyasmolecularsensorsforodorantsbutalsoascellrecognitionmoleculesguidingtheaxons of olfactory neurons to their appropriate glomerulus in the olfactory bulb. This concept implies that olfactory receptor proteins are located in sensory cilia and in the axons. To approach this critical issue, antibodies were generated against two peptides, one derived from olfactory receptor mOR256–17, one derived from the “mOR37” subfamily. By means of immunohistochemistry and double-labeling studies using transgenic mouse lines as well as Western blot analyses, it was demonstrated that the newly generated antibodies specifi- cally recognized the receptor proteins. To scrutinize the hypothesis that olfactory receptor proteins may also be present in the axonal processes and the nerve terminals, serial sections through the olfactory bulb were probed with the antibodies. Two glomeruli in each bulb were stained by anti-mOR256–17, one positioned in the medial, one in the lateral hemisphere. Fiber bundles approaching the glomeruli through the outer nerve layer also displayed intense immunofluorescence. A similar picture emerged for the antibody anti-mOR37, a small number of glomeruli in the ventral domain
    [Show full text]
  • Discovery of Novel Imidazolines and Imidazoles As Selective TAAR1
    Discovery of Novel Imidazolines and Imidazoles as Selective TAAR1 Partial Agonists for the Treatment of Psychiatric Disorders Giuseppe Cecere, pRED, Discovery Chemistry F. Hoffmann-La Roche AG, Basel, Switzerland Biological Rationale Trace amines are known for four decades Trace Amines - phenylethylamine p- tyramine p- octopamine tryptamine (PEA) Biogenic Amines dopamine norepinephrine serotonin ( DA) (NE) (5-HT) • Structurally related to classical biogenic amine neurotransmitters (DA, NE, 5-HT) • Co-localised & released with biogenic amines in same cells and vesicles • Low concentrations in CNS, rapidly catabolized by monoamine oxidase (MAO) • Dysregulation linked to psychiatric disorders such as schizophrenia & 2 depression Trace Amines Metabolism 3 Biological Rationale Trace Amine-Associated Receptors (TAARs) p-Tyramine extracellular TAAR1 Discrete family of GPCR’s Subtypes TAAR1-TAAR9 known intracellular Gs Structural similarity with the rhodopsin and adrenergic receptor superfamily adenylate Activation of the TAAR1 cyclase receptor leads to cAMP elevation of intracellular cAMP levels • First discovered in 2001 (Borowsky & Bunzow); characterised and classified at Roche in 2004 • Trace amines are endogenous ligands of TAAR1 • TAAR1 is expressed throughout the limbic and monoaminergic system in the brain Borowsky, B. et al., PNAS 2001, 98, 8966; Bunzow, J. R. et al., Mol. Pharmacol. 2001, 60, 1181. Lindemann L, Hoener MC, Trends Pharmacol Sci 2005, 26, 274. 4 Biological Rationale Electrical activity of dopaminergic neurons + p-tyramine
    [Show full text]
  • Characterization of Dopaminergic System in the Striatum of Young Adult Park2-/- Knockout Rats
    www.nature.com/scientificreports OPEN Characterization of Dopaminergic System in the Striatum of Young Adult Park2−/− Knockout Rats Received: 27 June 2016 Jickssa M. Gemechu1,2, Akhil Sharma1, Dongyue Yu1,3, Yuran Xie1,4, Olivia M. Merkel 1,5 & Accepted: 20 November 2017 Anna Moszczynska 1 Published: xx xx xxxx Mutations in parkin gene (Park2) are linked to early-onset autosomal recessive Parkinson’s disease (PD) and young-onset sporadic PD. Park2 knockout (PKO) rodents; however, do not display neurodegeneration of the nigrostriatal pathway, suggesting age-dependent compensatory changes. Our goal was to examine dopaminergic (DAergic) system in the striatum of 2 month-old PKO rats in order to characterize compensatory mechanisms that may have occurred within the system. The striata form wild type (WT) and PKO Long Evans male rats were assessed for the levels of DAergic markers, for monoamine oxidase (MAO) A and B activities and levels, and for the levels of their respective preferred substrates, serotonin (5-HT) and ß-phenylethylamine (ß-PEA). The PKO rats displayed lower activities of MAOs and higher levels of ß-PEA in the striatum than their WT counterparts. Decreased levels of ß-PEA receptor, trace amine-associated receptor 1 (TAAR-1), and postsynaptic DA D2 (D2L) receptor accompanied these alterations. Drug-naive PKO rats displayed normal locomotor activity; however, they displayed decreased locomotor response to a low dose of psychostimulant methamphetamine, suggesting altered DAergic neurotransmission in the striatum when challenged with an indirect agonist. Altogether, our fndings suggest that 2 month-old PKO male rats have altered DAergic and trace aminergic signaling.
    [Show full text]
  • File Download
    Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord Elizabeth A. Gozal, Emory University Brannan E. O'Neill, Emory University Michael A. Sawchuk, Emory University Hong Zhu, Emory University Mallika Halder, Emory University Chou Ching-Chieh , Emory University Shawn Hochman, Emory University Journal Title: Frontiers in Neural Circuits Volume: Volume 8 Publisher: Frontiers | 2014-11-07, Pages 134-134 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.3389/fncir.2014.00134 Permanent URL: https://pid.emory.edu/ark:/25593/mr95r Final published version: http://dx.doi.org/10.3389/fncir.2014.00134 Copyright information: © 2014 Gozal, O'Neill, Sawchuk, Zhu, Halder, Chou and Hochman. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits distribution of derivative works, making multiple copies, distribution, public display, and publicly performance, provided the original work is properly cited. This license requires credit be given to copyright holder and/or author, copyright and license notices be kept intact. Accessed September 27, 2021 11:18 AM EDT ORIGINAL RESEARCH ARTICLE published: 07 November 2014 NEURAL CIRCUITS doi: 10.3389/fncir.2014.00134 Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord Elizabeth A. Gozal , Brannan E. O’Neill , Michael A. Sawchuk , Hong Zhu , Mallika Halder , Ching-Chieh Chou and Shawn Hochman* Physiology Department, Emory University, Atlanta, GA, USA Edited by: The trace amines (TAs), tryptamine, tyramine, and β-phenylethylamine, are synthesized Brian R.
    [Show full text]
  • Odorant Receptors: Regulation, Signaling, and Expression Michele Lynn Rankin Louisiana State University and Agricultural and Mechanical College, [email protected]
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2002 Odorant receptors: regulation, signaling, and expression Michele Lynn Rankin Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Rankin, Michele Lynn, "Odorant receptors: regulation, signaling, and expression" (2002). LSU Doctoral Dissertations. 540. https://digitalcommons.lsu.edu/gradschool_dissertations/540 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ODORANT RECEPTORS: REGULATION, SIGNALING, AND EXPRESSION A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy In The Department of Biological Sciences By Michele L. Rankin B.S., Louisiana State University, 1990 M.S., Louisiana State University, 1997 August 2002 ACKNOWLEDGMENTS I would like to thank several people who participated in my successfully completing the requirements for the Ph.D. degree. I thank Dr. Richard Bruch for giving me the opportunity to work in his laboratory and guiding me along during the degree program. I am very thankful for the support and generosity of my advisory committee consisting of Dr. John Caprio, Dr. Evanna Gleason, and Dr. Jaqueline Stephens. At one time or another, I performed experiments in each of their laboratories and include that work in this dissertation.
    [Show full text]
  • On the Scent of Human Olfactory Orbitofrontal Cortex: Meta-Analysis and Comparison to Non-Human Primates
    Brain Research Reviews 50 (2005) 287 – 304 www.elsevier.com/locate/brainresrev Review On the scent of human olfactory orbitofrontal cortex: Meta-analysis and comparison to non-human primates Jay A. Gottfrieda,*, David H. Zaldb aDepartment of Neurology and the Cognitive Neurology and Alzheimer’s Disease Center, Northwestern University Feinberg School of Medicine, 320 E. Superior St., Searle 11-453, Chicago, IL 60611, USA bDepartment of Psychology, Vanderbilt University, Nashville, TN 37240, USA Accepted 25 August 2005 Available online 6 October 2005 Abstract It is widely accepted that the orbitofrontal cortex (OFC) represents the main neocortical target of primary olfactory cortex. In non-human primates, the olfactory neocortex is situated along the basal surface of the caudal frontal lobes, encompassing agranular and dysgranular OFC medially and agranular insula laterally, where this latter structure wraps onto the posterior orbital surface. Direct afferent inputs arrive from most primary olfactory areas, including piriform cortex, amygdala, and entorhinal cortex, in the absence of an obligatory thalamic relay. While such findings are almost exclusively derived from animal data, recent cytoarchitectonic studies indicate a close anatomical correspondence between non-human primate and human OFC. Given this cross-species conservation of structure, it has generally been presumed that the olfactory projection area in human OFC occupies the same posterior portions of OFC as seen in non-human primates. This review questions this assumption by providing a critical survey of the localization of primate and human olfactory neocortex. Based on a meta-analysis of human functional neuroimaging studies, the region of human OFC showing the greatest olfactory responsivity appears substantially rostral and in a different cytoarchitectural area than the orbital olfactory regions as defined in the monkey.
    [Show full text]
  • Identification of a Subset of Trace Amine-Associated Receptors and Ligands As Potential Modulators of Insulin Secretion
    Journal Pre-proofs Identification of a subset of trace amine-associated receptors and ligands as po- tential modulators of insulin secretion Michael J. Cripps, Marta Bagnati, Tania A. Jones, Babatunji W. Ogunkolade, Sophie R. Sayers, Paul W. Caton, Katie Hanna, Merell Billacura, Kathryn Fair, Carl Nelson, Robert Lowe, Graham A. Hitman, Mark D. Berry, Mark D. Turner PII: S0006-2952(19)30384-3 DOI: https://doi.org/10.1016/j.bcp.2019.113685 Reference: BCP 113685 To appear in: Biochemical Pharmacology Received Date: 22 August 2019 Accepted Date: 24 October 2019 Please cite this article as: M.J. Cripps, M. Bagnati, T.A. Jones, B.W. Ogunkolade, S.R. Sayers, P.W. Caton, K. Hanna, M. Billacura, K. Fair, C. Nelson, R. Lowe, G.A. Hitman, M.D. Berry, M.D. Turner, Identification of a subset of trace amine-associated receptors and ligands as potential modulators of insulin secretion, Biochemical Pharmacology (2019), doi: https://doi.org/10.1016/j.bcp.2019.113685 This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. © 2019 Elsevier Inc. All rights reserved.
    [Show full text]
  • Involvement of the Sigma-1 Receptor in Methamphetamine-Mediated Changes to Astrocyte Structure and Function" (2020)
    University of Kentucky UKnowledge Theses and Dissertations--Medical Sciences Medical Sciences 2020 Involvement of the Sigma-1 Receptor in Methamphetamine- Mediated Changes to Astrocyte Structure and Function Richik Neogi University of Kentucky, [email protected] Author ORCID Identifier: https://orcid.org/0000-0002-8716-8812 Digital Object Identifier: https://doi.org/10.13023/etd.2020.363 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Neogi, Richik, "Involvement of the Sigma-1 Receptor in Methamphetamine-Mediated Changes to Astrocyte Structure and Function" (2020). Theses and Dissertations--Medical Sciences. 12. https://uknowledge.uky.edu/medsci_etds/12 This Master's Thesis is brought to you for free and open access by the Medical Sciences at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Medical Sciences by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Multi-Functionality of Proteins Involved in GPCR and G Protein Signaling: Making Sense of Structure–Function Continuum with In
    Cellular and Molecular Life Sciences (2019) 76:4461–4492 https://doi.org/10.1007/s00018-019-03276-1 Cellular andMolecular Life Sciences REVIEW Multi‑functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder‑based proteoforms Alexander V. Fonin1 · April L. Darling2 · Irina M. Kuznetsova1 · Konstantin K. Turoverov1,3 · Vladimir N. Uversky2,4 Received: 5 August 2019 / Revised: 5 August 2019 / Accepted: 12 August 2019 / Published online: 19 August 2019 © Springer Nature Switzerland AG 2019 Abstract GPCR–G protein signaling system recognizes a multitude of extracellular ligands and triggers a variety of intracellular signal- ing cascades in response. In humans, this system includes more than 800 various GPCRs and a large set of heterotrimeric G proteins. Complexity of this system goes far beyond a multitude of pair-wise ligand–GPCR and GPCR–G protein interactions. In fact, one GPCR can recognize more than one extracellular signal and interact with more than one G protein. Furthermore, one ligand can activate more than one GPCR, and multiple GPCRs can couple to the same G protein. This defnes an intricate multifunctionality of this important signaling system. Here, we show that the multifunctionality of GPCR–G protein system represents an illustrative example of the protein structure–function continuum, where structures of the involved proteins represent a complex mosaic of diferently folded regions (foldons, non-foldons, unfoldons, semi-foldons, and inducible foldons). The functionality of resulting highly dynamic conformational ensembles is fne-tuned by various post-translational modifcations and alternative splicing, and such ensembles can undergo dramatic changes at interaction with their specifc partners.
    [Show full text]