Studies on African Agama VII

Total Page:16

File Type:pdf, Size:1020Kb

Studies on African Agama VII Bonner zoologische Beiträge Band 56 Heft 4 Seiten 285–297 Bonn, November 2009 Studies on African Agama VII. A new species of the Agama agama-group (Linnaeus, 1758) (Sauria: Agamidae) from Cameroon & Gabon, with comments on Agama mehelyi Tornier, 1902 Philipp WAGNER*1, Michael F. BAREJ1 & Andreas SCHMITZ2 1 Zoologisches Forschungsmuseum A. Koenig, Adenauerallee 160, D-53113 Bonn, Germany. 2 Muséum d’histoire naturelle, C.P. 6434, CH-1211 Geneva 6, Switzerland. * Corresponding author: [email protected]. Abstract. In the course of recent taxonomic studies in the African Agamidae the West African species were examined and new species have been identified. In this publication a new species of the genus Agama Daudin, 1802 is described from Cameroon and Gabon. Males of the new species differ from all other known Agama in the unique combination of the reticulate colouration of the throat and the blue tip of tail. It is compared with the other Cameroonian members of the genus and several other Agama species from Africa. Additionally, the status of Agama mehelyi Tornier, 1902, only known from its holotype, is discussed. Key words. Reptilia: Sauria, Agamidae, Agama sp. n., Agama mehelyi, Africa, Cameroon, Gabon, morphology, taxon- omy. INTRODUCTION After research activities on the genus Agama Daudin, 1802 who restricted the erroneous type locality ‘America’ of in the last few years many species were described, syn- Agama agama to Cameroon but failed to fix this decision, onymised or revalidated (PADIAL 2005, WAGNER 2007, according to article 76 of the Internatio-nal Code of Zo- WAGNER et al 2008a, WAGNER et al. 2008b). Currently, the ological Nomenclature (ICZN 1999) by designating a lec- genus contains 35 recognised species, but preliminary re- to- or neotype. Now, after the proper de-finition of a neo- sults (especially from the West African clade of the genus) type (WAGNER et al. 2009b), a taxo-nomic revision of this show several cryptic taxa within the Agama agama (Lin- species group is possible and the already recognised new naeus, 1758) complex. Therefore, many populations are species can be described. under investigation and especially vouchers from Cameroon were of special interest to the authors, because CHIRIO & LEBRETON (2007) listed seven species of Aga- the type locality of Agama agama has been restricted to ma for Cameroon: Agama a. agama (Linnaeus, 1758); this country. Agama doriae benueensis Monard, 1951; Agama gracil- imembris Chabanaud, 1918; Agama mehelyi Tornier, 1902; However, until recently it was not possible to character- Agama paragama Grandison, 1968; Agama sankaranica ize the ‘true’ Lacerta agama Linnaeus, 1758, because the Chabanaud, 1918 and Agama sylvanus MacDonald, syntypes illustrated in SEBA (1734) are not available and 1981. In the adjoining countries of Cameroon, no other the proposed type material in the Museum Adolphi Fri- than the above mentioned Agama species occur (WAGN- derici collection of the Naturhistoriska Riksmuseet (= The ER, unpubl. data) but CHIRIO & LEBRETON (2007) also Swedish Museum of Natural History) is not identical with identified four probable new Agama species from the illustrated specimens. WAGNER et al. (2009b) clarified Cameroon and one of them (Agama sp. 1) turned out to this situation by designating a neotype (ZFMK 15222) be identical with the new species recognized by us before, from Cameroon. The authors followed MERTENS (1938) and we describe it herein. 286 Philipp WAGNER et al.: Studies on African Agama VII. New species of the Agama agama-group MATERIAL & METHODS plify a portion of the mitochondrial 16S ribosomal RNA gene. PCR cycling procedure was as described in The type material of the new species is deposited in the SCHMITZ et al. (2005). PCR products were purified using Zoologisches Forschungsmuseum A. Koenig, Bonn, Zo- Quiaquick purification kits (Quiagen). Sequences were ob- ologisches Museum für Naturkunde, Berlin and the tained using an automatic sequencer (ABI 377). Sequences Muséum d’histoire naturelle, Geneva. It was compared were aligned using ClustalX (THOMPSON et al. 1997; de- with vouchers from Cameroon and other African countries fault parameters) and manually checked using the origi- housed in those collection (see appendix) and with data nal chromatograph data in the program BioEdit (HALL from literature (GRANDISON 1968, CHIRIO & LEBRETON 1999); this resulted in a total of 505 bp for the chosen sec- 2007). tion of the 16S gene. Phylogenetic trees were calculated in the program Paup* 4.0b10 (SWOFFORD 2002) using the Measurements were taken with a digital calliper to the neighbor-joining algorithm (NJ) and bootstrapping with nearest of 0.1 mm. Measurements and scale counts were 20000 pseudo-replicates to estimate node support as well done following GRANDISON (1968), MOODY (1980) and as with a maximum parsimony approach (heuristic search MOODY & BÖHME (1984). with TBR branch swapping, stepwise random addition with 100 replicates, bootstrapping with 2000 pseudo-repli- Molecular data were collected to examine sequence vari- cates). Paup* 4.0b10 was also used to compute the uncor- ation between the new species and its morphologically rected pairwise distances for all sequences. closest relatives. A portion of the mitochondrial 16S rRNA gene of the holotype of the new species (ZFMK 87698; The following measurements and scale counts were part- GenBank accession number: GU133316), a series of oth- ly used to compare the different species (see table 1): er specimens of the new species (no voucher; GenBank Snout-vent length (SVL): measured from mental scale to accession number: GU133315; ZFMK 73241; GenBank cloaca; tail length (TL): measured from cloaca to tip of accession number: GU133317; ZFMK 75376; GenBank tail; head length (HL): measured from jugale to rostral accession number: GU133318; ZFMK 83762; GenBank scale; head height (HH): measured at the jugal-postorbital accession number: GU133319; ZFMK 83766; GenBank region; head width (HW): measured across the jugal-pos- accession number: GU133320), as well as the proposed torbital region just anterior to the external auditory mea- neotype of Lacerta agama (ZFMK 15222; GenBank ac- tus; Midbody scales (MS): scale rows around midbody; cession number: GU133323) from northern Cameroon, vertebral scales (VS): number of midline vertebral scales, Agama sankaranica (ZFMK 84992; GenBank accession counted from midpoint of pectoral region to midpoint of number: GU133327) from an unknown locality, Agama pelvic region; dorsal scales (DS): number of midline lon- paragama (ZFMK 15244; GenBank accession number: gitudinal dorsal scales, counted from midpoint of pectoral GU133321) from Cameroon, Waza, Logone et Chari, Aga- region to cloaca; cloacal pores (CP). ma agama africana (ZFMK 73845, ZFMK 73846; Gen- Bank accession numbers: GU133311, GU133312) both from Senegal, Dakar-Bel Air, Agama agama ssp. (MH- RESULTS & DISCUSSION NG 2689.53; GenBank accession number: GU133310) from Benin, Agama boueti (ZFMK 80057) from Mauri- Species of the genus Agama, unlike chameleons, the sis- tania, 30km NW of Rosso, and Agama finchi (ZFMK ter taxon of the Agamidae (e.g. MACEY et al. 2000), are 83652; GenBank accession number: GU133314) from very conservative in body form, without developing or- Kenya, Malaba (type locality) were sequenced. Sequences naments like e.g. horns or ear laps. Only in some species for Agama planiceps (GenBank accession number: body ornamentations like enlarged nuchal or tail crest are AF355476) and Agama castroviejoi (GenBank accession present. If one takes into consideration the results from number: AY522929) were added to the dataset from al- the chameleons (ZIEGLER & BÖHME 1997; BÖHME & ready published sequences (MATTHEE & FLEMMING 2002, ZIEGLER 2008), where morphologically similar species PADIAL 2005). Acanthocercus atricollis (ZFMK 41748; show high variations in hemipenis structures, a similar sit- GenBank accession number: GU133322 Botswana, uation in the Agamidae could be expected. In contrast, pre- Gaborone) was chosen as outgroup. liminary results (BÖHME 1988; WAGNER et al., unpubl. da- ta) show a high level of homoplasy and conservative mor- DNA was extracted using QuiAmp tissue extraction kits phology in the hemipenis structures in the genus Agama. (Quiagen) or a modified Chelex-Protocol (WALSH et al. Consequently, beside from body form and hemipenis 1991, SCHMITZ 2003). The primers 16sar-L (light chain; structure, there must be another mechanism of species 5’ – CGC CTG TTT ATC AAAAAC AT – 3’) and 16sbr- recognition. A pre-mating mechanism was identified by H (heavy chain; 5’ – CCG GTC TGA ACT CAG ATC several authors (LOVERIDGE 1933, THYS VAN DEN AUDE- ACG T – 3’) of PALUMBI et al. (1991) were used to am- NAERDE 1963, MCLACHLAN 1981, BÖHME et al. 2005, Bonner zoologische Beiträge 56 287 Fig. 1. Phylogenetic tree based on 505 bp of the mitochondrial 16S rRNA gene. Values above the nodes represent neighbour-joi- ning bootstrap (20000 pseudo-replicates) values in percent while the values blow the nodes are the corresponding maximum par- simony supports. Significantly supported values are in bold. Values below 50% are not shown. The branch length from the out- group (Acanthocercus) to the ingroup (Agama) has been shortened for visual purposes. 288 Philipp WAGNER et al.: Studies on African Agama VII. New species of the Agama agama-group 4 3 2 1 Table 1. Table 5 8 7 6 9 17 16 15 14 13 12 11 10 WAGNER 2007, WAGNER et al. 2008a, 2008b) as the Agama agama africana Agama agama Agama agama atricollis
Recommended publications
  • Temperature-Dependent Sex Determination and Gonadal Differentiation in Reptiles
    CMLS, Cell. Mol. Life Sci. 55 (1999) 887–900 1420-682X/99/070887-14 $ 1.50+0.20/0 © Birkha¨user Verlag, Basel, 1999 Temperature-dependent sex determination and gonadal differentiation in reptiles C. Pieau*, M. Dorizzi and N. Richard-Mercier Institut Jacques Monod, CNRS, and Universite´s Paris 6 et Paris 7, 2 Place Jussieu, F-75251 Paris Cedex 05 (France), Fax +33 1 44 27 36 60, e-mail: [email protected] Abstract. In many reptile species, sexual differentiation weak differences in aromatase activity, suggesting subtle of gonads is sensitive to temperature during a critical regulations of the aromatase gene at the transcription period of embryonic development (thermosensitive pe- level. Temperature could intervene in these regulations. riod, TSP). Experiments carried out with different mod- Present studies deal with cloning (complementary els among which turtles, crocodilians and lizards have DNAs) and expression (messenger RNAs) of genes that demonstrated the implication of estrogens and the key have been shown, or are expected, to be involved in role played by aromatase (the enzyme complex that gonadal formation and/or differentiation in mammals. converts androgens to estrogens) in ovary differentiation Preliminary results indicate that homologues of AMH, during TSP and in maintenance of the ovarian structure DAX1, SF1, SOX9 and WT1 genes with the same after TSP. In some of these experiments, the occurrence function(s) as in mammals exist in reptiles. How these of various degrees of gonadal intersexuality is related to genes could interact with aromatase is being examined. Key words. Gonadal differentiation; intersexuality; temperature; estrogens; aromatase; AMH, DAX1, SF1, SOX9, WT1 genes; reptiles.
    [Show full text]
  • Studies on African Agama III. Resurrection of Agama Agama Turuensis Loveridge, 1932 (Squamata: Agamidae) from Synonymy and Elevation to Species Rank
    Th e status of Agama agama turuensis SALAMANDRA 44 1 35-42 Rheinbach, 20 February 2008 ISSN 0036-3375 Studies on African Agama III. Resurrection of Agama agama turuensis Loveridge, 1932 (Squamata: Agamidae) from synonymy and elevation to species rank Philipp Wagner, Patrick Krause & Wolfgang Böhme Abstract. New material of Agama agama Linnaeus, 758 from Mount Hanang, Tanzania is indistingu- ishable from the type material of Agama agama turuensis Loveridge, 932, a taxon which is so far con- sidered to be a synonym of Agama lionotus elgonis Lönnberg, 922. Our comparative morphological study demonstrates turuensis is most similar to Agama mwanzae Loveridge, 923 and Agama kaimosae Loveridge, 935, and distinct from both A. agama and A. lionotus Boulenger, 896. Agama turuensis can likewise neither be assigned to A. mwanzae nor A. kaimosae but has to be rather considered as a dis- tinct species. Key words. Squamata, Agamidae, Agama turuensis, new status, Africa, Tanzania, Mount Hanang, taxo- nomy. Introduction and subdivided the genus Agama into the fol- lowing six genera: Agama, Stellio, Trapelus, Th e genus Agama is endemic to Africa and Pseudotrapelus, Brachysaura and Xenagama. its species are very widespread in the savan- Later, Joger (99) identifi ed both Laudakia nah regions of Africa. Currently, 34 species and Phrynocephalus as sister taxa of Agama. are recognized but the genus in general, and At present the genus can be divided into especially the Agama agama species complex three diff erent species groups: the Agama and the clade including the East African are agama group which includes the West Af- in need of a thorough taxonomic revision.
    [Show full text]
  • Agama Impalearis
    HERPETOLOGICAL JOURNAL, Vol. 11, pp. 101-108 (2001) • EFFECTS OF INCUBATION TEMPERATURE ON EMBRYONIC DEVELOPMENT AND SEX DETERMINATION IN THE NORTH AFRICAN AGAMID LIZARD, AGAMA IMPALEARIS EL HASSAN EL MOUDEN 1 , MOHAMMED ZNARI1 AND CLAUDE PIEAU2 1 Department of Biology, Faculty of Sciences, Cadi Ayyad Un iversity, PO Box 2390, Marrakech, Morocco 2lnstitut Jacques Monad, UMR 7592 CNRS et Un iversites Paris 6 et 7, 2, Place Jussieu, F- 75251 Paris Cedex 05, France The effects of temperature on incubation time, embryo survival, sex ratio , embryo growth and size at hatching were investigated in the north AfricanAgamid lizard, Agama impalearis. Seven constant temperature treatments (spanning 20-36°C) were employed and a split clutch design was used to assign eggs from the same clutch to the different treatments. Incubation time varied significantly with temperature treatments. Embryos incubated at 32°C, 34°C and 36°C hatched between 41 and 46 days, whereas embryos incubated at 26°C and 28°C hatched at 83 and 67 days respectively. Hatching success was higher at 28°C, 30°C, 32°C and 34°C, but much lower at 26°C and 36°C; hatching did not occur at 20°C. Eggs incubated at 26°C and 36°C produced only females. At 28°C, 30°C, 32°C and 34°C, the percentages of males were 9%, 53.5%, 32%, and 58% respectively. These sex ratios can be explained by a temperature-dependent mechanism of sex determination. The relative growth rates are highest early in incubation and lower for several days prior to hatching.
    [Show full text]
  • Movement and Habitat Use by Adult and Juvenile Toad-Headed Agama Lizards (Phrynocephalus Versicolor Strauch, 1876) in the Eastern Gobi Desert, Mongolia
    Herpetology Notes, volume 12: 717-719 (2019) (published online on 07 July 2019) Movement and habitat use by adult and juvenile Toad-headed Agama lizards (Phrynocephalus versicolor Strauch, 1876) in the eastern Gobi Desert, Mongolia Douglas Eifler1,* and Maria Eifler1,2 Introduction From 0700–1900 h we walked slowly throughout the study area in search of Toad-headed Agama lizards Phrynocephalus versicolor Strauch, 1876 is a (Phrynocephalus versicolor). When a lizard was small lizard (Agamidae) found in desert and semi- sighted, we captured the animal by hand or noose. desert regions of China, Mongolia, Kazakhstan and We then measured the lizard (snout-to-vent length Kyrgyzstan (Zhao, 1999). The species inhabits areas of (SVL; mm) and mass (g) and sexed adults by probing. sparse vegetation and can be relatively common, with Juveniles were too small to sex. Using non-toxic paint reported densities of up to 400 per hectare (Zhao, 1999). pens, we marked each lizard with a unique colour code In spite of its wide distribution and local abundance, for later identification and to avoid recapture or repeat relatively little detailed ecological information is observations. available, particularly in the northern areas of its range. All focal observations occurred on one day (26 We report our ecological observations on a population August). When an animal was sighted, we positioned of P. versicolor in the Gobi Desert of Mongolia with ourselves 3–5 m from the lizard, waited 5 min for regard to their movement and habitat use. the lizard to acclimate to our presence, and then we began a 10-min observation period.
    [Show full text]
  • Addo Elephant National Park Reptiles Species List
    Addo Elephant National Park Reptiles Species List Common Name Scientific Name Status Snakes Cape cobra Naja nivea Puffadder Bitis arietans Albany adder Bitis albanica very rare Night adder Causes rhombeatus Bergadder Bitis atropos Horned adder Bitis cornuta Boomslang Dispholidus typus Rinkhals Hemachatus hemachatus Herald/Red-lipped snake Crotaphopeltis hotamboeia Olive house snake Lamprophis inornatus Night snake Lamprophis aurora Brown house snake Lamprophis fuliginosus fuliginosus Speckled house snake Homoroselaps lacteus Wolf snake Lycophidion capense Spotted harlequin snake Philothamnus semivariegatus Speckled bush snake Bitis atropos Green water snake Philothamnus hoplogaster Natal green watersnake Philothamnus natalensis occidentalis Shovel-nosed snake Prosymna sundevalli Mole snake Pseudapsis cana Slugeater Duberria lutrix lutrix Common eggeater Dasypeltis scabra scabra Dappled sandsnake Psammophis notosticus Crossmarked sandsnake Psammophis crucifer Black-bellied watersnake Lycodonomorphus laevissimus Common/Red-bellied watersnake Lycodonomorphus rufulus Tortoises/terrapins Angulate tortoise Chersina angulata Leopard tortoise Geochelone pardalis Green parrot-beaked tortoise Homopus areolatus Marsh/Helmeted terrapin Pelomedusa subrufa Tent tortoise Psammobates tentorius Lizards/geckoes/skinks Rock Monitor Lizard/Leguaan Varanus niloticus niloticus Water Monitor Lizard/Leguaan Varanus exanthematicus albigularis Tasman's Girdled Lizard Cordylus tasmani Cape Girdled Lizard Cordylus cordylus Southern Rock Agama Agama atra Burrowing
    [Show full text]
  • The Herpetofauna of the Cubango, Cuito, and Lower Cuando River Catchments of South-Eastern Angola
    Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 10(2) [Special Section]: 6–36 (e126). The herpetofauna of the Cubango, Cuito, and lower Cuando river catchments of south-eastern Angola 1,2,*Werner Conradie, 2Roger Bills, and 1,3William R. Branch 1Port Elizabeth Museum (Bayworld), P.O. Box 13147, Humewood 6013, SOUTH AFRICA 2South African Institute for Aquatic Bio- diversity, P/Bag 1015, Grahamstown 6140, SOUTH AFRICA 3Research Associate, Department of Zoology, P O Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031, SOUTH AFRICA Abstract.—Angola’s herpetofauna has been neglected for many years, but recent surveys have revealed unknown diversity and a consequent increase in the number of species recorded for the country. Most historical Angola surveys focused on the north-eastern and south-western parts of the country, with the south-east, now comprising the Kuando-Kubango Province, neglected. To address this gap a series of rapid biodiversity surveys of the upper Cubango-Okavango basin were conducted from 2012‒2015. This report presents the results of these surveys, together with a herpetological checklist of current and historical records for the Angolan drainage of the Cubango, Cuito, and Cuando Rivers. In summary 111 species are known from the region, comprising 38 snakes, 32 lizards, five chelonians, a single crocodile and 34 amphibians. The Cubango is the most western catchment and has the greatest herpetofaunal diversity (54 species). This is a reflection of both its easier access, and thus greatest number of historical records, and also the greater habitat and topographical diversity associated with the rocky headwaters.
    [Show full text]
  • Evolution of the Iguanine Lizards (Sauria, Iguanidae) As Determined by Osteological and Myological Characters David F
    Brigham Young University Science Bulletin, Biological Series Volume 12 | Number 3 Article 1 1-1971 Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters David F. Avery Department of Biology, Southern Connecticut State College, New Haven, Connecticut Wilmer W. Tanner Department of Zoology, Brigham Young University, Provo, Utah Follow this and additional works at: https://scholarsarchive.byu.edu/byuscib Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Avery, David F. and Tanner, Wilmer W. (1971) "Evolution of the iguanine lizards (Sauria, Iguanidae) as determined by osteological and myological characters," Brigham Young University Science Bulletin, Biological Series: Vol. 12 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/byuscib/vol12/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Brigham Young University Science Bulletin, Biological Series by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. S-^' Brigham Young University f?!AR12j97d Science Bulletin \ EVOLUTION OF THE IGUANINE LIZARDS (SAURIA, IGUANIDAE) AS DETERMINED BY OSTEOLOGICAL AND MYOLOGICAL CHARACTERS by David F. Avery and Wilmer W. Tanner BIOLOGICAL SERIES — VOLUME Xil, NUMBER 3 JANUARY 1971 Brigham Young University Science Bulletin
    [Show full text]
  • Literature Cited in Lizards Natural History Database
    Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica.
    [Show full text]
  • Early German Herpetological Observations and Explorations in Southern Africa, with Special Reference to the Zoological Museum of Berlin
    Bonner zoologische Beiträge Band 52 (2003) Heft 3/4 Seiten 193–214 Bonn, November 2004 Early German Herpetological Observations and Explorations in Southern Africa, With Special Reference to the Zoological Museum of Berlin Aaron M. BAUER Department of Biology, Villanova University, Villanova, Pennsylvania, USA Abstract. The earliest herpetological records made by Germans in southern Africa were casual observations of common species around Cape Town made by employees of the Dutch East India Company (VOC) during the mid- to late Seven- teenth Century. Most of these records were merely brief descriptions or lists of common names, but detailed illustrations of many reptiles were executed by two German illustrators in the employ of the VOC, Heinrich CLAUDIUS and Johannes SCHUMACHER. CLAUDIUS, who accompanied Simon VAN DER STEL to Namaqualand in 1685, left an especially impor- tant body of herpetological illustrations which are here listed and identified to species. One of the last Germans to work for the Dutch in South Africa was Martin Hinrich Carl LICHTENSTEIN who served as a physician and tutor to the last Dutch governor of the Cape from 1802 to 1806. Although he did not collect any herpetological specimens himself, LICHTENSTEIN, who became the director of the Zoological Museum in Berlin in 1813, influenced many subsequent workers to undertake employment and/or expeditions in southern Africa. Among the early collectors were Karl BERGIUS and Ludwig KREBS. Both collected material that is still extant in the Berlin collection today, including a small number of reptile types. Because of LICHTENSTEIN’S emphasis on specimens as items for sale to other museums rather than as subjects for study, many species first collected by KREBS were only described much later on the basis of material ob- tained by other, mostly British, collectors.
    [Show full text]
  • Foraging Ecology and Conservation Biology of African Elephants: Ecological and Evolutionary Perspectives on Elephant-Woody Plant Interactions in African Landscapes
    Foraging ecology and conservation biology of African elephants: Ecological and evolutionary perspectives on elephant-woody plant interactions in African landscapes Item Type Thesis Authors Dudley, Joseph Paine Download date 27/09/2021 15:01:40 Link to Item http://hdl.handle.net/11122/9523 INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter free, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back o f the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 Reproduced with permission of the copyright owner.
    [Show full text]
  • A Second Record of Scolecomorphus Kirkii Boulenger, 1883 (Gymnophiona: Scolecomorphidae) for Mozambique
    Herpetology Notes, volume 8: 59-62 (2015) (published online on 10 March 2015) A second record of Scolecomorphus kirkii Boulenger, 1883 (Gymnophiona: Scolecomorphidae) for Mozambique Harith Omar Morgadinho Farooq1 and Werner Conradie2,* The herpetofauna of northern Mozambique (Nampula, Branch et al., 2014), crustaceans (Daniels and Bayliss, Niassa, and Cabo Degabo Provinces) remains one of the 2012) and bats (Taylor et al., 2012). While Portik et al. most poorly-known in Africa. This is a consequence of (2013a) summarised the herpetofauna of the inselbergs the physical inaccessibility of the region as well as the of northern Mozambique, they overlooked the valuable protracted civil war, which affected the study of many amphibian collections in the technical report by Branch areas. Mozambique is expected to have a large diversity (2004) from Niassa Game Reserve and the herpetofaunal of herpetofauna due to the variety of different habitat collections from Mount Mabu (Timberlake et al., 2012), types available and the large size (area) of the country. which led to underestimation and incorrect accounts of The lack of scientific studies of northern Mozambique the herpetofaunal diversity of the montane inselbergs of has led to widely disparate and inaccurate summaries northern Mozambique. of the herpetofaunal diversity of the country. While In November 2011 and May 2014 a team of scientists, there are no formal publications that explicitly deal mountain climbers, and conservationists had the with this topic, reputable internet sources indicate that opportunity to survey Mount Namuli, which resulted 221 reptile (Uetz, 2015) and 69 amphibian species in some additions to the herpetofauna of that area. (AmphibiaWeb, 2015) are expected to occur in the whole of Mozambique.
    [Show full text]
  • The Amphibians and Reptiles of Kakamega Forest, Western Kenya
    07_Wagner&Böhme-2.qxd 12.08.2007 14:01 Uhr Seite 123 Bonner zoologische Beiträge Band 55 (2006) Heft 2 Seiten 123–150 Bonn, Juli 2007 Herpetofauna Kakamegensis – The amphibians and reptiles of Kakamega Forest, western Kenya Philipp WAGNER & Wolfgang BÖHME Bonn, Germany Abstract. We present an annotated checklist of the herpetofauna of Kakamega Forest with comments on the biology and systematics of the taxa. Twenty-five amphibian, one turtle, 22 lizard and 36 snake species are recorded from within the forest and its immediate environment. We discuss the generalized zoogeography of the forest and distribution pattern of the taxa comment on the protection of the forest. Analysis of the reptile species composition shows Kakamega Forest to be similar to the Guinea-Congolian rainforest and is considered the easternmost remnant of this forest block. Kakamega forest has a high diversity value for Kenya and represents a diversity hotspot on a national scale. Two species, Lygodac- tylus gutturalis and Psammophis phillipsi, are recorded in Kenya for the first time. Several other first records and the description of a new species (Agamidae: Agama finchi) were published already separately. Keywords. East Africa, Kenya, Kakamega Forest, herpetological survey, checklist, national diversity hotspot. 1. INTRODUCTION In Africa tropical rainforests extend from southern Sene- covery and scientific descriptions. Uganda, for example gal in the west to the coastal forests of Kenya and Tanza- has lost 86 % of its original forest in the past two decades nia in the east (COLLINS 1992). The East African rainforests and the remaining parts are isolated fragments (VONESH belong to different biogeographical clades.
    [Show full text]