Plasma and Polymers: Recent Progress and Trends
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plasma Polymerization of 3-Aminopropyl-Trimethoxysilane Inside Closed Plastic Bags at Atmospheric Pressure K
Plasma polymerization of 3-aminopropyl-trimethoxysilane inside closed plastic bags at atmospheric pressure K. Lachmann, A. Dohse, M. Thomas, C.-P. Klages Fraunhofer-Institute for Surface Engineering and Thin Films IST, Bienroder Weg 54 E, 38108 Braunschweig, Germany, Phone: +49 531-2155 683, Fax: +49 531-2155 900, [email protected] Abstract: Surface modification of the inner surfaces of closed plastic bags enables cultivation of stem cells under GMP (Good Manufacturing Practice) conditions. The surface coating is performed in an atmospheric PECVD process based on dielectric barrier discharges using specially designed automated equipment. In former investigations coatings made from 3-aminopropyl- trimethoxysilane (APTMS) were found to be particularly suitable for adherent cell cultivation. This contribution presents investigations of the coating process within the bag with a focus on film composition and stability of the deposited film. Effects of treatment parameters, diffusion processes through the permeable polymer bag and the influence of the relative humidity were studied. Keywords: plasma polymerization, DBD, cell culture, plastic bag 1. Introduction 2. Experimental Plasma treatment to enhance cell cultivation is well Plasma treatment was performed in an automated described in the literature [1-2]. Usually two system designed and built at Fraunhofer IST (see dimensional substrates, like polymer foils or glass Figure 1). The process is based on a DBD slides were coated. As the cultivation of arrangement where the plastic bag is pressed mesenchymal stem cells is challenging, the use of between two parallel electrodes, a high voltage open systems may be involved with high risk of electrode (150 x 300 mm2) covered with a 3.4 mm contamination. -
Polycarbodiimides As Classification-Free and Easy to Use Crosslinkers for Water-Based Coatings
White paper Polycarbodiimides as classification-free and easy to use crosslinkers for water-based coatings By Dr. A.J. Derksen, Stahl International bv, The Netherlands Polycarbodiimides (CDl) selectively react with carboxylic acid (–COOH) groups in polymer chains. This type of crosslinking reaction results in a classic 3D polymer-crosslinker network. Compared to polyisocyanates, polycarbodiimides are much less sensitive to presence of water and able to achieve long pot lives. Due to the high reactivity, curing with CDI type crosslinkers can be done under room temperature or typical oven conditions used for drying of applied coatings. In addition to standard CDI crosslinker chemistry, on offer is also a range of dual reactivity CDI crosslinkers. A second type of reactive groups is attached to the polycarbodiimide in this range. Upon curing, this crosslinker not only reacts with the –COOH groups in the polymer chains, but also two of the reactive groups attached to the separate CDI molecules can couple to form an even denser network structure. Building further on the success of these polycarbodiimide crosslinkers, VOC-free polycarbodiimides, in aqueous delivery form, were introduced, which give extreme long pot lives. 1. Introduction when dealing with flexible substrates. A high level of crosslinking Crosslinking is widely practiced in nearly all the coating may be acceptable for hard coatings on rigid substrates, but industries in order to improve the performance of the coating. low levels may be best for soft coatings on extensible, flexible These improvements include wear, abrasion and chemical substrates such as rubber and leather. An important crosslinking resistances and toughness1. The improved performance originates system for aqueous resins involves the use of water-dispersible from the formation of a continuous three-dimensional network, oligomeric polyisocyanates. -
Origins of Life: Transition from Geochemistry to Biogeochemistry
December 2016 Volume 12, Number 6 ISSN 1811-5209 Origins of Life: Transition from Geochemistry to Biogeochemistry NITA SAHAI and HUSSEIN KADDOUR, Guest Editors Transition from Geochemistry to Biogeochemistry Staging Life: Warm Seltzer Ocean Incubating Life: Prebiotic Sources Foundation Stones to Life Prebiotic Metal-Organic Catalysts Protometabolism and Early Protocells pub_elements_oct16_1300&icpms_Mise en page 1 13-Sep-16 3:39 PM Page 1 Reproducibility High Resolution igh spatial H Resolution High mass The New Generation Ion Microprobe for Path-breaking Advances in Geoscience U-Pb dating in 91500 zircon, RF-plasma O- source Addressing the growing demand for small scale, high resolution, in situ isotopic measurements at high precision and productivity, CAMECA introduces the IMS 1300-HR³, successor of the internationally acclaimed IMS 1280-HR, and KLEORA which is derived from the IMS 1300-HR³ and is fully optimized for advanced U-Th-Pb mineral dating. • New high brightness RF-plasma ion source greatly improving spatial resolution, reproducibility and throughput • New automated sample loading system with motorized sample height adjustment, significantly increasing analysis precision, ease-of-use and productivity • New UV-light microscope for enhanced optical image resolution (developed by University of Wisconsin, USA) ... and more! Visit www.cameca.com or email [email protected] to request IMS 1300-HR³ and KLEORA product brochures. Laser-Ablation ICP-MS ~ now with CAMECA ~ The Attom ES provides speed and sensitivity optimized for the most demanding LA-ICP-MS applications. Corr. Pb 207-206 - U (238) Recent advances in laser ablation technology have improved signal 2SE error per sample - Pb (206) Combined samples 0.076121 +/- 0.002345 - Pb (207) to background ratios and washout times. -
Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines
materials Review Perspective on Plasma Polymers for Applied Biomaterials Nanoengineering and the Recent Rise of Oxazolines Melanie Macgregor 1,2 and Krasimir Vasilev 1,2,* 1 School of Engineering, University of South Australia, Adelaide, SA 5000, Australia; [email protected] 2 Future Industries Institute, University of South Australia, Adelaide, SA 5000, Australia * Correspondence: [email protected]; Tel.: +61-8-8302-5697 Received: 3 December 2018; Accepted: 2 January 2019; Published: 8 January 2019 Abstract: Plasma polymers are unconventional organic thin films which only partially share the properties traditionally attributed to polymeric materials. For instance, they do not consist of repeating monomer units but rather present a highly crosslinked structure resembling the chemistry of the precursor used for deposition. Due to the complex nature of the deposition process, plasma polymers have historically been produced with little control over the chemistry of the plasma phase which is still poorly understood. Yet, plasma polymer research is thriving, in par with the commercialisation of innumerable products using this technology, in fields ranging from biomedical to green energy industries. Here, we briefly summarise the principles at the basis of plasma deposition and highlight recent progress made in understanding the unique chemistry and reactivity of these films. We then demonstrate how carefully designed plasma polymer films can serve the purpose of fundamental research and biomedical applications. We finish the review with a focus on a relatively new class of plasma polymers which are derived from oxazoline-based precursors. This type of coating has attracted significant attention recently due to its unique properties. -
Chemistry and Physics of Plasma Polymerization Probed by Mass Spectrometry
Institutional Repository - Research Portal Dépôt Institutionnel - Portail de la Recherche University of Namurresearchportal.unamur.be THESIS / THÈSE DOCTOR OF SCIENCES Chemistry and physics of plasma polymerization probed by mass spectrometry Author(s) - Auteur(s) : Gillon, Xavier Award date: 2014 Awarding institution: University of Namur Supervisor - Co-Supervisor / Promoteur - Co-Promoteur : Link to publication Publication date - Date de publication : Permanent link - Permalien : Rights / License - Licence de droit d’auteur : General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. BibliothèqueDownload date: Universitaire 11. oct.. 2021 Moretus Plantin Cover design: © University Presses of Namur © Presses universitaires de Namur & X. Gillon Rempart de la Vierge, 13 B - 5000 Namur (Belgium) Any reproduction of an excerpt any of this book, out of the restrictive limits laid down by law, by any process whatsoever, and in particular by photocopying or scanning, is strictly prohibited for all countries. -
Dimethyl Sulfoxide Oxidation of Primary Alcohols
Western Michigan University ScholarWorks at WMU Master's Theses Graduate College 8-1966 Dimethyl Sulfoxide Oxidation of Primary Alcohols Carmen Vargas Zenarosa Follow this and additional works at: https://scholarworks.wmich.edu/masters_theses Part of the Chemistry Commons Recommended Citation Zenarosa, Carmen Vargas, "Dimethyl Sulfoxide Oxidation of Primary Alcohols" (1966). Master's Theses. 4374. https://scholarworks.wmich.edu/masters_theses/4374 This Masters Thesis-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Master's Theses by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. DIMETHYL SULFOXIDE OXIDATION OF PRIMARY ALCOHOLS by Carmen Vargas Zenarosa A thesis presented to the Faculty of the School of Graduate Studies in partial fulfillment of the Degree of Master of Arts Western Michigan University Kalamazoo, Michigan August, 1966 ACKNOWLEDGMENTS The author wishes to express her appreciation to the members of her committee, Dr, Don C. Iffland and Dr. Donald C, Berndt, for their helpful suggestions and most especially to Dr, Robert E, Harmon for his patience, understanding, and generous amount of time given to insure the completion of this work. Appreciation is also expressed for the assistance given by her. colleagues. The author acknowledges the assistance given by the National Institutes 0f Health for this research project. Carmen Vargas Zenarosa ii TABLE OF CONTENTS Page -
The Importance of Reaction Conditions on the Chemical Structure of N,O-Acylated Chitosan Derivatives
molecules Article The Importance of Reaction Conditions on the Chemical Structure of N,O-Acylated Chitosan Derivatives Agnieszka Piegat 1,* , Agata Goszczy ´nska 1, Tomasz Idzik 2 and Agata Niemczyk 1 1 West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Polymer Institute, Division of Functional Materials and Biomaterials, 45 Piastow Ave, 70-311 Szczecin, Poland 2 West Pomeranian University of Technology Szczecin, Faculty of Chemical Technology and Engineering, Department of Organic and Physical Chemistry, 42 Piastow Ave, 71-065 Szczecin, Poland * Correspondence: [email protected]; Tel.: +48-91-449-44-55 Academic Editor: Massimiliano Fenice Received: 16 July 2019; Accepted: 21 August 2019; Published: 22 August 2019 Abstract: The structure of acylated chitosan derivatives strongly determines the properties of obtained products, influencing their hydrodynamic properties and thereby their solubility or self-assembly susceptibility. In the present work, the significance of slight changes in acylation conditions on the structure and properties of the products is discussed. A series of chitosan-acylated derivatives was synthesized by varying reaction conditions in a two-step process. As reaction media, two diluted acid solutions—i.e., acetic acid and hydrochloric acid)—and two coupling systems—i.e., 1-ethyl-3-(3-dimethyl-aminopropyl)-1-carbodiimide hydrochloride (EDC) and N–hydroxysulfosuccinimide (EDC/NHS)—were used. The chemical structure of the derivatives was studied in detail by means of two spectroscopic methods, namely infrared and nuclear magnetic resonance spectroscopy, in order to analyze the preference of the systems towards N- or O-acylation reactions, depending on the synthesis conditions used. The results obtained from advanced 1H-13C HMQC spectra emphasized the challenge of achieving a selective acylation reaction path. -
Biophysical Properties of the Iron-Sulfur Clusters In
Properties of Iron-Sulfur Clusters in Heterodisulfide Reductase by Carly Engel A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 3, 2019 Keywords: heterodisulfide reductase, iron-sulfur clusters, electron paramagnetic resonance, redox studies, rapid freeze quench Approved by Evert Duin, Chair, Professor of Biochemistry Doug Goodwin, Associate Professor of Biochemistry Holly Ellis, William P. Molette Professor of Biochemistry Anne Gorden, Associate Professor of Chemistry Robert Pantazes, Assistant Professor of Chemical Engineering Abstract Global warming is a continuing crisis today. It has caused great damage to our planet and health. One of the leading causes of this issue originates from humans releasing an enormous amount of greenhouse gases into the air, in particular CO2 and CH4. Infrared radiation produced by the sun become trapped by these molecules and, therefore, increases the Earth’s temperature drastically. Ultimately, the source of most of the CH4 is biological. One enzyme known to aid in the production of methane is heterodisulfide reductase (Hdr). Hdr recycles the substrates used by the enzyme that catalyzes the methane formation. In addition, reduced ferredoxin (FdRED) is produced and used to push the first step in methanogenesis. The goal of this research is to understand the role of the cofactors, iron-sulfur clusters, and flavin adenine dinucleotide (FAD) in catalysis, with emphasis on the flavin-based electron bifurcation process and heterodisulfide (HDS) reduction. Redox titrations of methyl-viologen hydrogenase: heterodisulfide reductase (Mvh:Hdr) yielded multiple midpoint potentials for different [4Fe-4S]+ and [2Fe-2S]+ clusters. -
Pahs) in Aqueous Environmental Samples
Sensing and Bio-Sensing Research 7 (2016) 115–120 Contents lists available at ScienceDirect Sensing and Bio-Sensing Research journal homepage: www.elsevier.com/locate/sbsr A highly sensitive monoclonal antibody based biosensor for quantifying 3–5 ring polycyclic aromatic hydrocarbons (PAHs) in aqueous environmental samples Xin Li, Stephen L. Kaattari, Mary A. Vogelbein, George G. Vadas, Michael A. Unger ⁎ Department of Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, United States article info abstract Article history: Immunoassays based on monoclonal antibodies (mAbs) are highly sensitive for the detection of polycyclic Received 4 December 2015 aromatic hydrocarbons (PAHs) and can be employed to determine concentrations in near real-time. A sensitive Received in revised form 3 February 2016 generic mAb against PAHs, named as 2G8, was developed by a three-step screening procedure. It exhibited nearly Accepted 4 February 2016 uniformly high sensitivity against 3-ring to 5-ring unsubstituted PAHs and their common environmental meth- Available online xxxx ylated PAHs, with IC50 values between 1.68 and 31 μg/L (ppb). 2G8 has been successfully applied on the KinExA – Keywords: Inline Biosensor system for quantifying 3 5 ring PAHs in aqueous environmental samples. PAHs were detected at μ Monoclonal antibody a concentration as low as 0.2 g/L. Furthermore, the analyses only required 10 min for each sample. To evaluate PAH the accuracy of the 2G8-based biosensor, the total PAH concentrations in a series of environmental samples an- Pore water alyzed by biosensor and GC–MS were compared. In most cases, the results yielded a good correlation between Biosensor methods. -
Organometallic Nanoprobe to Enhance Optical Response on the Polycyclic Aromatic Hydrocarbon Benzo[A]Pyrene Immunoassay Using SERS Technology
1 Environmental Science And Pollution Research Achimer December 2017, Volume 24 Issue 35 Pages 27070-27076 http://dx.doi.org/10.1007/s11356-014-3384-8 http://archimer.ifremer.fr http://archimer.ifremer.fr/doc/00417/52844/ © Springer-Verlag Berlin Heidelberg 2014 Organometallic nanoprobe to enhance optical response on the polycyclic aromatic hydrocarbon benzo[a]pyrene immunoassay using SERS technology Dribek Mohamed 1, 3, Rinnert Emmanuel 1, *, Colas Florent 1, Crassous Marie-Pierre 1, Thioune Nene 2, David Carmen 2, 4, De La Chapelle Marc 2, Compere Chantal 1 1 IFREMER, Lab Detect Capteurs & Mesures, CS10070, F-29280 Plouzane, France. 2 Univ Paris 13, UFR SMBH, Lab CSPBAT FRE 3043, 74 Rue Marcel Cachin, F-93017 Bobigny, France. 3 Univ Francois Rabelais Tours, UFR Sci Pharmaceut, EA Nanomedicaments & Nanosondes 6295, 31 Ave Monge, F-37200 Tours, France. 4 Horiba Sci, 231 Rue Lille, F-59650 Villeneuve Dascq, France. * Corresponding author : Emmanuel Rinnert, email address : [email protected] Abstract : We demonstrated the use of a new organometallic nanoprobe for competitive surface-enhanced Raman scattering (SERS) immunoassay devoted to the detection of polycyclic aromatic hydrocarbons (PAH) such as benzo[a]pyrene (BaP) in seawater. The nanoprobes are gold nanoparticles (GNPs) labeled by a Raman reporter, the 5,5'-dithiobis(succinimidyl-2-nitrobenzoate) (DSNB) and functionalized with monoclonal antibodies anti-BaP. The antibodies are bound with a high specificity to the analyte while the GNPs enhanced the Raman scattering of the DSNB. This type of immunoassay involved the grafting of BaP onto a sensing surface. Thus, NH2-terminated self-assembled monolayer is formed on the surface of gold substrate using cysteamine. -
Fully Inkjet-Printed Biosensors Fabricated with a Highly Stable Ink Based on Carbon Nanotubes and Enzyme-Functionalized Nanoparticles
nanomaterials Article Fully Inkjet-Printed Biosensors Fabricated with a Highly Stable Ink Based on Carbon Nanotubes and Enzyme-Functionalized Nanoparticles Mijal Mass 1 , Lionel S. Veiga 1, Octavio Garate 1, Gloria Longinotti 1, Ana Moya 2,†, Eloi Ramón 2 , Rosa Villa 2,3, Gabriel Ybarra 1,* and Gemma Gabriel 2,3,* 1 INTI-Micro y Nanotecnologías, Instituto Nacional de Tecnología Industrial (INTI), San Martín, Buenos Aires B1650WAB, Argentina; [email protected] (M.M.); [email protected] (L.S.V.); [email protected] (O.G.); [email protected] (G.L.) 2 Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Campus Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; [email protected] (A.M.); [email protected] (E.R.); [email protected] (R.V.) 3 CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain * Correspondence: [email protected] (G.Y.); [email protected] (G.G.) † Present Addresses: Eurecat, Centre Tecnològic de Catalunya, Functional Printing & Embedded Devices Unit, 08302 Mataró, Spain. Abstract: Enzyme inks can be inkjet printed to fabricate enzymatic biosensors. However, inks Citation: Mass, M.; Veiga, L.S.; containing enzymes present a low shelf life because enzymes in suspension rapidly lose their Garate, O.; Longinotti, G.; Moya, A.; catalytic activity. Other major problems of printing these inks are the non-specific adsorption of Ramón, E.; Villa, R.; Ybarra, G.; enzymes onto the chamber walls and stability loss during printing as a result of thermal and/or Gabriel, G. Fully Inkjet-Printed mechanical stress. -
A Plasma Polymerization Investigation and Low Temperature Cascade Arc Plasma for Polymeric Surface Modification
A PLASMA POLYMERIZATION INVESTIGATION AND LOW TEMPERATURE CASCADE ARC PLASMA FOR POLYMERIC SURFACE MODIFICATION A Dissertation presented to the Faculty of the Graduate School University of Missouri-Columbia In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by MARY A. GILLIAM Dr. Qingsong Yu, Faculty Advisor AUGUST 2006 © Copyright by Mary A. Gilliam 2006 All Rights Reserved The undersigned, appointed by the Dean of the Graduate School, have examined the Dissertation entitled A PLASMA POLYMERIZATION INVESTIGATION AND LOW TEMPERATURE CASCADE ARC PLASMA FOR POLYMERIC SURFACE MODIFICATION Presented by MARY A. GILLIAM A candidate for the degree of DOCTOR OF PHILOSOPHY And hereby certify that in their opinion it is worthy of acceptance. Prof. Qingsong Yu Prof. David Retzloff Prof. Scott Kovaleski Prof. Stephen Lombardo Prof. William Jacoby To Ben, Alice, and Sam… AKNOWLEDGEMENTS I would like to express my sincere gratitude to both Dr. Yasuda and Dr. Yu for their support and guidance throughout my graduate career. I deeply appreciate the knowledge and experience I have gained from their vast insight in plasma technologies and interfacial engineering and I am honored to be their student. Sincere thanks to Dr. Sunnyu Lee for serving as my co-advisor for some time and mostly for his friendship and encouragement as a mentor. I would also like to thank my distinguished PhD Committee members and I am honored to be considered worthy by them of a PhD. Many thanks to my colleagues at the Surface Science and Plasma Technology Center for their friendship and collaboration: Kevin Young for helping me to become acclimated with the technologies, Bruce Huang for his friendship, encouragement, and insightful discussions, Andrew Ritts for his valuable contribution to the surface modification project, Jameel Feshitan for his helpful assistance with static contact angle and OES data, Yenfong Chan, and Young Jo Kim for their friendship and discussions.