File and IPC

Total Page:16

File Type:pdf, Size:1020Kb

File and IPC Topic 7: File and IPC Tongping Liu University of Massachusetts Amherst 1 Midterm: 3/17 8pm-10pm • Zoom Link (lectures link): – https://umass-amherst.zoom.us/j/91463665907 • Close book and close notes, but with one cheat sheet • Open the video but mute yourself • Ask questions verbally in a different room or over the chat • Clarify some questions over the chat Let me know if you can’t make it for a valid reason!! University of Massachusetts Amherst 2 Outline • File and IO Operations • File Representations: FDT, SFT, inode table • Fork and Inheritance, Filters and Redirection • Hard vs. Symbolic Links • IPC: Pipe and Named Pipe • IPC: Shared Memory • IPC: Memory-Mapped Files University of Massachusetts Amherst 3 Information Storing • Applications may store information in the process’s address space. But it is a bad idea. – Size is limited to virtual address space • May not be sufficient for airline reservations, banking, etc. – The data is lost when an application terminates • Even when a computer doesn’t crash! – Multiple processes cannot share the same data University of Massachusetts Amherst 4 Information Storing • Criteria for long-term information storing: – Can store large amount of information – Must survive the process of creating it – ShoulD proviDe concurrent accesses to multiple processes • Solution: – Store information on Disks in a unit calleD “file” – Files are persistent, and only owner can explicitly Delete it – Files are manageD by the OS • File System: controls how data is stored and retrieved. University of Massachusetts Amherst 5 Unix File System Layout • Files are stored on disks – Disk is divided into multiple partitions – Sector 0 of disk called Master Boot Record – End of MBR has partition table (start & end of partitions) University of Massachusetts Amherst 6 Tracking Free Disk Space • Two approaches to keep track of free disk blocks – Linked list or bitmap University of Massachusetts Amherst 7 File Naming • Motivation: abstract information stored on disk – You do not need to remember block, partition, … – Should have human readable names • A process creates a file, and gives it a name – Other processes can access the file by that name • Naming conventions are OS dependent – Usually less than 255 characters – Digits and special characters are sometimes allowed – MS-DOS and Windows are not case sensitive, UNIX family is University of Massachusetts Amherst 8 File Attributes • File-specific info maintained by the OS – File size, modification date, creation time, etc. – OS dependent • Other attributes: – Name – only information kept in human-readable form – Identifier – a unique tag (number) identifies a file within file system – Type – normal or special types – Location – pointer to file location on device – Protection – controls who can do reading, writing, executing – Time, date, and user identification – data for protection, security, and usage monitoring University of Massachusetts Amherst 9 File Protection • File owner/creator should be able to control: – What can be done by whom • Types of access – Read – Write – Execute – Append – Delete University of Massachusetts Amherst 10 Unix Example • Mode of access: read, write, execute • Three classes of users: – Owner: – Group: – Public: RWX 7: 111 owner group public 6: 110 1: 001 chmod 761 game chmod can change file permissions University of Massachusetts Amherst 11 I/O Related System Calls • Five I/O system calls: – open, close, read, write , ioctl – Return -1 on error and set errno • Use file descriptor (integer) to identify each file • 3 shared/opened file descriptors: – STDIN_FILENO (0) , STDOUT_FILENO (1), STDERR_FILENO (2) University of Massachusetts Amherst 12 open() #include <fcntl.h> #include <sys/stat.h> int open(const char *path, int oflag); Creating a file int open(const char *path, int oflag, mode_t mode); • Return a file descriptor (an integer) • oflag: O_RDONLY, O_WRONLY, O_RDWR, O_APPEND, O_CREAT, O_EXCL, O_NOCTTY, O_NONBLOCK, O_TRUNC; University of Massachusetts Amherst 13 open() • O_CREAT flag: use the 3-parameter form to specify permissions University of Massachusetts Amherst 14 Implementation of Copying A File University of Massachusetts Amherst 15 close() #include <unistd.h> int close(int fildes); • You could close a file explicitly • Open files are closed when a program exits normally. University of Massachusetts Amherst 16 read() #include <unistd.h> ssize_t read(int fildes, void *buf, size_t nbyte); • Need to allocate a buffer to hold the bytes of read • size_t is an unsigned long type • Return value of read is a signed value – Can return fewer bytes than requested – Return value of -1 with errno set to the error – EINTR is not an error University of Massachusetts Amherst 17 An Exmaple of read() Read one char at a time! University of Massachusetts Amherst 18 write() #include <unistd.h> ssize_t write(int fildes, void *buf, size_t nbyte); • Not an error if return value is less than nbyte • Return value of -1 with errno set to EINTR is not usually an error University of Massachusetts Amherst 19 An Example for write() reads from one file and writes out to another University of Massachusetts Amherst 20 Quiz on read() • Suppose infile has "abcdefghijklmnop". Assuming no errors occur, what are the possible outputs of the following program? abcd aXbZ abcZ etc. What should we do to ensure “abcd” in the buffer? University of Massachusetts Amherst 21 Outline • File and IO Operations • File Representations: FDT, SFT, inode table • Fork and Inheritance, Filters and Redirection • Hard vs. Symbolic Links • IPC: Pipe and Named Pipe • IPC: Shared Memory • IPC: Memory-Mapped Files University of Massachusetts Amherst 22 File Representation • File Descriptor Table: – An array of pointers indexed by file descriptors – Have pointers pointing to entries in System File Table • System/Open File Table: – Contains one entry for each open file – Each entry with a pointer to inode table – Other information: current file offset; count of file descriptors that are using this entry – When a file is closeD, the count is DecrementeD. The entry is freeD when the count becomes 0. • In-Memory inode Table: in-use inodes University of Massachusetts Amherst 23 inode: Store File Information University of Massachusetts Amherst 24 File Size and Block Size • Block size is 8K and pointers are 4 bytes – How large a file can be represented using only one single indirect pointer? – What about one double indirect pointer? – What about one triple indirect pointer? University of Massachusetts Amherst 25 File Size and Block Size • Block size is 8K and pointers are 4 bytes • One single indirect pointer – A block contains 2K pointers to identify file’s 2K blocks – File size = 2K * 8K = 16MB • One double indirect pointer – 2K pointers à 2K blocks, where each block contains 2K pointers to identify blocks for the file – Number of blocks of the file = 2K*2K = 4M – File size = 4M * 8K = 32 GB • One triple indirect pointer – Number of blocks of the file = 2K*2K*2K = 8 *K*K*K – File size à 64 TB ( = 2^33) ; 4B pointer à 32 TB University of Massachusetts Amherst 26 Relationship between File Representations Per Process Per System University of Massachusetts Amherst 27 What Happened for File Read/Write 1. The process passes the file descriptor to the kernel through a system call (read/write) 2. The kernel will access the entry in per-process descriptor, and get the pointer to system file table 3. For read/write, after obtaining the file offset in system file table, then it can compute the block/sector information from in-memory inode table. 4. OS will issue read. IO scheduler may combine multiple requests with the close location together. After getting, OS will get an interrupt and return from the system call. 5. For write, the OS will return when the data is putted into the buffer University of Massachusetts Amherst 28 File Representations Descriptor table System file table inode table [one table per process] [shared by all processes] [shared by all processes] File A (terminal) stdin fd 0 File access stdout fd 1 File pos File size Info in stderr fd 2 stat fd 3 refcnt=1 File type ... ... struct fd 4 File B (disk) File access File size File pos File type refcnt=1 ... ... System file table: dynamic information, like pos, refcnt inode table: more static, no change of inode if a file is not changed University of Massachusetts Amherst 29 Quiz on File Representations • If a file is opened twice in one process, how many entries will be created in file descriptor table? How many will be created in open file table? How many in inode table? • Each open() will return a file descriptor, which will has one entry in the open file table. But there is only one entry in inode table – Open file table contains Dynamic information about each file, such as file offset – Inode contains static information about a file, such as blocks…. University of Massachusetts Amherst 30 Quiz on File Representations • What about one file is opened separately by two processes? – Then we will have two entries in open file table, but only one inode entry University of Massachusetts Amherst 31 An Example of File Representation • Multiple entries in open file table may point to the same entry in inode table • Multiple processes may point to the same entry in open file table What happened here? University of Massachusetts Amherst 32 Outline • File and IO Operations • File Representations: FDT, SFT, inode table • Fork and Inheritance, Filters and Redirection • Hard vs. Symbolic Links • IPC: Pipe and Named Pipe • IPC: Shared Memory • IPC: Memory-Mapped Files University of Massachusetts Amherst 33 Inheritance File Descriptors • When fork creates a child – Child inherits a copy of the parent's address space, and its file descriptor table – This makes that multiple processes shares the same entry in open file table What will happen if the child closes a file descriptor it inherits? Closing the file descriptor in the child will close it for the child, but not for the parent, and vice versa.
Recommended publications
  • Inter-Process Communication, Analysis, Guidelines and Its Impact on Computer Security
    The 7th International Conference for Informatics and Information Technology (CIIT 2010) INTER-PROCESS COMMUNICATION, ANALYSIS, GUIDELINES AND ITS IMPACT ON COMPUTER SECURITY Zoran Spasov Ph.D. Ana Madevska Bogdanova T-Mobile Macedonia Institute of Informatics, FNSM Skopje, Macedonia Skopje, Macedonia ABSTRACT Finally the conclusion will offer a summary of the available programming techniques and implementations for the In this paper we look at the inter-process communication Windows platforms. We will note the security risks and the (IPC) also known as inter-thread or inter-application best practices to avoid them. communication from other knowledge sources. We will look and analyze the different types of IPC in the Microsoft II. INTER -PROCESS COMMUNICATION (IPC) Windows operating system, their implementation and the usefulness of this kind of approach in the terms of Inter-Process Communication (IPC) stands for many communication between processes. Only local techniques for the exchange of data among threads in one or implementation of the IPC will be addressed in this paper. more processes - one-directional or two-directional. Processes Special emphasis will be given to the system mechanisms that may be running locally or on many different computers are involved with the creation, management, and use of connected by a network. We can divide the IPC techniques named pipes and sockets. into groups of methods, grouped by their way of This paper will discuss some of the IPC options and communication: message passing, synchronization, shared techniques that are available to Microsoft Windows memory and remote procedure calls (RPC). We should programmers. We will make a comparison between Microsoft carefully choose the IPC method depending on data load that remoting and Microsoft message queues (pros and cons).
    [Show full text]
  • An Introduction to Linux IPC
    An introduction to Linux IPC Michael Kerrisk © 2013 linux.conf.au 2013 http://man7.org/ Canberra, Australia [email protected] 2013-01-30 http://lwn.net/ [email protected] man7 .org 1 Goal ● Limited time! ● Get a flavor of main IPC methods man7 .org 2 Me ● Programming on UNIX & Linux since 1987 ● Linux man-pages maintainer ● http://www.kernel.org/doc/man-pages/ ● Kernel + glibc API ● Author of: Further info: http://man7.org/tlpi/ man7 .org 3 You ● Can read a bit of C ● Have a passing familiarity with common syscalls ● fork(), open(), read(), write() man7 .org 4 There’s a lot of IPC ● Pipes ● Shared memory mappings ● FIFOs ● File vs Anonymous ● Cross-memory attach ● Pseudoterminals ● proc_vm_readv() / proc_vm_writev() ● Sockets ● Signals ● Stream vs Datagram (vs Seq. packet) ● Standard, Realtime ● UNIX vs Internet domain ● Eventfd ● POSIX message queues ● Futexes ● POSIX shared memory ● Record locks ● ● POSIX semaphores File locks ● ● Named, Unnamed Mutexes ● System V message queues ● Condition variables ● System V shared memory ● Barriers ● ● System V semaphores Read-write locks man7 .org 5 It helps to classify ● Pipes ● Shared memory mappings ● FIFOs ● File vs Anonymous ● Cross-memory attach ● Pseudoterminals ● proc_vm_readv() / proc_vm_writev() ● Sockets ● Signals ● Stream vs Datagram (vs Seq. packet) ● Standard, Realtime ● UNIX vs Internet domain ● Eventfd ● POSIX message queues ● Futexes ● POSIX shared memory ● Record locks ● ● POSIX semaphores File locks ● ● Named, Unnamed Mutexes ● System V message queues ● Condition variables ● System V shared memory ● Barriers ● ● System V semaphores Read-write locks man7 .org 6 It helps to classify ● Pipes ● Shared memory mappings ● FIFOs ● File vs Anonymous ● Cross-memoryn attach ● Pseudoterminals tio a ● proc_vm_readv() / proc_vm_writev() ● Sockets ic n ● Signals ● Stream vs Datagram (vs uSeq.
    [Show full text]
  • IPC: Mmap and Pipes
    Interprocess Communication: Memory mapped files and pipes CS 241 April 4, 2014 University of Illinois 1 Shared Memory Private Private address OS address address space space space Shared Process A segment Process B Processes request the segment OS maintains the segment Processes can attach/detach the segment 2 Shared Memory Private Private Private address address space OS address address space space space Shared Process A segment Process B Can mark segment for deletion on last detach 3 Shared Memory example /* make the key: */ if ((key = ftok(”shmdemo.c", 'R')) == -1) { perror("ftok"); exit(1); } /* connect to (and possibly create) the segment: */ if ((shmid = shmget(key, SHM_SIZE, 0644 | IPC_CREAT)) == -1) { perror("shmget"); exit(1); } /* attach to the segment to get a pointer to it: */ data = shmat(shmid, (void *)0, 0); if (data == (char *)(-1)) { perror("shmat"); exit(1); } 4 Shared Memory example /* read or modify the segment, based on the command line: */ if (argc == 2) { printf("writing to segment: \"%s\"\n", argv[1]); strncpy(data, argv[1], SHM_SIZE); } else printf("segment contains: \"%s\"\n", data); /* detach from the segment: */ if (shmdt(data) == -1) { perror("shmdt"); exit(1); } return 0; } Run demo 5 Memory Mapped Files Memory-mapped file I/O • Map a disk block to a page in memory • Allows file I/O to be treated as routine memory access Use • File is initially read using demand paging ! i.e., loaded from disk to memory only at the moment it’s needed • When needed, a page-sized portion of the file is read from the file system
    [Show full text]
  • Interprocess Communication
    06 0430 CH05 5/22/01 10:22 AM Page 95 5 Interprocess Communication CHAPTER 3,“PROCESSES,” DISCUSSED THE CREATION OF PROCESSES and showed how one process can obtain the exit status of a child process.That’s the simplest form of communication between two processes, but it’s by no means the most powerful.The mechanisms of Chapter 3 don’t provide any way for the parent to communicate with the child except via command-line arguments and environment variables, nor any way for the child to communicate with the parent except via the child’s exit status. None of these mechanisms provides any means for communicating with the child process while it is actually running, nor do these mechanisms allow communication with a process outside the parent-child relationship. This chapter describes means for interprocess communication that circumvent these limitations.We will present various ways for communicating between parents and chil- dren, between “unrelated” processes, and even between processes on different machines. Interprocess communication (IPC) is the transfer of data among processes. For example, a Web browser may request a Web page from a Web server, which then sends HTML data.This transfer of data usually uses sockets in a telephone-like connection. In another example, you may want to print the filenames in a directory using a command such as ls | lpr.The shell creates an ls process and a separate lpr process, connecting 06 0430 CH05 5/22/01 10:22 AM Page 96 96 Chapter 5 Interprocess Communication the two with a pipe, represented by the “|” symbol.A pipe permits one-way commu- nication between two related processes.The ls process writes data into the pipe, and the lpr process reads data from the pipe.
    [Show full text]
  • Interprocess Communications (Pipes)
    Multiple methods for Interprocess Communications Three examples: files, pipes, shared memory. In this figure, Local domain sockets would be conceptually similar to a named pipe. The second method refers to pipes Sources for these slides include: • W. Stevens, Unix Network Programming, Volumes 1 and 2 • M. Mitchell, J. Oldham, A. Samuel, Advanced Linux Programming 1 Interprocess Communication (IPC) ⚫ Linux supports the following IPC mechanisms: – Half duplex pipes – Full duplex pipes –only by using 2 pipes (other unix systems do support FD over a single pipe) – FIFOS (also called named pipes) – SYSV style message queues – SYSV style shared memory – Local Domain (UNIX Domain) sockets – Similar to a socket but modifications to the address/name aspect. (PF_LOCAL rather than PF_INET). – Sockets: Two processes can communicate using localhost. But it’s more efficient to use 2 pipes or local domain sockets. Pipe – used in a shell pipeline ⚫ Example of a pipeline - issue the following in a shell: – who | sort | wc 2 10 110 – The shell program creates three processes, two pipes are used as shown below. – The shell would use the dup2 call to duplicate the read end of each pipe to standard input and the write end to standard output. ⚫ int fd[2]; ⚫ pid_t pid; ⚫ pipe(fd); ⚫ pid = fork(); ⚫ If(pid == 0) { – dup2(fd[0], STDIN_FILENO); – exec(whatever); ⚫ } ⚫ The use of dup2 by a shell allows a program or filter to simply operate on data arriving through standard in….and sends output to standard out. It does not need to know the pipe descriptors involved…. 3 – Note – modified the pipeline- the figure assumes lp instead of wc .
    [Show full text]
  • Interacting Modelica Using a Named Pipe for Hardware-In-The-Loop Simulation
    Interacting Modelica using a Named Pipe for Hardware-in-the-loop Simulation Interacting Modelica using a Named Pipe for Hardware-in-the-loop Simulation Arno Ebner Anton Haumer Dragan Simic Franz Pirker Arsenal Research Giefinggasse 2, 1210 Vienna, Austria phone: +43 50550 6663, fax: +43 50550 6595, e-mail: [email protected] Abstract tion for the system model considering the initial val- ues. The paper presents a concept and an implementation In some cases the user or other applications have to of Modelica simulation interaction using the operat- interact with the simulation, for example to: ing system inter-process communication method of • Start or interrupt the simulation the Named Pipe. The main aim of this presented • Change parameters or variables during the simu- work is to implement a hardware-in-the-loop simula- lation tion (HILS) environment based on Dymola which • Communicate with other applications, for exam- runs on a normal Microsoft Windows Personal Com- ple with another simulation environment puter. • Exchange data with an input/output-card or a pe- An energy storage test bench is connected by an ana- ripheral communication interface logue and digital data input/output card with the Dy- • Build up a hardware-in-the-loop simulation envi- mola simulation computer. With this proposed sys- ronment tem, particularly long-time simulations with sample rates up to 30 Hz can be executed very cost effective. Hardware-in-the-loop (HIL) is the integration of real Typical applications are simulations of drive cycles components and system models in a common simu- to test energy storage systems in electrified vehicles lation environment [1].
    [Show full text]
  • SMB Analysis
    NAP-3 Microsoft SMB Troubleshooting Rolf Leutert, Leutert NetServices, Switzerland © Leutert NetServices 2013 www.wireshark.ch Server Message Block (SMB) Protokoll SMB History Server Message Block (SMB) is Microsoft's client-server protocol and is most commonly used in networked environments where Windows® operating systems are in place. Invented by IBM in 1983, SMB has become Microsoft’s core protocol for shared services like files, printers etc. Initially SMB was running on top of non routable NetBIOS/NetBEUI API and was designed to work in small to medium size workgroups. 1996 Microsoft renamed SMB to Common Internet File System (CIFS) and added more features like larger file sizes, Windows RPC, the NT domain service and many more. Samba is the open source SMB/CIFS implementation for Unix and Linux systems 2 © Leutert NetServices 2013 www.wireshark.ch Server Message Block (SMB) Protokoll SMB over TCP/UDP/IP SMB over NetBIOS over UDP/TCP SMB / NetBIOS was made routable by running Application over TCP/IP (NBT) using encapsulation over 137/138 139 TCP/UDP-Ports 137–139 .. Port 137 = NetBIOS Name Service (NS) Port 138 = NetBIOS Datagram Service (DGM) Port 139 = NetBIOS Session Service (SS) Data Link Ethernet, WLAN etc. Since Windows 2000, SMB runs, by default, with a thin layer, the NBT's Session Service, on SMB “naked” over TCP top of TCP-Port 445. Application 445 DNS and LLMNR (Link Local Multicast Name . Resolution) is used for name resolution. Port 445 = Microsoft Directory Services (DS) SMB File Sharing, Windows Shares, Data Link Ethernet, WLAN etc. Printer Sharing, Active Directory 3 © Leutert NetServices 2013 www.wireshark.ch Server Message Block (SMB) Protokoll NetBIOS / SMB History NetBIOS Name Service (UDP Port 137) Application • Using NetBIOS names for clients and services.
    [Show full text]
  • Technical Standard IPC Mechanisms For
    Technical Standard IPC Mechanisms for SMB NICAL H S C T A E N T D A R D [This page intentionally left blank] X/Open CAE Specification IPC Mechanisms for SMB X/Open Company Ltd. December 1991, X/Open Company Limited All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owners. X/Open CAE Specification IPC Mechanisms for SMB ISBN: 1 872630 28 6 X/Open Document Number: XO/CAE/91/500 Published by X/Open Company Ltd., U.K. Any comments relating to the material contained in this document may be submitted to X/Open at: X/Open Company Limited Apex Plaza Forbury Road Reading Berkshire, RG1 1AX United Kingdom or by Electronic Mail to: [email protected] ii X/Open CAE Specification (1991) Contents Chapter 1 Introduction............................................................................................... 1 Chapter 2 SMB IPC Service Model .................................................................... 3 2.1 Security Overview ...................................................................................... 3 2.2 Naming ......................................................................................................... 4 2.2.1 Named Pipe and Mailslot Names ........................................................ 4 2.2.2 NetBIOS Names ....................................................................................... 4 2.2.3 Messaging
    [Show full text]
  • A Guide to Inter-Process Communication in Linux
    Opensource.com A guide to inter-process communication in Linux Learn how processes synchronize with each other in Linux. By Marty Kalin . A GUIDE TO INTER-PROCESS COMMUNICATION IN LINUX . CC BY-SA 4.0 . OPENSOURCE.COM 1 OPENSOURCE.COM ..................................................................... ABOUT OPENSOURCE.COM What is Opensource.com? publishes stories about creating, OPENSOURCE.COM adopting, and sharing open source solutions. Visit Opensource.com to learn more about how the open source way is improving technologies, education, business, government, health, law, entertainment, humanitarian efforts, and more. Submit a story idea: opensource.com/story Email us: [email protected] . 2 A GUIDE TO INTER-PROCESS COMMUNICATION IN LINUX . CC BY-SA 4.0 . OPENSOURCE.COM . ABOUT THE AUTHOR MARTY KALIN IN COMPUTER SCIENCE (College of Computing and I ’M AN ACADEMIC Digital Media, DePaul University) with wide experience in software development, mostly in production planning and scheduling (steel industry) and product configuration (truck and bus manufacturing). Details on books and other publications are available at: Marty Kalin’s hompage FO OLL W MARTY KALIN T witter: @kalin_martin . A GUIDE TO INTER-PROCESS COMMUNICATION IN LINUX . CC BY-SA 4.0 . OPENSOURCE.COM 3 OPENSOURCE.COM ..................................................................... INTRODUCTION Introduction 5 CHAPTERS Shared storage 6 Using pipes and message queues 12 Sockets and signals 19 Wrapping up this guide 24 GET INVOLVED | ADDITIONAL RESOURCES Write for Us 25 . 4 A GUIDE TO INTER-PROCESS COMMUNICATION IN LINUX . CC BY-SA 4.0 . OPENSOURCE.COM . INTRODUCTION Introduction interprocess communication (ipc) in Linux. The THIS GUIDE IS AboUT guide uses code examples in C to clarify the following IPC mechanisms: • Shared files • Shared memory (with semaphores) • Pipes (named and unnamed) • Message queues • Sockets • Signals I’ll introduce you to some core concepts before moving on to the first two of these mech- anisms: shared files and shared memory.
    [Show full text]
  • Understanding D-Bus
    Meetup Toulouse, May 2016 Understanding D-Bus Myl`eneJosserand [email protected] © Copyright 2004-2018, Bootlin. embedded Linux and kernel engineering Creative Commons BY-SA 3.0 license. Corrections, suggestions, contributions and translations are welcome! - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 1/1 What is this talk about? I D-Bus generality & IPC I The D-Bus principles I Differents tools and libraries with demo I Different projects using D-Bus I A short use case with Connman and Ofono - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 2/1 Understanding D-Bus D-Bus generality - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 3/1 D-Bus I Created in 2002 I Is part of the freedesktop.org project I Maintained by RedHat and the community I Is an Inter-process communication mechanism I Initiated to standardize services of Linux desktop environments - Kernel, drivers and embedded Linux - Development, consulting, training and support - https://bootlin.com 4/1 Inter-Process Communication (IPC) I Mechanisms allowing processes to communicate with each other I Shared memory: read/write into a defined memory location I Memory-mapped file: same as shared memory but uses a file I Pipe: two-way data stream (standard input / output) I Named pipe: same as pipe but uses a file (FIFO) I Socket: communication even on distant machines I and others - Kernel, drivers and embedded
    [Show full text]
  • Shared Memory • Recall They Share a Process Context • Code, Static Data, *Heap* • Can Read and Write the Same Memory • Variables, Arrays, Structures, Etc
    ECE 650 Systems Programming & Engineering Spring 2018 Inter-process Communication (IPC) Tyler Bletsch Duke University Slides are adapted from Brian Rogers (Duke) Recall Process vs. Thread • A process is – • A thread is – – Execution context – Execution context • PC, SP, Regs • Program counter (PC) – Code • Stack pointer (SP) – Data • Registers – Stack 2 Cooperation • Two or more threads or processes execute concurrently • Sometimes cooperate to perform a task • Sometimes independent; not relevant for IPC discussion • How do they communicate? • Threads of the same process: Shared Memory • Recall they share a process context • Code, static data, *heap* • Can read and write the same memory • variables, arrays, structures, etc. • What about threads of different processes? • They do not have access to each other’s memory 3 Models for IPC • Shared Memory • E.g. what we’ve discussed for threads of same process • Also possible across processes • E.g. memory mapped files (mmap) • Message Passing • Use the OS as an intermediary • E.g. Files, Pipes, FIFOs, Messages, Signals 4 Models for IPC Shared Memory Message Passing Write value Thread A Thread A Write e.g. shared heap value Read Thread B Thread B value Read value OS Kernel Space OS Kernel Space 5 Shared Memory vs. Message Passing • Shared Memory • Advantages • Fast • Easy to share data (nothing special to set up) • Disadvantages • Need synchronization! Can be tricky to eliminate race conditions • Message Passing • Advantages • Trust not required between sender / receiver (receiver can verify)
    [Show full text]
  • Interprocess Communication Interprocess Communication
    Interprocess Communication Based on book chapter 12.6 How do two processes communicate? We will look at: Pipes Sockets 1 Interprocess Communication Pipes An interprocess communication mechanism allowing two or more processes to send information to each other. They are commonly used from within shells to connect the standard output of one utility to the standard input of another. 2 Interprocess Communication Consider $ who | wc -1 option -1 outputs total number of lines in input both processes run concurrently; pipe buffers and protects against overflow; suspends reader until more data becomes available... 3 Unnamed Pipes System Call: int pipe (int fd [2]) pipe () creates an unnamed pipe and returns two file descriptors; the descriptor associated with the "read" end of the pipe is stored in fd[0], the descriptor associated with the "write" end of the pipe is stored in fd[1]. 4 Unnamed Pipes The following rules apply to processes that read from a pipe: If a process reads from a pipe whose write end has been closed, the read () returns a 0, indicating end-of-input. If a process reads from an empty pipe whose write end is still open, it sleeps until some input becomes available. If a process tries to read more bytes from a pipe than are present, all of the current contents are returned and read () returns the number of bytes actually read. 5 Unnamed Pipes The following rules apply to processes that write to a pipe: If a process writes to a pipe whose read end has been closed, the write fails and the writer is sent a SIGPIPE signal.
    [Show full text]