An Integration of Resolution and Natural Deduction Theorem Proving

Total Page:16

File Type:pdf, Size:1020Kb

An Integration of Resolution and Natural Deduction Theorem Proving From: AAAI-86 Proceedings. Copyright ©1986, AAAI (www.aaai.org). All rights reserved. An Integration of Resolution and Natural Deduction Theorem Proving Dale Miller and Amy Felty Computer and Information Science University of Pennsylvania Philadelphia, PA 19104 Abstract: We present a high-level approach to the integra- ble of translating between them. In order to achieve this goal, tion of such different theorem proving technologies as resolution we have designed a programming language which permits proof and natural deduction. This system represents natural deduc- structures as values and types. This approach builds on and ex- tion proofs as X-terms and resolution refutations as the types of tends the LCF approach to natural deduction theorem provers such X-terms. These type structures, called ezpansion trees, are by replacing the LCF notion of a uakfation with explicit term essentially formulas in which substitution terms are attached to representation of proofs. The terms which represent proofs are quantifiers. As such, this approach to proofs and their types ex- given types which generalize the formulas-as-type notion found tends the formulas-as-type notion found in proof theory. The in proof theory [Howard, 19691. Resolution refutations are seen LCF notion of tactics and tacticals can also be extended to in- aa specifying the type of a natural deduction proofs. This high corporate proofs as typed X-terms. Such extended tacticals can level view of proofs as typed terms can be easily combined with be used to program different interactive and automatic natural more standard aspects of LCF to yield the integration for which Explicit representation of proofs deduction theorem provers. we are looking. as typed values within a programming language provides sev- In Section 2 we describe a representation of natural deduc- eral capabilities not generally found in other theorem proving tion proofs as X-terms, and in Section 3 we show how the LCF systems. For example, it is possible to write a tactic which notion of tactics and tacticals can be used to specify an inter- can take the type specified by a resolution refutation and auto- active theorem prover based on such a term representation of matically construct a complete natural deduction proof. Such natural deduction proofs. In Section 4 we describe how resolu- a capability can be of use in the development of user oriented tion refutations can be converted to generalized type structures explanation facilities. called expansion trees. In Section 5 we show how tactics can 1. Introduction make use of the information stored in these generalized types. Theorem provers built on resolution and natural deduction Also in Section 5, we present a program in the language of tat- have very different characteristics. For example, a search for a tics which is capable of automatically converting a resolution resolution refutation starts by taking a proposed theorem and refutation to a natural deduction proof. putting its negation into skolem normal and conjunctive nor- mal form. AS a result of using such normal forms, the search 2. Natural Deduction Proofs space of refutations is very homogeneous, and automatic thee- Although much of what we describe here is applicable to rem provers using this paradigm are rather easy to build. On most forms of natural deduction, the form we present in this pa- the other hand, since the search in such a theorem prover is per is essentially the sequent system LK presented in [Gentzen, carried out in a space which is rather remote from a useJs orig- 19351 but without the cut rule. More modern presentations of inal input, it is difficult to get the user to interact with the similar systems can be found in [Gallier, 19861 and [Prawitz, search process. On these accounts, natural deduction theorem 19651. Proofs in the LK system are finite, ordered trees in proving is just the opposite. For example, no normal forms which nodes are labeled with sequents. A sequent, written as are generally used and only subformulas or instances of sub- l? --) 8, will represent the proposition “from all the formulas formulas of the proposed theorem are used during the search in the set P, some formula in the set 0 can be proved.” Notice for a proof. AS a result, it is very easy to involve a user in the that the proposition connected to the sequent A -----* A is triv- search for a proof since the state of the search at any moment is ially true. Sequents of this simple kind are called axioms. The easily understood. On the other hand, natural deduction often non-terminal nodes of an LK proof are called inference rules leaves too many unimportant features in the search space which and are listed below. the preprocessing done by normal forms would have removed. I’ - Q,A r - e,c A,C,I‘ - e Thus, resolution is often the core of automatic theorem provers and-r and-l while natural deduction is often the core of interactive theorem r - Q,Ar\C AAC,l? - 0 provers. A,r - 8 Clearly it is desirable to find some way to smoothly in- c,r - 8 or-l I’ - @,A,C or-r tegrate these two very different paradigms. In this paper, we AvC,r - 8 r - Q,AvC propose just such an integration. This integration is not a merg- ing of the two different search spaces. It is, instead, an inte- r - 8,A not -1 A,r - 0 not-r gration of the two kinds of proofs. We shall present a system -A,lY - 8 r - Q,-A which explicitly represents proofs in both systems and is capa- r - Q,A C,A - A This work has been supported by NSF grants MCS8219196 imp- 1 A,l? - Q,C imp-r CER, MCS-82-07294, and DARPA NOOO- 14-85-K-0018. A> C,r,A - Q,A I’ - Q,A>C lc)s / SCIENCE These free variables are also abstracted with X-bindings. Thus WIPJ - 63 all-l r - QMYIP all-r a partial proof is represented as a function from subproofs to a vxp,r - 8 r - Q,Vz P completed proof. Example 3. A partial proof of the formula in Example 1 is WYW - 43 some-l r - 0, [x/tlP 803110-r jxp,r - 8 r - e,jx P given in Figure 2 and by the term lambda X lambda Y. imp-r(and-l(or-l(X,thin-l(Y)))). r-43 thin-1 r-8 thin-r A,r - 8 r - O,A In order for the mechanism of X-conversion to correctly represent the operation of supplying a partial proof with a sub- All but the last two rules are introduction rules and are responsi- proof, we must type these X-terms. For example, XxXy T(x, y) ble for introducing into sequents the variouslogical connectives. represents a partial proof of some sequent in which two sub- The proviso that the variable y is not free in any formula of the proofs must be supplied. However, before this term can be lower sequent must be added to the rules all-r and some-l. A applied to some actual proof, say S, one must check that the derivation tree is an LK proof of A if the root of the tree is the abstracted variable x is a place holder for proofs of the sequent sequent - A and its leaves are axioms. for which S is a proof. Thus, we should make sequents and functions among sequents be the types of X-terms. For exam- Example 1. Figure 1 is an LK proof of the formula ple, if x and y are place holders for proofs of the sequents 01 and 02, respectively, and if XxXy T (2, y) is a partial proof of the [P(X) 1 [P(4v ml Avx c&N1 3x d4. sequent cr, then we attach to this X-term the type 01 + 02 + cr. These proof trees can be represented more manageably as The type of the X-term representing the partial proof in Figure term structures. For example, let axiom(A) represent the proof 2 is, therefore, tree which contains just the sequent A - A. The inference rules can be represented by function symbols of 1 or 2 argu- ments. For example, if 2’1 and 2’2 are proofs of l?,A + 8 (- k(a) v d~)l AV’b(4z 1 !+>I ’ SCq(4)- and I’, B - 9, respectively, we would write or-l(Ti, Ti) to Remember that the typed X-calculus has the following restric- represent the proof tion on application: a term g can be applied to a term h if and only if the type of g is of the form Q + ,8 and the type of h is Tl 7’2 or-l of the form cy. This restriction thus enforces the restriction of I’,AvB - 8 combining partial proofs with completed subproofs. We shall assume that the reader is familiar with the basic properties of where T: and Ti are the terms representing the proofs Tl and X-conversion. Tz, respectively. Many inference rules require more information some-r PC4 - PM q(a) - 3x dz) q(b) - m imp-l some-r l+),P@) ’ Cd4 - 32 44 q(b) - 32 44 all-l thin-l p(a),v's Ip(x) ' q(x)1- 32 q(x) q(b),VJz [P(Z) ’ +)I - ckcd4 or-l p(a)’ q(b),Vx[Pb) ’ q(‘)l - 3x ‘(‘) and-l [p(a)V q(b)] A v ’zb(x) ’ q(x)] - 32 dz> imp-r - [p(a) V q(b)] A ‘4~ [P(X) 3 Q(x)] ’ 32 q(X) Figure 1.
Recommended publications
  • The Deduction Rule and Linear and Near-Linear Proof Simulations
    The Deduction Rule and Linear and Near-linear Proof Simulations Maria Luisa Bonet¤ Department of Mathematics University of California, San Diego Samuel R. Buss¤ Department of Mathematics University of California, San Diego Abstract We introduce new proof systems for propositional logic, simple deduction Frege systems, general deduction Frege systems and nested deduction Frege systems, which augment Frege systems with variants of the deduction rule. We give upper bounds on the lengths of proofs in Frege proof systems compared to lengths in these new systems. As applications we give near-linear simulations of the propositional Gentzen sequent calculus and the natural deduction calculus by Frege proofs. The length of a proof is the number of lines (or formulas) in the proof. A general deduction Frege proof system provides at most quadratic speedup over Frege proof systems. A nested deduction Frege proof system provides at most a nearly linear speedup over Frege system where by \nearly linear" is meant the ratio of proof lengths is O(®(n)) where ® is the inverse Ackermann function. A nested deduction Frege system can linearly simulate the propositional sequent calculus, the tree-like general deduction Frege calculus, and the natural deduction calculus. Hence a Frege proof system can simulate all those proof systems with proof lengths bounded by O(n ¢ ®(n)). Also we show ¤Supported in part by NSF Grant DMS-8902480. 1 that a Frege proof of n lines can be transformed into a tree-like Frege proof of O(n log n) lines and of height O(log n). As a corollary of this fact we can prove that natural deduction and sequent calculus tree-like systems simulate Frege systems with proof lengths bounded by O(n log n).
    [Show full text]
  • Proof Theory Can Be Viewed As the General Study of Formal Deductive Systems
    Proof Theory Jeremy Avigad December 19, 2017 Abstract Proof theory began in the 1920’s as a part of Hilbert’s program, which aimed to secure the foundations of mathematics by modeling infinitary mathematics with formal axiomatic systems and proving those systems consistent using restricted, finitary means. The program thus viewed mathematics as a system of reasoning with precise linguistic norms, governed by rules that can be described and studied in concrete terms. Today such a viewpoint has applications in mathematics, computer science, and the philosophy of mathematics. Keywords: proof theory, Hilbert’s program, foundations of mathematics 1 Introduction At the turn of the nineteenth century, mathematics exhibited a style of argumentation that was more explicitly computational than is common today. Over the course of the century, the introduction of abstract algebraic methods helped unify developments in analysis, number theory, geometry, and the theory of equations, and work by mathematicians like Richard Dedekind, Georg Cantor, and David Hilbert towards the end of the century introduced set-theoretic language and infinitary methods that served to downplay or suppress computational content. This shift in emphasis away from calculation gave rise to concerns as to whether such methods were meaningful and appropriate in mathematics. The discovery of paradoxes stemming from overly naive use of set-theoretic language and methods led to even more pressing concerns as to whether the modern methods were even consistent. This led to heated debates in the early twentieth century and what is sometimes called the “crisis of foundations.” In lectures presented in 1922, Hilbert launched his Beweistheorie, or Proof Theory, which aimed to justify the use of modern methods and settle the problem of foundations once and for all.
    [Show full text]
  • Chapter 9: Initial Theorems About Axiom System
    Initial Theorems about Axiom 9 System AS1 1. Theorems in Axiom Systems versus Theorems about Axiom Systems ..................................2 2. Proofs about Axiom Systems ................................................................................................3 3. Initial Examples of Proofs in the Metalanguage about AS1 ..................................................4 4. The Deduction Theorem.......................................................................................................7 5. Using Mathematical Induction to do Proofs about Derivations .............................................8 6. Setting up the Proof of the Deduction Theorem.....................................................................9 7. Informal Proof of the Deduction Theorem..........................................................................10 8. The Lemmas Supporting the Deduction Theorem................................................................11 9. Rules R1 and R2 are Required for any DT-MP-Logic........................................................12 10. The Converse of the Deduction Theorem and Modus Ponens .............................................14 11. Some General Theorems About ......................................................................................15 12. Further Theorems About AS1.............................................................................................16 13. Appendix: Summary of Theorems about AS1.....................................................................18 2 Hardegree,
    [Show full text]
  • Systematic Construction of Natural Deduction Systems for Many-Valued Logics
    23rd International Symposium on Multiple Valued Logic. Sacramento, CA, May 1993 Proceedings. (IEEE Press, Los Alamitos, 1993) pp. 208{213 Systematic Construction of Natural Deduction Systems for Many-valued Logics Matthias Baaz∗ Christian G. Ferm¨ullery Richard Zachy Technische Universit¨atWien, Austria Abstract sion.) Each position i corresponds to one of the truth values, vm is the distinguished truth value. The in- A construction principle for natural deduction sys- tended meaning is as follows: Derive that at least tems for arbitrary finitely-many-valued first order log- one formula of Γm takes the value vm under the as- ics is exhibited. These systems are systematically ob- sumption that no formula in Γi takes the value vi tained from sequent calculi, which in turn can be au- (1 i m 1). ≤ ≤ − tomatically extracted from the truth tables of the log- Our starting point for the construction of natural ics under consideration. Soundness and cut-free com- deduction systems are sequent calculi. (A sequent is pleteness of these sequent calculi translate into sound- a tuple Γ1 ::: Γm, defined to be satisfied by an ness, completeness and normal form theorems for the interpretationj iffj for some i 1; : : : ; m at least one 2 f g natural deduction systems. formula in Γi takes the truth value vi.) For each pair of an operator 2 or quantifier Q and a truth value vi 1 Introduction we construct a rule introducing a formula of the form 2(A ;:::;A ) or (Qx)A(x), respectively, at position i The study of natural deduction systems for many- 1 n of a sequent.
    [Show full text]
  • 5 Deduction in First-Order Logic
    5 Deduction in First-Order Logic The system FOLC. Let C be a set of constant symbols. FOLC is a system of deduction for # the language LC . Axioms: The following are axioms of FOLC. (1) All tautologies. (2) Identity Axioms: (a) t = t for all terms t; (b) t1 = t2 ! (A(x; t1) ! A(x; t2)) for all terms t1 and t2, all variables x, and all formulas A such that there is no variable y occurring in t1 or t2 such that there is free occurrence of x in A in a subformula of A of the form 8yB. (3) Quantifier Axioms: 8xA ! A(x; t) for all formulas A, variables x, and terms t such that there is no variable y occurring in t such that there is a free occurrence of x in A in a subformula of A of the form 8yB. Rules of Inference: A; (A ! B) Modus Ponens (MP) B (A ! B) Quantifier Rule (QR) (A ! 8xB) provided the variable x does not occur free in A. Discussion of the axioms and rules. (1) We would have gotten an equivalent system of deduction if instead of taking all tautologies as axioms we had taken as axioms all instances (in # LC ) of the three schemas on page 16. All instances of these schemas are tautologies, so the change would have not have increased what we could 52 deduce. In the other direction, we can apply the proof of the Completeness Theorem for SL by thinking of all sententially atomic formulas as sentence # letters. The proof so construed shows that every tautology in LC is deducible using MP and schemas (1){(3).
    [Show full text]
  • Complexities of Proof-Theoretical Reductions
    Complexities of Proof-Theoretical Reductions Michael Toppel Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds Department of Pure Mathematics September 2016 iii The candidate confirms that the work submitted is his own and that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. c 2016 The University of Leeds and Michael Toppel iv v Abstract The present thesis is a contribution to a project that is carried out by Michael Rathjen 0 and Andreas Weiermann to give a general method to study the proof-complexity of Σ1- sentences. This general method uses the generalised ordinal-analysis that was given by Buchholz, Ruede¨ and Strahm in [5] and [44] as well as the generalised characterisation of provable-recursive functions of PA + TI(≺ α) that was given by Weiermann in [60]. The present thesis links these two methods by giving an explicit elementary bound for the i proof-complexity increment that occurs after the transition from the theory IDc ! + TI(≺ α), which was used by Ruede¨ and Strahm, to the theory PA + TI(≺ α), which was analysed by Weiermann. vi vii Contents Abstract . v Contents . vii Introduction 1 1 Justifying the use of Multi-Conclusion Sequents 5 1.1 Introduction . 5 1.2 A Gentzen-semantics . 8 1.3 Multi-Conclusion Sequents . 15 1.4 Comparison with other Positions and Responses to Objections .
    [Show full text]
  • Knowing-How and the Deduction Theorem
    Knowing-How and the Deduction Theorem Vladimir Krupski ∗1 and Andrei Rodin y2 1Department of Mechanics and Mathematics, Moscow State University 2Institute of Philosophy, Russian Academy of Sciences and Department of Liberal Arts and Sciences, Saint-Petersburg State University July 25, 2017 Abstract: In his seminal address delivered in 1945 to the Royal Society Gilbert Ryle considers a special case of knowing-how, viz., knowing how to reason according to logical rules. He argues that knowing how to use logical rules cannot be reduced to a propositional knowledge. We evaluate this argument in the context of two different types of formal systems capable to represent knowledge and support logical reasoning: Hilbert-style systems, which mainly rely on axioms, and Gentzen-style systems, which mainly rely on rules. We build a canonical syntactic translation between appropriate classes of such systems and demonstrate the crucial role of Deduction Theorem in this construction. This analysis suggests that one’s knowledge of axioms and one’s knowledge of rules ∗[email protected] [email protected] ; the author thanks Jean Paul Van Bendegem, Bart Van Kerkhove, Brendan Larvor, Juha Raikka and Colin Rittberg for their valuable comments and discussions and the Russian Foundation for Basic Research for a financial support (research grant 16-03-00364). 1 under appropriate conditions are also mutually translatable. However our further analysis shows that the epistemic status of logical knowing- how ultimately depends on one’s conception of logical consequence: if one construes the logical consequence after Tarski in model-theoretic terms then the reduction of knowing-how to knowing-that is in a certain sense possible but if one thinks about the logical consequence after Prawitz in proof-theoretic terms then the logical knowledge- how gets an independent status.
    [Show full text]
  • Natural Deduction and the Curry-Howard-Isomorphism
    Natural Deduction and the Curry-Howard-Isomorphism Andreas Abel August 2016 Abstract We review constructive propositional logic and natural deduction and connect it to the simply-typed lambda-calculus with the Curry- Howard Isomorphism. Constructive Logic A fundamental property of constructive logic is the disjunction property: If the disjunction A _ B is provable, then either A is provable or B is provable. This property is not compatible with the principle of the excluded middle (tertium non datur), which states that A _:A holds for any proposition A. While each fool can state the classical tautology \aliens exist or don't", this certainly does not give us a means to decide whether aliens exist or not. A constructive proof of the fool's statement would require either showcasing an alien or a stringent argument for the impossibility of their existence.1 1 Natural deduction for propositional logic The proof calculus of natural deduction goes back to Gentzen[1935]. 1 For a more mathematical example of undecidability, refer to the continuum hypothesis CH which states that no cardinal exists between the set of the natural numbers and the set of reals. It is independent of ZFC, Zermelo-Fr¨ankel set theory with the axiom of choice, meaning that in ZFC, neither CH nor :CH is provable. 1 1.1 Propositions Formulæ of propositional logic are given by the following grammar: P; Q atomic proposition A; B; C ::= P j A ) B implication j A ^ B j > conjunction, truth j A _ B j ? disjunction, absurdity Even though we write formulas in linearized (string) form, we think of them as (abstract syntax) trees.
    [Show full text]
  • CHAPTER 8 Hilbert Proof Systems, Formal Proofs, Deduction Theorem
    CHAPTER 8 Hilbert Proof Systems, Formal Proofs, Deduction Theorem The Hilbert proof systems are systems based on a language with implication and contain a Modus Ponens rule as a rule of inference. They are usually called Hilbert style formalizations. We will call them here Hilbert style proof systems, or Hilbert systems, for short. Modus Ponens is probably the oldest of all known rules of inference as it was already known to the Stoics (3rd century B.C.). It is also considered as the most "natural" to our intuitive thinking and the proof systems containing it as the inference rule play a special role in logic. The Hilbert proof systems put major emphasis on logical axioms, keeping the rules of inference to minimum, often in propositional case, admitting only Modus Ponens, as the sole inference rule. 1 Hilbert System H1 Hilbert proof system H1 is a simple proof system based on a language with implication as the only connective, with two axioms (axiom schemas) which characterize the implication, and with Modus Ponens as a sole rule of inference. We de¯ne H1 as follows. H1 = ( Lf)g; F fA1;A2g MP ) (1) where A1;A2 are axioms of the system, MP is its rule of inference, called Modus Ponens, de¯ned as follows: A1 (A ) (B ) A)); A2 ((A ) (B ) C)) ) ((A ) B) ) (A ) C))); MP A ;(A ) B) (MP ) ; B 1 and A; B; C are any formulas of the propositional language Lf)g. Finding formal proofs in this system requires some ingenuity. Let's construct, as an example, the formal proof of such a simple formula as A ) A.
    [Show full text]
  • Propositional Logic: Part II - Syntax & Proofs
    Propositional Logic: Part II - Syntax & Proofs 0-0 Outline ² Syntax of Propositional Formulas ² Motivating Proofs ² Syntactic Entailment ` and Proofs ² Proof Rules for Natural Deduction ² Axioms, theories and theorems ² Consistency & completeness 1 Language of Propositional Calculus Def: A propositional formula is constructed inductively from the symbols for ² propositional variables: p; q; r; : : : or p1; p2; : : : ² connectives: :; ^; _; !; $ ² parentheses: (; ) ² constants: >; ? by the following rules: 1. A propositional variable or constant symbol (>; ?) is a formula. 2. If Á and à are formulas, then so are: (:Á); (Á ^ Ã); (Á _ Ã); (Á ! Ã); (Á $ Ã) Note: Removing >; ? from the above provides the def. of sentential formulas in Rubin. Semantically > = T; 2 ? = F though often T; F are used directly in formulas when engineers abuse notation. 3 WFF Smackdown Propositional formulas are also called propositional sentences or well formed formulas (WFF). When we use precedence of logical connectives and associativity of ^; _; $ to drop (smackdown!) parentheses it is understood that this is shorthand for the fully parenthesized expressions. Note: To further reduce use of (; ) some def's of formula use order of precedence: ! ^ ! :; ^; _; instead of :; ; $ _ $ As we will see, PVS uses the 1st order of precedence. 4 BNF and Parse Trees The Backus Naur form (BNF) for the de¯nition of a propositional formula is: Á ::= pj?j>j(:Á)j(Á ^ Á)j(Á _ Á)j(Á ! Á) Here p denotes any propositional variable and each occurrence of Á to the right of ::= represents any formula constructed thus far. We can apply this inductive de¯nition in reverse to construct a formula's parse tree.
    [Show full text]
  • On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem
    On Synthetic Undecidability in Coq, with an Application to the Entscheidungsproblem Yannick Forster Dominik Kirst Gert Smolka Saarland University Saarland University Saarland University Saarbrücken, Germany Saarbrücken, Germany Saarbrücken, Germany [email protected] [email protected] [email protected] Abstract like decidability, enumerability, and reductions are avail- We formalise the computational undecidability of validity, able without reference to a concrete model of computation satisfiability, and provability of first-order formulas follow- such as Turing machines, general recursive functions, or ing a synthetic approach based on the computation native the λ-calculus. For instance, representing a given decision to Coq’s constructive type theory. Concretely, we consider problem by a predicate p on a type X, a function f : X ! B Tarski and Kripke semantics as well as classical and intu- with 8x: p x $ f x = tt is a decision procedure, a function itionistic natural deduction systems and provide compact д : N ! X with 8x: p x $ ¹9n: д n = xº is an enumer- many-one reductions from the Post correspondence prob- ation, and a function h : X ! Y with 8x: p x $ q ¹h xº lem (PCP). Moreover, developing a basic framework for syn- for a predicate q on a type Y is a many-one reduction from thetic computability theory in Coq, we formalise standard p to q. Working formally with concrete models instead is results concerning decidability, enumerability, and reducibil- cumbersome, given that every defined procedure needs to ity without reference to a concrete model of computation. be shown representable by a concrete entity of the model.
    [Show full text]
  • Generating Hints and Feedback for Hilbert-Style Axiomatic Proofs
    Generating hints and feedback for Hilbert-style axiomatic proofs Josje Lodder Bastiaan Heeren Johan Jeuring Technical Report UU-CS-2016-009 December 2016 Department of Information and Computing Sciences Utrecht University, Utrecht, The Netherlands www.cs.uu.nl ISSN: 0924-3275 Department of Information and Computing Sciences Utrecht University P.O. Box 80.089 3508 TB Utrecht The Netherlands Generating hints and feedback for Hilbert-style axiomatic proofs Josje Lodder Bastiaan Heeren Johan Jeuring Open University of the Open University of the Open University of the Netherlands Netherlands Netherlands and Utrecht [email protected] [email protected] University [email protected] ABSTRACT From these students, 22 had to redo their homework exer- This paper describes an algorithm to generate Hilbert-style cise on axiomatic proofs. This is significantly higher than, axiomatic proofs. Based on this algorithm we develop lo- for example, the number of students in the same group who gax, a new interactive tutoring tool that provides hints and had to redo the exercise on semantic tableaux: 5 out of 65. feedback to a student who stepwise constructs an axiomatic A student practices axiomatic proofs by solving exercises. proof. We compare the generated proofs with expert and Since it is not always possible to have a human tutor avail- student solutions, and conclude that the quality of the gen- able, an intelligent tutoring system (ITS) might be of help. erated proofs is comparable to that of expert proofs. logax There are several ITSs supporting exercises on natural de- recognizes most steps that students take when constructing duction systems [23, 22, 6].
    [Show full text]