It Is First Important to Note That There Are Other Terms That Are Used to Describe a Failed Septic System

Total Page:16

File Type:pdf, Size:1020Kb

It Is First Important to Note That There Are Other Terms That Are Used to Describe a Failed Septic System HELPING NATURE WORK FOR YOU It is first important to note that there are other terms that are used to describe a failed septic system. They are: failed cesspool, failed drain field, failed disposal field, failed leach lines, failed leach field, failed leach bed, failed seepage pit, failed dry well, failed sand filter, failed mound, failed aerobic system. There are many other terms that are more local than general and are too numerous to list. Any reference to any term is interchangeable with any other term. Along with the “The Purpose Of A Septic System And Why They Fail” and “The Description Of An Anaerobic Septic System” combined with this information on the Pirana®, the reader should gain a basic understanding of why septic systems fail and why the Pirana® is the needed solution. If more in-depth information is desired, contact Pirana® Systems and we will see how to help. In 2000, the Pirana® created a new option for the septic industry: the remediation of failed septic system drain fields. The Pirana® eventually received a US Patent. This was a revolutionary issue for the septic industry: inexpensive remediation vs expensive and property damaging replacement of failed drain fields. Installing a Pirana® without landscape damage into a septic tank to remediate a failed septic system can save the property owner as much as 90% over the limited “business as usual” solutions offered by the septic industry: “You gotta replace your leach field” or “you gotta put in an engineered system”. Biomat is the primary cause of septic system drain field failure based on the results of two exhaustive, in-depth surveys by the Federal EPA in the 1990s. Every jurisdiction that regulates septic systems in the US participated. One of the primary conclusions of these surveys was that 95+% of septic system failures were from biomat clogging of infiltrative soil surfaces. We realized that eliminating the biomat would return failed drain fields to proper function and for far less than replacing failed disposal systems. This is important because cost is most often the critical issue for the vast majority of property owners with failed septic systems. The Pirana® typically saves homeowners many thousands of dollars, even tens of thousands of dollars. Not having to pay for landscape repair, a cost that is not considered in the cost of replacing a disposal field saves the homeowner even more money. The reaction of the septic industry to the Pirana® is best explained in this quote by Upton Sinclair, “It is difficult to get a man to understand something when his salary depends on his not understanding it.” It has been 18 years since the Pirana® technology was first introduced and more are being sold and installed every day in 14 countries without the support of the septic industry. The roadblocks that have been placed in the way by the septic industry and government regulators through regulations the septic industry influenced, hasn’t kept the Pirana® from helping thousands of people around the world with every kind of septic system whether new or failed, including systems for single family residences, multi-family apartments and 1 condominiums, hotel / resorts, commercial / industrial, RV Parks and Campgrounds, MHPs, schools, bars / restaurants, denitrifying septic systems. Unless the local government EHD is made aware of a septic drain field failure the property owner can choose to do nothing about the failure. The majority of property owners choose to do nothing. The Federal EPA estimates a million plus septic systems fail each year and nothing is done to return them to proper function. The only rational reason for this is the septic industry and government’s limited solutions are too expensive and destructive. The Pirana® is the simple, inexpensive, non-destructive solution to this problem. The original design purpose of the Pirana® unit was for a hyper efficient aeration and circulation device to retrofit into the outlet chamber of existing and new two chamber septic tanks to turn the septic tanks into aerobic treatment units without the need to add additional tankage. The idea was to save the homeowner money (hopefully a lot of money) so homeowners could afford to do something about their failed septic systems. The Pirana® unit design had to be one of, if not the most efficient aeration and circulation device for septic systems (and wastewater treatment in general). The efficiency of the Pirana® unit design surpassed our highest expectations. We thought that simply creating an aerobic effluent would reliably restore failed septic systems to proper function. We were wrong. The problem turned out to be about the bacteria. Septic systems depend on intestinal bacteria to provide the treatment. Intestinal bacteria are the wrong bacteria to provide sewage treatment. The obvious solution is the right bacteria. The Pirana® unit has been described as an “incubator to grow” the proprietary group of powerful, natural, non-toxic, recycling bacteria species and sub-strains making up the Pirana® Blend Bacteria (PBB) using human sewage as nutrients. The PBB species and sub- strains were isolated from grasslands, conifer and broadleaf forest litter and the upper, humus rich, aerobic horizon of native soils. In their natural environments, these powerful bacteria quickly and efficiently digest and recycle the countless tons of difficult to digest plant material and other organic debris that fall on the Earth’s surface every day. It is well known to the wastewater industry that these types of natural bacteria are the best bacteria to recycle sewage. Until the Pirana®, these types of bacteria were not able to form survivable communities in liquid sewage, much less thrive as they do inside the Pirana® unit. After hundreds of “real life residential septic systems,” not testing sites with artificial septic systems, we discovered the design and construction of the Pirana® created a unique gaseous non-depletable oxygen environment within the unit while circulating between 30,000 gpd to 50,000 gpd of effluent through a Pirana® unit (depending on the Pirana® model). This unique oxygen environment within the Pirana® allowed the powerful recycling PBB to colonize, survive and prosper within a Pirana® that sits on the bottom of the alien, hostile liquid environment of the inlet or solids chamber of septic tanks, or suspended in the like environment of a cesspool / seepage pit. Through observation and subsequent testing, the Pirana® taught us about septic systems in ways no one had ever considered before. Septic industry “experts”, engineers and government regulators accepted as given, the limitations and the lack of capabilities of their septic system designs. The Pirana® proved them all to be false. The combination of the hyper efficient Pirana® design and the ability to maintain the metabolically efficient community of PBB within the Pirana®, we realized we had changed the purpose and potential 2 for septic systems. This led us to realize the Pirana® is the first new and most efficient technology and understanding for septic systems in 100 years. “If Nature can’t work for you, you have to work for Nature. And it’s very expensive.” Septic system owners know this full well. We found the more you mimic Nature the less it will cost. The way the Pirana® mimics Nature is being able to continuously grow and reproduce some of Nature’s most efficient bacteria (PBB) that move throughout the entire septic system where the PBB digest and recycle the organic component of sewage and most important, biomat. If a septic system design is not able to use Nature’s most efficient recycling bacteria, the efficiency of that septic system will be low and therefore expensive and damaging to property. Bacteria do the ultimate digestion and recycling in Nature. Humans do not digest or recycle anything. We don’t even digest the food we eat. Our gut microbes do that for us and we reap the harvest of the nutrients they secrete in their metabolites and secondary metabolites. Humans can only build “machines” that depending on their functions are able to support particular bacteria and not others. All other aerobic treatment systems depend on, and can only support, weak intestinal bacteria because all they provide is a limited dissolved oxygen aerobic environment in the effluent. An aerobic dissolved oxygen liquid environment will not support the continued survival of Nature’s most efficient bacteria. Only the Pirana® has been able to provide the unique oxygen environment Nature’s recycling bacteria require. The metabolic efficiency of the bacteria used in treatment systems determines the efficiency of the treatment system. This ability to provide the required oxygen environment for PBB makes the Pirana® the most efficient treatment process for septic systems. The Pirana® device and PBB simply, easily and inexpensively solved nearly all the problems and issues surrounding septic systems. The Pirana® returns failed leach fields to proper function. The Pirana® solves the problem of organic matter accumulation within and through out a septic system - in the septic tank (no more pumping), in the drain field construction and in the native soil. The Pirana® eliminates septic odors. The Pirana® can denitrify anaerobically and aerobically in the septic tank and in the drain field soils. The Pirana® helps keep organic matter from accumulating in the waste pipes in the house by the vented air from the Pirana® tank carrying PBB throughout the waste lines. The Pirana® stops the acid destruction of concrete, concrete block, metal or wood septic tanks, and any components of a septic system that are reactive to acids, by completely eliminating hydrogen sulfide gas within a septic system This can save homeowners thousands of dollars not having to replace acid weakened or collapsed septic tanks and other components of septic systems.
Recommended publications
  • Treatment of Sewage by Vermifiltration: a Review
    Treatment of Sewage by Vermifiltration: A Review 1 2 Jatin Patel , Prof. Y. M. Gajera 1 M.E. Environmental Management, L.D. College of Engineering Ahmedabad -15 2 Assistant professor, Environmental Engineering, L.D. College of Engineering Ahmedabad -15 Abstract: A centralized treatment facility often faces problems of high cost of collection, treatment and disposal of wastewater and hence the growing needs for small scale decentralized eco-friendly alternative treatment options are necessary. Vermifiltration is such method where wastewater is treated using earthworms. Earthworm's body works as a biofilter and have been found to remove BOD, COD, TDS, and TSS by general mechanism of ingestion, biodegradation, and absorption through body walls. There is no sludge formation in vermifiltration process which requires additional cost on landfill disposal and it is also odor-free process. Treated water also can used for farm irrigation and in parks and gardens. The present study will evaluate the performance of vermifiltration for parameters like BOD, COD, TDS, TSS, phosphorus and nitrogen for sewage. Keywords: Vermifiltration, Earthworms, Wastewater, Ingestion, Absorption Introduction Due to the increasing population and scarcity of treatment area, high cost of wastewater collection and its treatment is not allowing the conventional STP everywhere. Hence, cost effective decentralized and eco-friendly treatments are required. Many developing countries can‟t afford the construction of STPs, and thus, there is a growing need for developing some ecologically safe and economically viable onsite small-scale wastewater treatment technologies. [24] The discharge of untreated wastewater in surface and sub-surface water courses is the most important source of contamination of water resources.
    [Show full text]
  • INVESTIGATION of ANAEROBIC PROCESSES in SEPTIC TANK AS a WASTEWATER TREATMENT OPTION Odenigbo C
    International Journal of Civil Engineering, Construction and Estate Management Vol.6, No.1, pp.22-25, May 2018 ___Published by European Centre for Research Training and Development UK (www.eajournals.org) INVESTIGATION OF ANAEROBIC PROCESSES IN SEPTIC TANK AS A WASTEWATER TREATMENT OPTION Odenigbo C. Department of Civil Engineering, Enugu State University of Science and Technology ABSTRACT: This study aims to find out the anaerobic processes in septic tank as a wastewater treatment plant. Samples were collected from both a septic tank and soakaway pit. Thus, after the collection of samples from the location, waste water analysis was conducted on the two water samples A and B respectively. The results obtained on the water samples showed that sample A under physical analysis using thermometer, pH meter, conductivity meter etc, has a higher physical characteristics value according to table 4.1, than that of sample B. more also from the chemical analysis seen in table 4.1 sample A has a higher BOD, COD and DO values more than that of sample B. Therefore this suggests that biological treatment processes was efficient in that septic tank and as such waste water discharged to the environment, will be harmless to the inhabitants in that environment. KEYWORDS: Anaerobic, Septic Tank, Sewage, Treatment. INTRODUCTION Human waste or more technically referred to as Excrets, which is made up of a solid matter, faeces and liquid matter, urine and is essentially an organic compound. The constituents making up the compound are carbon, nitrogen, phosphorus, sulphur and hydrogen. Also present are fats, carbohydrates, enzymes, proteins, trace elements, pathogens and many different bacteria.
    [Show full text]
  • Draft Spokane County Critical Aquifer Recharge Areas Review Technical Memorandum #1
    Draft Spokane County Critical Aquifer Recharge Areas Review Technical Memorandum #1 Prepared for: Spokane County Division of Utilities 1026 West Broadway Avenue Spokane, WA 99260 Draft – Version 1.1 October 19, 2012 Prepared by: 412 East Parkcenter Blvd. Suite 100 Boise, ID 83706 (208) 387-7000 Table of Contents Introduction ...................................................................................................... 1 Study Objectives and Approach ..................................................................................... 1 Background ....................................................................................................... 2 Growth Management Act (GMA) .................................................................................... 2 Spokane County Aquifer Protection and Implementation of the GMA ............................. 2 Critical Aquifer Recharge Areas - SCC 11.20.075 .......................................................... 3 Performance Standards for Wastewater Disposal for High and Moderate CARA 4 Current Standard Review ................................................................................. 5 Define Area of Study ......................................................................................... 6 Define Non-residential Uses ............................................................................. 7 Define Non-residential Sanitary Wastewater Characteristics. ......................... 8 Define Environmental/Resource Properties for Area of Study .....................
    [Show full text]
  • UF/IFAS Extension Fact Sheet Landscaping on Or Near Septic
    UF/IFAS Extension Fact Sheet Landscaping On or Near Septic Drain Fields Septic systems are designed to move waste water away from a home or building allowing the solids to separate from liquids. While the solids are decomposed by bacteria in a holding tank (Fig. 1) outside of the home, the liquids, or effluent water, flow out of the tank through a series of perforated drain pipes, allowing the percolation of waste water out and away from the home into an area known as the drain field (also called a leach field). The liquid is then filtered by sediment and rock layers while microbes continue decomposition of the effluent before it filters down into ground water. Proper construction and maintenance of the drain field is essential in ensuring the process works correctly to limit the harmful bacteria and pollutants subsequently entering the ground water. Environmental pollutants, such as nitrogen and phosphorous, serve as nutrient sources for algal blooms along coastal waters and pollutants in lakes, rivers, streams, and springs. Ingestion of these microbes can lead to a host of serious health problems. Even the most efficient septic system removes approximately 30% of the nitrogen waste leaving the rest to infiltrate waterbodies and ground water resources. Septic systems are common throughout most rural areas and their care and maintenance are essential to the health of people, wildlife, livestock, agricultural commodities, and water resources. The drain field normally runs under surrounding areas of land, deemed desireable for landscaping, so care must be taken to ensure the plants on and around the drain field do not penetrate or interfere with the function of the drain field.
    [Show full text]
  • GST Leaching Systems Design Manual
    MASSACHUSETTS GST™ Leaching Systems Design Manual for Pressure and Gravity Applications April 2020 Patents: www.geomatrixsystems.com – GST is a trademark of Geomatrix Systems, LLC Table of Contents PAGE NUMBER Introduction 1 Designing a GST System 2 GST Trench Configuration 2 System Design Steps 2-3 Table 1 – Percolation Rate vs. Loading Rate 4 Table 2 – GST Approved Effective Leaching Area in Trench Configuration 4 Table 3 – GST Approved Effective Leaching Area in Bed Configuration 5 Table 4 – Sand and Stone Volume Guide 5 Table 5 – Minimum Sand Bed Sizing 6 Basic Design Considerations 7-8 GST Excavation Requirements 9 Gravity Distribution Design Parameters 9 Pressure Distribution Design Parameters 9-10 Zoned Drain Fields & Trenches at Different Elevations 10 Drain Field Cover 10-11 Septic Do’s and Don’ts 12 GST Schematics 13-16 GST Inspection Port 17-18 Introduction The GST™ Leaching System (GST), is an adaptation of the time proven stone leaching system. This traditional leaching system has been improved with the use of a removable form to accurately shape and construct leaching fingers along the sides of a central distribution channel. The fingers are typically constructed with ½” – ¾” washed stone and are surrounded with ASTM C-33 sand. These fingers serve to increase the sidewall surface area by more than six times that of a traditional stone leaching trench. Additionally, the narrow profile of the leaching fingers and central distribution channel, combined with the uniform profile of the sand treatment media, serve to enhance oxygen transfer efficiencies. Enhanced oxygen transfer results in better treatment of the wastewater pollutants and a leach field with a longer lifespan.
    [Show full text]
  • Septic Systems and Water Quaility
    Fact Sheet Septic Systems & Water Quality Septic Systems: Your Personal Waste Water Treatment Facility How a Septic System Works Sure Signs That Your Tank Needs Attention A septic system has two main components: a You suddenly have waterfront property due to septic tank and an absorption area (ie; leach field). pooling around the drain field. This could mean The tank is buried about six feet deep and away from the system is overflowing. the building where wastewater is held. The waste- Slow moving drains, and slow flushing toilets may water eventually allows solids to settle down to the mean there is a clog, especially if it continues bottom forming sludge, while the oil and grease after using a septic-friendly drain cleaner. floats to the top as scum. Unpleasant odors in your yard are a clue. If the lawn looks really GREEN and lush, but only Bacteria in the tank helps to break down solids, in the septic bed area, it could be an indication but chemicals, viruses, and other contaminants that the tank is leaching liquids. remain in the liquid effluent. Soil can act as a natural Sewer back-up—time to call the professionals. filter, but most of the liquid will seep down into the groundwater from the absorption field. Avoid Trouble Out of Sight, Out of Mind Routine maintenance schedule; stick to it! Don’t use your septic system as trash disposal. It might be time to call for an inspection if it has No paints, chemicals, medications, pesticides, been more than 3 years since the last inspection.
    [Show full text]
  • Sustainable Wastewater Management in Buildings
    POLITECNICO DI MILANO Scuola di Ingegneria Civile, Ambientale e Territoriale - MI Laurea Magistrale INGEGNERIA PER L'AMBIENTE E IL TERRITORIO - ENVIRONMENTAL AND LAND PLANNING ENGINEERING Sustainable Wastewater Management in Buildings Supervisor: Dr. Manuela Antonelli,Ph.D. Assistant Supervisor: Eng. Riccardo Delli Compagni Submitted by: Awaz Alfadil Alkhalifa Mohamed 835755 Academic year 2016/2017 Contents List of Tables 10 List of Figures 12 Nomenclature 13 1 Municipal wastewater 2 1.1 Introduction . .2 1.2 Water Consumption . .3 1.3 Wastewater Flows . .4 1.4 Residential wastewater flow division . .5 1.5 Municipal Wastewater Characterization . .7 1.6 Indoor wastewater . 11 1.7 Outdoor wastewater . 16 1.8 Rainwater Harvesting . 17 1.9 Wastewater in Developing Countries . 20 1.10 Compliance to Legislations . 21 2 Sustainable treatment Technologies 24 2.1 Introduction . 24 2.2 Choice of Technology . 24 2.3 Overview of current treatment Technologies . 26 2.3.1 Treatment and Disposal: . 28 3 Living Machines 30 3.1 Introduction . 30 3.2 Successful Installments of LM . 32 3.3 Operating principles . 33 2 Politecnico di Milano - Master's Thesis in Environmental and Land planning Engineering - Academic year 2016/2017 - Awaz Alfadil - Sustainable Wastewater Management in Buildings 3.3.1 Functionality of a LM . 33 3.3.2 Maintenance of LM . 35 3.4 Driving Factors . 35 3.5 System Design . 41 3.6 Advantages of LMs . 43 3.7 Restrictions and Challenges: . 43 3.8 Maintenance: . 44 4 Wastewater treatment using microbial fuel cells MFCs 46 4.1 Introduction . 46 4.2 Progression and evolution: . 47 4.3 MFCs Design .
    [Show full text]
  • Wastewater Technology Fact Sheet Disinfection for Small Systems
    United States Office of Water EPA 832-F-00-031 Environmental Protection Washington, D.C. September 2000 Agency Decentralized Systems Technology Fact Sheet Aerobic Treatment DESCRIPTION Current Technologies Natural treatment of biological waste has been Individual aerobic systems have been in place since practiced for centuries. However, engineered the 1950's, however, these early systems consisted aerobic biological treatment of wastewater has been of little more than an aerator placed in a traditional practiced in the United States, on a large scale, for septic tank. They were prone to noise, odor and only a few decades. In fact, in 1925, 80 percent of maintenance complaints, and were used only where all cities in the United States with populations of standard septic tanks were not feasible. The newer over 100,000 had no treatment systems at all aerobic treatment units are pre-engineered and (Linsley 1972). The basic aerobic treatment operate at a high level of efficiency. The demand process involves providing a suitable oxygen rich for these units and the desire for direct surface environment for organisms that can reduce the discharge of the treated waste stream has led to a organic portion of the waste into carbon dioxide certification process by the National Sanitation and water in the presence of oxygen. With the ever Foundation (NSF). This certification (NSF Standard increasing development of land, both suburban and 40 for Individual Wastewater Treatment Plants) rural, large central sewerage systems have not applies to plants with capacities of up to 1,500 always been cost-effective or available. Many gallons per day, and leads to approval as a Class I homeowners still rely on individual septic tank or or Class II plant.
    [Show full text]
  • Properly Landscape Your Septic System
    Save Time and Money Properly Landscape Your Septic System Well designed, property installed and regularly maintained septic systems can last for many years. Your septic system is a substantial investment and protecting it from damage can save time and money. Improper (or lack of) maintenance and physical damage are the two main causes of a failing septic system. Information on regular maintenance and inspection can be found in Protecting Your Inve$tment: Inspecting Your Septic System (http:// clark.wsu.edu/horticulture/smallFarmProgram/septic-inspect.pdf). This fact sheet outlines how to landscape around your septic system to minimize damage. Plan Ahead to Protect Your Septic System Landscape design should not interfere with the natural function of your system. Examine your yard with the future in mind. Do you have plans for constructing storage sheds, decks, patios or other structures? Construction on or near your septic system could damage the tank, pipes or soil. The septic tank, drainfield and reserve area should remain clear of sprinkler lines, decks, patios, storage sheds, sand boxes, swing sets, paved or dirt Know the location driveways, parking areas and walkways. Adequate access to the of your septic tank and components of the septic system is also critical for maintenance and drainfield before starting. pumping. Use common sense and plan around your septic system. Unsure of where your Know where your tank, drainfield and reserve areas are located system is? Contact Clark before beginning any landscaping work. If your septic system does County Public Health - fail, you will need the reserve area to replace the failed system.
    [Show full text]
  • Tower Bio-Vermifilter System for Rural Wastewater Treatment
    Int. J. Environ. Sci. Technol. (2015) 12:1053–1064 DOI 10.1007/s13762-013-0479-6 ORIGINAL PAPER Tower bio-vermifilter system for rural wastewater treatment: bench-scale, pilot-scale, and engineering applications E. Nie • D. Wang • M. Yang • X. Luo • C. Fang • X. Yang • D. Su • L. Zhou • Z. Zheng Received: 9 April 2013 / Revised: 22 November 2013 / Accepted: 9 December 2013 / Published online: 9 January 2014 Ó Islamic Azad University (IAU) 2013 Abstract This paper presents a systematic study of a vermifilter. Finally, four operating tower bio-vermifilter novel tower bio-vermifilter system for rural wastewater systems in three basins of China were evaluated and treatment at three scales: bench-scale, pilot-scale, and compared with two other rural sewage treatment technol- engineering applications. First, three types of bioreactors ogies in terms of economic costs and pollutant removal were tested in the bench-scale experiments: earthworm performance. Comparison results show that the tower bio- bioreactor, soil filter, and one-stage bio-vermifilter. vermifilter system is a versatile system that can work Experiments with the earthworm bioreactor and soil filter effectively under a variety of natural and socioeconomic determined the optimum earthworm density and soil layer conditions at a reasonable cost. depth to be 12.5 g/L and 40 cm, respectively. The one- stage bio-vermifilter’s poor performance in removing Keywords Sewage Á Phosphorus Á Nitrogen Á Chemical nitrogen and phosphorous led to several improvements in oxygen demand Á Pollutant removal Á Evaluation the design of the pilot tower bio-vermifilter system including the addition of one anaerobic biofilter for pre- treatment, the use of two stages of bio-vermifilters, and the Introduction replacement of gravel with ceramsite in the media.
    [Show full text]
  • Design Manual 2020 for Geomat™ Pressure and Gravity Leaching Systems
    Virginia Design Manual 2020 For GeoMat™ Pressure and Gravity Leaching Systems Geomatrix Systems, LLC 114 Mill Rock Road East Old Saybrook, CT 06475 860-510-0730 – phone [email protected] www.geomatrixsystems.com Distributed By: Single A Traders LLC. 603-348-7579 Approved 06/03/2020 by DOSWSEEMP - OEHS - Virginia Department of Health Table of Contents TOPIC PAGE NUMBER Table of Contents Introduction………………………………………………………………………………………………………………………………3 Designing a GeoMat System………………………………………………………………………………………………………..4 Pressure Systems……………………………………………………………………………………………………………………….4 Gravity Systems………………………………………………………………………………………………………………………….5 GeoMat Sand Sizing…………………………………………………………………………………………………………………….6 Basic Design Parameters…………………………………………………………………………………………………………….7 GeoMat as Dispersal – with Pretreatment……………………………………………………………………………………8 GeoMat as Dispersal – Reducing Nitrogen……………………………………………………………………………………8 GeoMat Excavation Requirements……………………………………………………………………………………………….8 Installing Deeper than a 18" Average…………………………………………………………………………………………..9 Sand and Fill………………………………………………………………………………………………………………………………9 Maximum Length………………………………………………………………………………………………………………………10 Zoned Drain Fields and Trenches at Different Elevations (Pressure)……………………………………………10 Distribution Manifolds and Laterals (Pressure)…………………………………………………………………………..11 Drain Field Cover………………………………………………………………………………………………………………………11 Venting……………………………………………………………………………………………………………………………………..12 Maintenance Requirements (Pressure)………………………………………………………………………………………12
    [Show full text]
  • Water Treatment
    Water Pollution: Water Treatment Nature's Cleaning Process Students learn how a septic system cleans wastewater by performing an experiment. Level(s): 6-8 Subject(s): Physical Science, Chemistry, Life Science Virginia SOLs: 6.5 f, g; 6.9 a; LS4 b; LS12 e; PS2 c, e; Objectives: Students will be able to describe how a septic system works. Materials: per Group: • Jar of murky water (with soil and/or organic debris mixed in) • Flower pot filled with layers of sand and or gravel • Cotton plug for the drainage hole at the bottom of the flower pot • Empty jar • Food coloring Estimated Time: 45-60 minutes Background Information: Common Disposal Methods: Sink/Toilet, p.168. On Site Waste Treatment: The Septic System, p.170. Preparation: Have the materials described above in "Materials" set up where groups can use them. Activity Procedure: 1. One student pours the murky water into the flower pot that is held by another student. The flower pot is held over the empty jar. 2. Ask the students to describe the difference between the murky water before it was poured into the flower pot and what drains out of the flower pot and into the glass jar. Ask the students what happened to the debris in the water. 3. Explain that the flower pot simulates the drain field or septic system, that is used in many rural areas to process waste water. Ask the students to describe how they envision a drain field working. Why are drain fields used? Have students list where the water come from that enters a drain field (sink, shower, toilet, etc.) 166 Water Pollution: Water Treatment 4.
    [Show full text]