Structuring Metatheory on Inductive Definitions

Total Page:16

File Type:pdf, Size:1020Kb

Structuring Metatheory on Inductive Definitions Information and Computation 162, 8095 (2000) doi:10.1006Âinco.2000.2858, available online at http:ÂÂwww.idealibrary.com on Structuring Metatheory on Inductive Definitions View metadata, citation and similar papers at core.ac.uk brought to you by CORE David Basin provided by Elsevier - Publisher Connector Institut fur Informatik, Universitat Freiburg, Am Flughafen 17, D-79110 Freiburg, Germany and Sea n Matthews IBM Unternehmensberatung GmbH, Lyoner Street 13, D-60528 Frankfurt, Germany We examine a problem for machine supported metatheory. There are true statements about a theory that are true of some (but only some) extensions; however, standard theory-structuring facilities do not support selective inheritance. We use the example of the deduction theorem for modal logic and show how a statement about a theory can explicitly for- malize the closure conditions extensions should satisfy for it to remain true. We show how metatheories based on inductive definitions allow theories and general metatheorems to be organized this way and report on a case study using the theory FS0 . ] 2000 Academic Press 1. INTRODUCTION Hierarchical theory structuring plays an important role in the application of theorem provers to nontrivial problems and many systems provide support for it. For example, HOL [6], Isabelle [13], and their predecessor LCF [7] support simple theory hierarchies. In these systems a theory is a specification of a language, using types and typed constants, and a collection of rules and axioms which are used to prove theorems; then a theory inherits the types, constants, axioms, rules, and theorems from its ancestors. The drawback to this is that types associated with the language and proof system must be considered open, and this limits the sort of proofs that can be constructed. In particular, it rules out arguments requiring induction on the structure of the language or proofs of a theory. We can close the language or proof system by explicitly adding induction over the structure of the language or proof system, but then it is unsound later to add new constructors, axioms, or rules; i.e., extensions to the theory are impossible. We investigate this problem and show that the simple hierarchical approach described above, which in effect offers an all or nothing approach to inheriting results, does not allow a fine enough control over the scope of theorems and is 0890-5401Â00 35.00 80 Copyright 2000 by Academic Press All rights of reproduction in any form reserved. METATHEORY ON INDUCTIVE DEFINITIONS 81 more inflexible than need be. Our solution uses a theory of parameterized inductive definitions as a metatheory in which we can organize collections of object theories and logics. This allows the same sort of hierarchical structuring as we have described above, but also allows us to state and prove more general metatheoretic results in a way such that they can be inherited by extensions, or supertheories,in the hierarchy: instead of closing the theory for which we prove a result, we for- malize, as part of the metatheorem itself, the closure properties we need. This means that a theory for which we prove metatheorems can still be extended, and metatheorems can be imported into the supertheory simply by checking that the closure conditions are satisfied. Our approach makes few special demands of the metatheory: it requires only that we are able to build families of sets using parameterized inductive definitions and can reason about their elements by induction. We report on an implementation of our ideas in FS0 , a framework theory for formal metatheory due to Feferman [5], which satisfies these requirements. We have used FS0 because it was designed to provide a simple, minimal theory of inductive definitions specifically for the pur- poses of syntactic metatheory; if we can use inductive definitions to structure theory development in FS0 , then similar results should be possible with stronger metatheories such as type theory or formalizations of induction definitions in higher-order logic or set-theory (see Section 4.2 for more on this). The definitions and proofs presented here have all been machine checked in our implementation of FS0 . 1.1. Motivation The example we consider from formal metatheory is fundamental for hierarchies of Hilbert systems. Hilbert systems are interesting because they are commonly acknowledged to be the easiest kind of proof system about which to prove theorems, but also the hardest in which to prove theorems. In practice, to prove theorems with them we need a metatheorem, the deduction theorem, which allows, essentially, natural deduction style proof under assumption. To prove the deduction theorem we need induction over the structure of derivations in a theory. However, as noted, if this theorem is to be used in theory extensions then we need a new approach to structuring hierarchies of theories. We start by informally developing a hierarchy of theories and considering the facilities needed. At the root of our hierarchy is what we call arrow logic (minimal implicative propositional logic), the formulae of which correspond to members of the set LA of formulae built from the binary connective Ä (written infix, associating to the right) and sentential constants. Theorems correspond to members of a second set, TA, and are instances of the standard Hilbert axiom schemata A Ä B Ä A (K) and (A Ä B) Ä (A Ä B Ä C) Ä (A Ä C)(S) 82 BASIN AND MATTHEWS or are generated by applying the rule modus ponens: AAÄ B . B We write |&A to indicate that A # TA. Then, assuming our (not yet formally specified) metatheory contains at least the implies connective O ,twometa- theorems we can prove are: Ä |&A A A (I) Ä O Ä Ä (|&A A C) (|&A A B C). (Thin) The first of these asserts the provability of a formula in the object logic and the second represents a derived proof rule. Given universal quantification over LA in the metatheory, we could make both of the above formulae schematic by taking their universal closures. (In the future we will assume this reading, leaving the quantifiers implicit.) Now consider the deduction theorem. For this we need to extend our meta- language: we define A |&A B as metanotation meaning that if the Hilbert system TA is extended with the additional axiom A, then B belongs to the resulting set of proofs.1 The deduction theorem is, then, O Ä A |&A B |&A A B ,(DT) which is proven by induction on the structure of derivations. Notice that just to state this metatheorem, which is schematic in A (and B), we refer to infinitely many axiomatic extensions of the original Hilbert system. An obvious candidate for a supertheory of arrow logic is full propositional logic (we consider here only conjunction, other operators are similar): we extend LA to LP by adding the new binary connective 7 , and extend TA to TP by adding the three new axiom schemata: A Ä B Ä A 7 B A 7 B Ä A (Conj) A 7 B Ä B What is the status of the theorems and metatheorems of arrow logic in proposi- tional logic? We expect that all theorems, e.g., (I), are still theorems of proposi- tional logic, provided that the original axioms (S)and(K) and inference rule (modus ponens) are interpreted over the new language. The rule (Thin) clearly also holds. The status of the deduction theorem is less obvious. In fact it does hold for propositional logic, but since the proof suggested above is by induction on the structure of arrow logic proofs, it is not valid in this new context; we must check the new cases corresponding to the new axioms. If we used a metatheory based on a logic like higher-order logic and formulated these two proof systems as standard 1 Note that this is metanotation, since LA is a language of formulae, not sequents. METATHEORY ON INDUCTIVE DEFINITIONS 83 inductive definitions, we would need to prove the deduction theorem individually for each system. Now consider a second extension to a fragment of the normal propositional g modal logic K. Extend the language LA to LM by adding the unary modality g Ä and extend TA to TM by adding an axiom stating the distributivity of over , g(A Ä B) Ä (gA ÄgB), (Norm) and a rule of inference necessitation: A .(Nec) gA Again we can ask, what is the status of the theorems and metatheorems of arrow logic in TM? Both (I)and(Thin) hold in any extension of TA with new axioms. They even hold when TA is extended with new rules and also when the language of LA is extended to LM , provided the old axioms and inference rule modus ponens are interpreted over the new language. The deduction theorem (DT) also holds under extensions of TA with new axioms. But it does not hold under extensions with arbitrary new rules; in particular, it fails for TM with the additional rule (Nec). We will later see, however, that instances of it hold in some extensions, provided that certain conditions are satisfied. To structure theories so that we can use metatheorems in appropriate extensions we have to be able to formalize the above kinds of provisos and prove metatheorems under them. We show that this is possible using parameterized inductive definitions. Informally, an inductive definition of a set is presented as the closure of some base set under a collection of rules that generate new elements from members of the set. Formally, we will explain and use notation for inductive defini- tions based on their presentation in FS0 . However, ignoring minor differences, other formalizations are fairly similar (an example is provided in Section 4.2).
Recommended publications
  • The Deduction Rule and Linear and Near-Linear Proof Simulations
    The Deduction Rule and Linear and Near-linear Proof Simulations Maria Luisa Bonet¤ Department of Mathematics University of California, San Diego Samuel R. Buss¤ Department of Mathematics University of California, San Diego Abstract We introduce new proof systems for propositional logic, simple deduction Frege systems, general deduction Frege systems and nested deduction Frege systems, which augment Frege systems with variants of the deduction rule. We give upper bounds on the lengths of proofs in Frege proof systems compared to lengths in these new systems. As applications we give near-linear simulations of the propositional Gentzen sequent calculus and the natural deduction calculus by Frege proofs. The length of a proof is the number of lines (or formulas) in the proof. A general deduction Frege proof system provides at most quadratic speedup over Frege proof systems. A nested deduction Frege proof system provides at most a nearly linear speedup over Frege system where by \nearly linear" is meant the ratio of proof lengths is O(®(n)) where ® is the inverse Ackermann function. A nested deduction Frege system can linearly simulate the propositional sequent calculus, the tree-like general deduction Frege calculus, and the natural deduction calculus. Hence a Frege proof system can simulate all those proof systems with proof lengths bounded by O(n ¢ ®(n)). Also we show ¤Supported in part by NSF Grant DMS-8902480. 1 that a Frege proof of n lines can be transformed into a tree-like Frege proof of O(n log n) lines and of height O(log n). As a corollary of this fact we can prove that natural deduction and sequent calculus tree-like systems simulate Frege systems with proof lengths bounded by O(n log n).
    [Show full text]
  • Logic and Its Metatheory
    Logic and its Metatheory Philosophy 432 Spring 2017 T & TH: 300-450pm Olds Hall 109 Instructor Information Matthew McKeon Office: 503 South Kedzie Hall Office hours: 1-2:30pm on T & TH and by appointment. Telephone: Dept. Office—355-4490 E-mail: [email protected] Required Text Courseware Package (Text plus CD software): Jon Barwise and John Etchemendy. Language, Proof and Logic. 2nd edition. Stanford, CA: CLSI Publications, 2011. The courseware package includes several software tools that students will use to complete homework assignments and the self-diagnostic exercises from the text. DO NOT BUY USED BOOKS, BECAUSE THEY LACK THE CD, WHICH CONTAINS THE SOFTWARE. The software, easy to learn and use, makes some of the more technical aspects of symbolic logic accessible to introductory students and it is fun to use (or so I think). It is OK to have an earlier edition of the text as long as you have the CD with the password key that will allow you to access the text’s online site (https://ggweb.gradegrinder.net/lpl). Here you can update the software suite and download the 2nd edition of the text. At the site you can also purchase the software and an electronic version of the text. Primary Course Objectives • Deepen your understanding of the concept of logical consequence and sharpen your ability to see that one sentence is a logical consequence of others. • Introduce you to the basic methods of proof (both formal and informal), and teach you how to use them effectively to prove that one sentence is a logical consequence of others.
    [Show full text]
  • Epistemological Consequences of the Incompleteness Theorems
    Epistemological Consequences of the Incompleteness Theorems Giuseppe Raguní UCAM - Universidad Católica de Murcia, Avenida Jerónimos 135, Guadalupe 30107, Murcia, Spain - [email protected] After highlighting the cases in which the semantics of a language cannot be mechanically reproduced (in which case it is called inherent), the main episte- mological consequences of the first incompleteness Theorem for the two funda- mental arithmetical theories are shown: the non-mechanizability for the truths of the first-order arithmetic and the peculiarities for the model of the second- order arithmetic. Finally, the common epistemological interpretation of the second incompleteness Theorem is corrected, proposing the new Metatheorem of undemonstrability of internal consistency. KEYWORDS: semantics, languages, epistemology, paradoxes, arithmetic, in- completeness, first-order, second-order, consistency. 1 Semantics in the Languages Consider an arbitrary language that, as normally, makes use of a countable1 number of characters. Combining these characters in certain ways, are formed some fundamental strings that we call terms of the language: those collected in a dictionary. When the terms are semantically interpreted, i. e. a certain meaning is assigned to them, we have their distinction in adjectives, nouns, verbs, etc. Then, a proper grammar establishes the rules arXiv:1602.03390v1 [math.GM] 13 Jan 2016 of formation of sentences. While the terms are finite, the combinations of grammatically allowed terms form an infinite-countable amount of possible sentences. In a non-trivial language, the meaning associated to each term, and thus to each ex- pression that contains it, is not always unique. The same sentence can enunciate different things, so representing different propositions.
    [Show full text]
  • Chapter 9: Initial Theorems About Axiom System
    Initial Theorems about Axiom 9 System AS1 1. Theorems in Axiom Systems versus Theorems about Axiom Systems ..................................2 2. Proofs about Axiom Systems ................................................................................................3 3. Initial Examples of Proofs in the Metalanguage about AS1 ..................................................4 4. The Deduction Theorem.......................................................................................................7 5. Using Mathematical Induction to do Proofs about Derivations .............................................8 6. Setting up the Proof of the Deduction Theorem.....................................................................9 7. Informal Proof of the Deduction Theorem..........................................................................10 8. The Lemmas Supporting the Deduction Theorem................................................................11 9. Rules R1 and R2 are Required for any DT-MP-Logic........................................................12 10. The Converse of the Deduction Theorem and Modus Ponens .............................................14 11. Some General Theorems About ......................................................................................15 12. Further Theorems About AS1.............................................................................................16 13. Appendix: Summary of Theorems about AS1.....................................................................18 2 Hardegree,
    [Show full text]
  • John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected]
    John P. Burgess Department of Philosophy Princeton University Princeton, NJ 08544-1006, USA [email protected] LOGIC & PHILOSOPHICAL METHODOLOGY Introduction For present purposes “logic” will be understood to mean the subject whose development is described in Kneale & Kneale [1961] and of which a concise history is given in Scholz [1961]. As the terminological discussion at the beginning of the latter reference makes clear, this subject has at different times been known by different names, “analytics” and “organon” and “dialectic”, while inversely the name “logic” has at different times been applied much more broadly and loosely than it will be here. At certain times and in certain places — perhaps especially in Germany from the days of Kant through the days of Hegel — the label has come to be used so very broadly and loosely as to threaten to take in nearly the whole of metaphysics and epistemology. Logic in our sense has often been distinguished from “logic” in other, sometimes unmanageably broad and loose, senses by adding the adjectives “formal” or “deductive”. The scope of the art and science of logic, once one gets beyond elementary logic of the kind covered in introductory textbooks, is indicated by two other standard references, the Handbooks of mathematical and philosophical logic, Barwise [1977] and Gabbay & Guenthner [1983-89], though the latter includes also parts that are identified as applications of logic rather than logic proper. The term “philosophical logic” as currently used, for instance, in the Journal of Philosophical Logic, is a near-synonym for “nonclassical logic”. There is an older use of the term as a near-synonym for “philosophy of language”.
    [Show full text]
  • 5 Deduction in First-Order Logic
    5 Deduction in First-Order Logic The system FOLC. Let C be a set of constant symbols. FOLC is a system of deduction for # the language LC . Axioms: The following are axioms of FOLC. (1) All tautologies. (2) Identity Axioms: (a) t = t for all terms t; (b) t1 = t2 ! (A(x; t1) ! A(x; t2)) for all terms t1 and t2, all variables x, and all formulas A such that there is no variable y occurring in t1 or t2 such that there is free occurrence of x in A in a subformula of A of the form 8yB. (3) Quantifier Axioms: 8xA ! A(x; t) for all formulas A, variables x, and terms t such that there is no variable y occurring in t such that there is a free occurrence of x in A in a subformula of A of the form 8yB. Rules of Inference: A; (A ! B) Modus Ponens (MP) B (A ! B) Quantifier Rule (QR) (A ! 8xB) provided the variable x does not occur free in A. Discussion of the axioms and rules. (1) We would have gotten an equivalent system of deduction if instead of taking all tautologies as axioms we had taken as axioms all instances (in # LC ) of the three schemas on page 16. All instances of these schemas are tautologies, so the change would have not have increased what we could 52 deduce. In the other direction, we can apply the proof of the Completeness Theorem for SL by thinking of all sententially atomic formulas as sentence # letters. The proof so construed shows that every tautology in LC is deducible using MP and schemas (1){(3).
    [Show full text]
  • Knowing-How and the Deduction Theorem
    Knowing-How and the Deduction Theorem Vladimir Krupski ∗1 and Andrei Rodin y2 1Department of Mechanics and Mathematics, Moscow State University 2Institute of Philosophy, Russian Academy of Sciences and Department of Liberal Arts and Sciences, Saint-Petersburg State University July 25, 2017 Abstract: In his seminal address delivered in 1945 to the Royal Society Gilbert Ryle considers a special case of knowing-how, viz., knowing how to reason according to logical rules. He argues that knowing how to use logical rules cannot be reduced to a propositional knowledge. We evaluate this argument in the context of two different types of formal systems capable to represent knowledge and support logical reasoning: Hilbert-style systems, which mainly rely on axioms, and Gentzen-style systems, which mainly rely on rules. We build a canonical syntactic translation between appropriate classes of such systems and demonstrate the crucial role of Deduction Theorem in this construction. This analysis suggests that one’s knowledge of axioms and one’s knowledge of rules ∗[email protected] [email protected] ; the author thanks Jean Paul Van Bendegem, Bart Van Kerkhove, Brendan Larvor, Juha Raikka and Colin Rittberg for their valuable comments and discussions and the Russian Foundation for Basic Research for a financial support (research grant 16-03-00364). 1 under appropriate conditions are also mutually translatable. However our further analysis shows that the epistemic status of logical knowing- how ultimately depends on one’s conception of logical consequence: if one construes the logical consequence after Tarski in model-theoretic terms then the reduction of knowing-how to knowing-that is in a certain sense possible but if one thinks about the logical consequence after Prawitz in proof-theoretic terms then the logical knowledge- how gets an independent status.
    [Show full text]
  • An Integration of Resolution and Natural Deduction Theorem Proving
    From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. An Integration of Resolution and Natural Deduction Theorem Proving Dale Miller and Amy Felty Computer and Information Science University of Pennsylvania Philadelphia, PA 19104 Abstract: We present a high-level approach to the integra- ble of translating between them. In order to achieve this goal, tion of such different theorem proving technologies as resolution we have designed a programming language which permits proof and natural deduction. This system represents natural deduc- structures as values and types. This approach builds on and ex- tion proofs as X-terms and resolution refutations as the types of tends the LCF approach to natural deduction theorem provers such X-terms. These type structures, called ezpansion trees, are by replacing the LCF notion of a uakfation with explicit term essentially formulas in which substitution terms are attached to representation of proofs. The terms which represent proofs are quantifiers. As such, this approach to proofs and their types ex- given types which generalize the formulas-as-type notion found tends the formulas-as-type notion found in proof theory. The in proof theory [Howard, 19691. Resolution refutations are seen LCF notion of tactics and tacticals can also be extended to in- aa specifying the type of a natural deduction proofs. This high corporate proofs as typed X-terms. Such extended tacticals can level view of proofs as typed terms can be easily combined with be used to program different interactive and automatic natural more standard aspects of LCF to yield the integration for which Explicit representation of proofs deduction theorem provers.
    [Show full text]
  • The Strength of Mac Lane Set Theory
    The Strength of Mac Lane Set Theory A. R. D. MATHIAS D´epartement de Math´ematiques et Informatique Universit´e de la R´eunion To Saunders Mac Lane on his ninetieth birthday Abstract AUNDERS MAC LANE has drawn attention many times, particularly in his book Mathematics: Form and S Function, to the system ZBQC of set theory of which the axioms are Extensionality, Null Set, Pairing, Union, Infinity, Power Set, Restricted Separation, Foundation, and Choice, to which system, afforced by the principle, TCo, of Transitive Containment, we shall refer as MAC. His system is naturally related to systems derived from topos-theoretic notions concerning the category of sets, and is, as Mac Lane emphasizes, one that is adequate for much of mathematics. In this paper we show that the consistency strength of Mac Lane's system is not increased by adding the axioms of Kripke{Platek set theory and even the Axiom of Constructibility to Mac Lane's axioms; our method requires a close study of Axiom H, which was proposed by Mitchell; we digress to apply these methods to subsystems of Zermelo set theory Z, and obtain an apparently new proof that Z is not finitely axiomatisable; we study Friedman's strengthening KPP + AC of KP + MAC, and the Forster{Kaye subsystem KF of MAC, and use forcing over ill-founded models and forcing to establish independence results concerning MAC and KPP ; we show, again using ill-founded models, that KPP + V = L proves the consistency of KPP ; turning to systems that are type-theoretic in spirit or in fact, we show by arguments of Coret
    [Show full text]
  • Mechanized Metatheory Revisited
    Journal of Automated Reasoning manuscript No. (will be inserted by the editor) Mechanized metatheory revisited Dale Miller Draft: August 29, 2019 Abstract When proof assistants and theorem provers implement the metatheory of logical systems, they must deal with a range of syntactic expressions (e.g., types, for- mulas, and proofs) that involve variable bindings. Since most mature proof assistants do not have built-in methods to treat bindings, they have been extended with various packages and libraries that allow them to encode such syntax using, for example, de Bruijn numerals. We put forward the argument that bindings are such an intimate aspect of the structure of expressions that they should be accounted for directly in the underlying programming language support for proof assistants and not via packages and libraries. We present an approach to designing programming languages and proof assistants that directly supports bindings in syntax. The roots of this approach can be found in the mobility of binders between term-level bindings, formula-level bindings (quantifiers), and proof-level bindings (eigenvariables). In particular, the combination of Church's approach to terms and formulas (found in his Simple Theory of Types) and Gentzen's approach to proofs (found in his sequent calculus) yields a framework for the interaction of bindings with a full range of logical connectives and quantifiers. We will also illustrate how that framework provides a direct and semantically clean treatment of computation and reasoning with syntax containing bindings. Some imple- mented systems, which support this intimate and built-in treatment of bindings, will be briefly described. Keywords mechanized metatheory, λ-tree syntax, mobility of binders 1 Metatheory and its mechanization Theorem proving|in both its interactive and automatic forms|has been applied in a wide range of domains.
    [Show full text]
  • CHAPTER 8 Hilbert Proof Systems, Formal Proofs, Deduction Theorem
    CHAPTER 8 Hilbert Proof Systems, Formal Proofs, Deduction Theorem The Hilbert proof systems are systems based on a language with implication and contain a Modus Ponens rule as a rule of inference. They are usually called Hilbert style formalizations. We will call them here Hilbert style proof systems, or Hilbert systems, for short. Modus Ponens is probably the oldest of all known rules of inference as it was already known to the Stoics (3rd century B.C.). It is also considered as the most "natural" to our intuitive thinking and the proof systems containing it as the inference rule play a special role in logic. The Hilbert proof systems put major emphasis on logical axioms, keeping the rules of inference to minimum, often in propositional case, admitting only Modus Ponens, as the sole inference rule. 1 Hilbert System H1 Hilbert proof system H1 is a simple proof system based on a language with implication as the only connective, with two axioms (axiom schemas) which characterize the implication, and with Modus Ponens as a sole rule of inference. We de¯ne H1 as follows. H1 = ( Lf)g; F fA1;A2g MP ) (1) where A1;A2 are axioms of the system, MP is its rule of inference, called Modus Ponens, de¯ned as follows: A1 (A ) (B ) A)); A2 ((A ) (B ) C)) ) ((A ) B) ) (A ) C))); MP A ;(A ) B) (MP ) ; B 1 and A; B; C are any formulas of the propositional language Lf)g. Finding formal proofs in this system requires some ingenuity. Let's construct, as an example, the formal proof of such a simple formula as A ) A.
    [Show full text]
  • Propositional Logic: Part II - Syntax & Proofs
    Propositional Logic: Part II - Syntax & Proofs 0-0 Outline ² Syntax of Propositional Formulas ² Motivating Proofs ² Syntactic Entailment ` and Proofs ² Proof Rules for Natural Deduction ² Axioms, theories and theorems ² Consistency & completeness 1 Language of Propositional Calculus Def: A propositional formula is constructed inductively from the symbols for ² propositional variables: p; q; r; : : : or p1; p2; : : : ² connectives: :; ^; _; !; $ ² parentheses: (; ) ² constants: >; ? by the following rules: 1. A propositional variable or constant symbol (>; ?) is a formula. 2. If Á and à are formulas, then so are: (:Á); (Á ^ Ã); (Á _ Ã); (Á ! Ã); (Á $ Ã) Note: Removing >; ? from the above provides the def. of sentential formulas in Rubin. Semantically > = T; 2 ? = F though often T; F are used directly in formulas when engineers abuse notation. 3 WFF Smackdown Propositional formulas are also called propositional sentences or well formed formulas (WFF). When we use precedence of logical connectives and associativity of ^; _; $ to drop (smackdown!) parentheses it is understood that this is shorthand for the fully parenthesized expressions. Note: To further reduce use of (; ) some def's of formula use order of precedence: ! ^ ! :; ^; _; instead of :; ; $ _ $ As we will see, PVS uses the 1st order of precedence. 4 BNF and Parse Trees The Backus Naur form (BNF) for the de¯nition of a propositional formula is: Á ::= pj?j>j(:Á)j(Á ^ Á)j(Á _ Á)j(Á ! Á) Here p denotes any propositional variable and each occurrence of Á to the right of ::= represents any formula constructed thus far. We can apply this inductive de¯nition in reverse to construct a formula's parse tree.
    [Show full text]