Queries for Ecol-89-05-19 1. Author Please Provide Page No. for Wohl Etal (2004). AP
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Species Determination of Ulvoid Algae Through Genotyping; What Are the Environmental Implications? Kora S
Seattle aP cific nivU ersity Digital Commons @ SPU Honors Projects University Scholars Spring June 7th, 2019 Species determination of ulvoid algae through genotyping; what are the environmental implications? Kora S. Krumm Seattle Pacific nU iversity Follow this and additional works at: https://digitalcommons.spu.edu/honorsprojects Part of the Environmental Health and Protection Commons, Environmental Monitoring Commons, Natural Resources and Conservation Commons, and the Oceanography Commons Recommended Citation Krumm, Kora S., "Species determination of ulvoid algae through genotyping; what are the environmental implications?" (2019). Honors Projects. 95. https://digitalcommons.spu.edu/honorsprojects/95 This Honors Project is brought to you for free and open access by the University Scholars at Digital Commons @ SPU. It has been accepted for inclusion in Honors Projects by an authorized administrator of Digital Commons @ SPU. SPECIES DETERMINATION OF ULVOID ALGAE THROUGH GENOTYPING: WHAT ARE THE ENVIRONMENTAL IMPLICATIONS? by KORA S KRUMM FACULTY ADVISOR, TIMOTHY A NELSON SECOND READER, ERIC S LONG A project submitted in partial fulfillment of the requirements of the University Scholars Honors Program Seattle Pacific University 2019 Approved _________________________________ Date ________________________________________ ABSTRACT Ulva is a genus of marine green algae native to many of the world’s coastlines and is especially difficult to identify via traditional methods such as dichotomous keying. This project aims to streamline taxonomic classification of Ulva species through DNA sequence analysis. Local samples of Ulva were obtained from Puget Sound, Seattle, WA, and two target genes (rbcL and its1) were amplified via PCR and sequenced for comparative analysis between samples. Ulvoids have a detrimental impact on marine ecosystems in the Pacific Northwest due to their role in eutrophication-caused algal blooms, and reliable identification can help inform conservation efforts to mitigate these effects. -
Highlights of Recent Collections of Marine Algae from the Sultanate
ABSTRACTS 1 1 2 PALATABILITY AND CHEMICAL DEFENSES DINOFLAGELLATE GENOMICS: RESULTS OF MACROALGAE IN THE ANTARCTIC FROM AN EST APPROACH PENINSULA Bachvaroff, T. R.1,∗, Herman, E. M.2 & Amsler, C. D.1,∗, Amsler, M. O.1, McClintock, J. B.1, Delwiche, C. F.1 Iken, K. B.1, Hubbard, J. M.1 & Baker, W. J.2 1Cell Biology and Molecular Genetics, University of 1Department of Biology, University of Alabama at Maryland, College Park, MD 20742; 2Soybean Genomic Birmingham, Birmingham, AL 35294-1170; 2Department Improvement Laboratory, USDA/ARS, Beltsville, MD of Chemistry, University of South Florida, Tampa, FL 20705, USA 33620, USA Dinoflagellates are enigmatic protists with odd nu- We examined palatability of 37 species of nonen- clear features, interesting plastid gene arrangements crusting macroalgae from the Antarctic Peninsula. and a proclivity for endosymbiotic relationships. Rel- This represents approximately 30% of the entire atively little molecular work has been done on di- antarctic macroalgal flora and 75% of the 49 noflagellates, and only a handful of genes have been nonencrusting species we collected. Organic extracts characterized in these organisms. We have begun an from most species were also prepared and mixed Expressed Sequenced Tag (EST) project with the aim into artificial foods. We examined palatability using of collecting plastid targeted but nuclear encoded feeding bioassays with three common, macroalga- genes from peridinin-containing dinoflagellates. This consuming animals (an omnivorous antarctic rock- provides an opportunity to understand the integra- fish, Notothenia coriiceps; an omnivorous sea star, tion of endosymbiont genes into the host cell. Our se- Odontaster validus; and a herbivorous amphipod, Gon- quencing effort has produced about 1000 unique ESTs dogenia antarctica). -
University of Birmingham Insights Into the Evolution of Multicellularity From
University of Birmingham Insights into the Evolution of Multicellularity from the Sea Lettuce Genome De Clerck, Olivier; Kao, Shu-Min; Bogaert, Kenny A; Blomme, Jonas; Foflonker, Fatima; Kwantes, Michiel; Vancaester, Emmelien; Vanderstraeten, Lisa; Aydogdu, Eylem; Boesger, Jens; Califano, Gianmaria; Charrier, Benedicte; Clewes, Rachel; Del Cortona, Andrea; D'Hondt, Sofie; Fernandez-Pozo, Noe; Gachon, Claire M; Hanikenne, Marc; Lattermann, Linda; Leliaert, Frederik DOI: 10.1016/j.cub.2018.08.015 License: Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND) Document Version Peer reviewed version Citation for published version (Harvard): De Clerck, O, Kao, S-M, Bogaert, KA, Blomme, J, Foflonker, F, Kwantes, M, Vancaester, E, Vanderstraeten, L, Aydogdu, E, Boesger, J, Califano, G, Charrier, B, Clewes, R, Del Cortona, A, D'Hondt, S, Fernandez-Pozo, N, Gachon, CM, Hanikenne, M, Lattermann, L, Leliaert, F, Liu, X, Maggs, CA, Popper, ZA, Raven, JA, Van Bel, M, Wilhelmsson, PKI, Bhattacharya, D, Coates, JC, Rensing, SA, Van Der Straeten, D, Vardi, A, Sterck, L, Vandepoele, K, Van de Peer, Y, Wichard, T & Bothwell, JH 2018, 'Insights into the Evolution of Multicellularity from the Sea Lettuce Genome', Current Biology. https://doi.org/10.1016/j.cub.2018.08.015 Link to publication on Research at Birmingham portal General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. -
Examination of Ulva Bloom Species Richness and Relative Abundance
University of Rhode Island DigitalCommons@URI Biological Sciences Faculty Publications Biological Sciences 2013 Examination of Ulva bloom species richness and relative abundance reveals two cryptically co- occurring bloom species in Narragansett aB y, Rhode Island Michele Guidone Carol S. Thornber University of Rhode Island, [email protected] Follow this and additional works at: https://digitalcommons.uri.edu/bio_facpubs Terms of Use All rights reserved under copyright. Citation/Publisher Attribution Michele Guidone, Carol S. Thornber, Examination of Ulva bloom species richness and relative abundance reveals two cryptically co- occurring bloom species in Narragansett aB y, Rhode Island. Harmful Algae, 24, April 2013, Pages 1-9. Available at: http://dx.doi.org/10.1016/j.hal.2012.12.007 This Article is brought to you for free and open access by the Biological Sciences at DigitalCommons@URI. It has been accepted for inclusion in Biological Sciences Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact [email protected]. *Manuscript Click here to view linked References 1 1 2 3 Examination of Ulva bloom species richness and relative abundance reveals two cryptically co- 4 occurring bloom species in Narragansett Bay, Rhode Island 5 6 Michele Guidone1, 2* and Carol S. Thornber1 7 8 1University of Rhode Island, Department of Biological Sciences, 120 Flagg Road, Kingston, RI, 9 USA 02881 10 2Current address: Sacred Heart University, Biology Department, 5151 Park Avenue, Fairfield, 11 CT, USA 06492 12 * Corresponding author: [email protected] 13 Phone (203) 396-8492 14 Fax: (203) 365-4785 15 16 Carol Thornber: [email protected] 17 2 18 Abstract 19 Blooms caused by the green macroalga Ulva pose a serious threat to coastal ecosystems 20 around the world. -
Durham Research Online
Durham Research Online Deposited in DRO: 19 October 2018 Version of attached le: Accepted Version Peer-review status of attached le: Peer-reviewed Citation for published item: De Clerck, Olivier and Kao, Shu-Min and Bogaert, Kenny A. and Blomme, Jonas and Foonker, Fatima and Kwantes, Michiel and Vancaester, Emmelien and Vanderstraeten, Lisa and Aydogdu, Eylem and Boesger, Jens and Califano, Gianmaria and Charrier, Benedicte and Clewes, Rachel and Del Cortona, Andrea and D'Hondt, Soe and Fernandez-Pozo, Noe and Gachon, Claire M. and Hanikenne, Marc and Lattermann, Linda and Leliaert, Frederik and Liu, Xiaojie and Maggs, Christine A. and Popper, Zo¤eA. and Raven, John A. and Van Bel, Michiel and Wilhelmsson, Per K.I. and Bhattacharya, Debashish and Coates, Juliet C. and Rensing, Stefan A. and Van Der Straeten, Dominique and Vardi, Assaf and Sterck, Lieven and Vandepoele, Klaas and Van de Peer, Yves and Wichard, Thomas and Bothwell, John H. (2018) 'Insights into the evolution of multicellularity from the sea lettuce genome.', Current biology., 28 (18). 2921-2933.e5. Further information on publisher's website: https://doi.org/10.1016/j.cub.2018.08.015 Publisher's copyright statement: c 2018 This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. -
Sequences Analysis of ITS Region and 18S Rdna of Ulva
International Scholarly Research Network ISRN Botany Volume 2012, Article ID 468193, 9 pages doi:10.5402/2012/468193 Research Article Sequences Analysis of ITS Region and 18S rDNA of Ulva Zijie Lin, Zhongheng Lin, Huihui Li, and Songdong Shen College of Life Sciences, Soochow University, Suzhou 215123, China Correspondence should be addressed to Songdong Shen, [email protected] Received 23 February 2011; Accepted 7 April 2011 Academic Editors: J. Elster and H. Sanderson Copyright © 2012 Zijie Lin et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Ulva, as the main genera involved in green tides in the Yellow Sea, has attracted serious concern in China. Especially, Ulva prolifera is one of the causative species of the occurring. This paper focused on the complete sequences analyses of ITS, 18S, and the combined data to determine phylogenetic relationships among taxa currently attributed to Ulva, Monostroma, and some other green algal. The samples are all concluded in the area of Yellow Sea, China. The results showed the content of G+C in 18S was approximately concentrated upon 49% in average of 19 subjects while the ITS region content of base G and C is obviously higher than A and T. Comparing the ITS and 18S rDNA sequences obtained in this paper to other species retrieved from GenBank, the genetic distance and the ratio of sequence divergence reflect that U. pertusa and U. prolifera had closer genetic relationship with an 18S rDNA, which had genetic distance of 0.007 while ITS had further genetic distance. -
Understanding Developmental Processes in Early-Diverging Plant
UNDERSTANDING DEVELOPMENTAL PROCESSES IN EARLY-DIVERGING PLANT MODEL SYSTEMS by Eleanor Fay Vesty A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Biosciences The University of Birmingham December 2016 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. Abstract The study of evolutionary developmental biology relies on a detailed understanding of model systems. Whilst the flowering plants are the most successful and valuable plant group today, they do not tell us much about the change and progression that was initiated by an ancestral aquatic photosynthetic unicell millions of years ago. The expansion of bryophyte and algal model systems was developed as part of this research The moss Physcomitrella patens is descended from the ancestral bryophytes that first colonised land. As such it is well-placed, as a model organism, to provide insight into terrestrialisation. The germination of spores or seeds is one of the key stages in the land plant life cycle. Comparison of the influences on spore and seed germination provides insight into the conservation of functions spanning 450 million years of evolution. -
Alga Ulvaria Obscura
Oecologia (2006) 148: 304–311 DOI 10.1007/s00442-006-0378-3 PLANTANIMALINTERACTIONS Kathryn L. Van Alstyne Æ Amorah V. Nelson James R. Vyvyan Æ Devon A. Cancilla Dopamine functions as an antiherbivore defense in the temperate green alga Ulvaria obscura Received: 28 September 2005 / Accepted: 23 January 2006 / Published online: 18 February 2006 Ó Springer-Verlag 2006 Abstract On northeastern Pacific coasts, Ulvaria obscura harmful Ulvaria blooms in northeastern Pacific coastal is a dominant component of subtidal ‘‘green tide’’ waters. blooms, which can be harmful to marine communities, fisheries, and aquaculture facilities. U. obscura is avoi- Keywords Algae Æ Chemical defense Æ Dopamine Æ ded by herbivores relative to many other locally com- Herbivory Æ Plant–herbivore interactions mon macrophytes, which may contribute to its ability to form persistent blooms. We used a bioassay-guided fractionation method to experimentally determine the Introduction cause of reduced feeding on Ulvaria by echinoderms, molluscs, and arthropods. Our results indicated that Many marine seaweeds produce novel natural products dopamine, which constituted an average of 4.4% of the that provide protection from grazing by invertebrate alga’s dry mass, was responsible for decreased feeding by and vertebrate herbivores (McClintock and Baker 2001; sea urchins (Strongylocentrotus droebachiensis). Sub- Paul 1992). Because the intensity of herbivory is thought sequent experiments demonstrated that dopamine also to be higher at lower latitudes, tropical species are reduced the feeding rates of snails (Littorina sitkana) and thought to produce more effective chemical defenses isopods (Idotea wosnesenskii). Dopamine is a catechol- than temperate species (Bolser and Hay 1996; Cronin amine that is a common neurotransmitter in animals.