Cardioversion and Ablation

Total Page:16

File Type:pdf, Size:1020Kb

Cardioversion and Ablation CARDIOVERSION METHODS AND OUTCOMES CARDIOVERSION AND ABLATION JASSIN M. JOURIA Dr. Jassin M. Jouria is a practicing Emergency Medicine physician, professor of academic medicine, and medical author. He graduated from Ross University School of Medicine and has completed his clinical clerkship training in various teaching hospitals throughout New York, including King’s County Hospital Center and Brookdale Medical Center, among others. Dr. Jouria has passed all USMLE medical board exams, and has served as a test prep tutor and instructor for Kaplan. He has developed several medical courses and curricula for a variety of educational institutions. Dr. Jouria has also served on multiple levels in the academic field including faculty member and Department Chair. Dr. Jouria continues to serve as a Subject Matter Expert for several continuing education organizations covering multiple basic medical sciences. He has also developed several continuing medical education courses covering various topics in clinical medicine. Recently, Dr. Jouria has been contracted by the University of Miami/Jackson Memorial Hospital’s Department of Surgery to develop an e-module training series for trauma patient management. Dr. Jouria is currently authoring an academic textbook on Human Anatomy & Physiology. ABSTRACT Atrial arrhythmias are serious disorders that can cause an irregular and/or rapid heartbeat, which can lead to serious clinical sequelae. Atrial fibrillation is an example of an atrial arrhythmia that can lead to blood clots, stroke, or heart failure. Electrical cardioversion and ablation are two procedures that can minimize these risks and treat atrial arrhythmia. Each of these treatments have risks and neither offers a complete success rate, but they can be very effective in providing greater quality of life, and extending the life expectancy of patients. 1 nursece4less.com nursece4less.com nursece4less.com nursece4less.com Policy Statement This activity has been planned and implemented in accordance with the policies of NurseCe4Less.com and the continuing nursing education requirements of the American Nurses Credentialing Center's Commission on Accreditation for registered nurses. It is the policy of NurseCe4Less.com to ensure objectivity, transparency, and best practice in clinical education for all continuing nursing education (CNE) activities. Continuing Education Credit Designation This educational activity is credited for 2.5 hours. Nurses may only claim credit commensurate with the credit awarded for completion of this course activity. Pharmacology content is 0.5 hours (30 minutes). Statement of Learning Need Cardioversion and cardiac ablation for the treatment of resistant atrial arrhythmia has been analyzed in the medical literature, including benefits and risks. Clinicians need to understand the indications and efficacy of both procedures to treat atrial arrhythmia and to reduce cardiac system burden. Clinical research is growing with evolving recommendations for clinicians managing refractory atrial arrhythmia and to plan cardioversion or catheter ablation. Course Purpose To provide clinicians with knowledge of cardiac atrial arrhythmias and of the treatments of cardioversion and cardiac catheter ablation to reverse symptoms of atrial arrhythmia and potentially adverse outcomes. 2 nursece4less.com nursece4less.com nursece4less.com nursece4less.com Target Audience Advanced Practice Registered Nurses and Registered Nurses (Interdisciplinary Health Team Members, including Vocational Nurses and Medical Assistants may obtain a Certificate of Completion) Course Author & Planning Team Conflict of Interest Disclosures Jassin M. Jouria, MD, William S. Cook, PhD, Douglas Lawrence, MA, Susan DePasquale, MSN, FPMHNP-BC – all have no disclosures Acknowledgement of Commercial Support There is no commercial support for this course. Please take time to complete a self-assessment of knowledge, on page 4, sample questions before reading the article. Opportunity to complete a self-assessment of knowledge learned will be provided at the end of the course. 3 nursece4less.com nursece4less.com nursece4less.com nursece4less.com 1. The external electrical cardioversion procedure is used to treat arrhythmias a. only if cardiac catheter ablation fails. b. as the first-line therapy. c. to reorganize the heart’s electrical rhythm. d. by delivering a “shock” directly to a mechanical pacemaker. 2. The electrical cardioversion procedure is contraindicated for patients with a. digitalis toxicity. b. mechanical pacemakers. c. very low blood pressure. d. breathing difficulties. 3. Planned cardioversion is usually performed a. in an outpatient setting. b. in an emergency setting because of the risks. c. with an analgesic, not a sedative. d. in a hospital setting. 4. Synchronized cardioversion uses ________________ delivered at a timed point in the cardiac cycle to reset an arrhythmia back to normal sinus rhythm. a. a high-energy shock b. a charged chemical c. a low-energy shock d. a random-level shock 5. Synchronized cardioversion means the electrical impulse is delivered a. during the T wave. b. during the QRS complex, at the peak of the R wave. c. to the SA node. d. to the atria. 4 nursece4less.com nursece4less.com nursece4less.com nursece4less.com Introduction When an arrhythmia develops, the heart may beat at a rate that is irregular and that is faster or slower than normal. If the heart rate is significantly abnormal, the affected person may experience distressing symptoms because not enough blood is being pumped to the tissues. Electrical cardioversion has been developed specifically to manage arrhythmias that are causing these symptoms and that are decreasing a patient’s quality of life. This procedure is designed to change how the heart contracts so that it resumes a normal rate and rhythm and resolves the arrhythmia. Electrical cardioversion is indicated for the treatment of various tachyarrhythmias. Electrical cardioversion may be performed in an emergency setting or as an elective, planned procedure. Electrical Cardioversion Electrical cardioversion is sometimes referred to as direct current (DC) cardioversion. The cardioversion machine emits an electrical current that is delivered through the chest to the heart. This is also referred to as “shocking” the heart. The electrical impulse delivered through cardioversion reaches all parts of the heart, including the heart muscle tissue, the various conduction nodes, and the internodal pathways, all at the same time. The delivery of a shock through the patient’s chest wall works to convert the heart’s rhythm from an arrhythmia into normal rate and rhythm once again. It is often administered after a stable patient has tried taking antiarrhythmic medications without success. When cardioversion becomes a necessary part of treatment, the method and circumstances surrounding the shock delivery depend on the patient’s condition and level of stability, as well as the equipment and instruments 5 nursece4less.com nursece4less.com nursece4less.com nursece4less.com available. Emergency cardioversion may be performed when a patient is hemodynamically unstable and the heart’s rhythm must be reset immediately. If a patient is experiencing symptoms of distress, altered mental status, chest pain or breathing difficulties, or has very low blood pressure, it is understood that the patient is not medically stable and needs emergent treatment, which may consist of cardioversion.8,26 Emergency cardioversion is often performed in the emergency department or intensive care unit. It is performed after a rapid assessment by a health clinician who determines that the patient needs prompt assistance, and the cardioversion machine and medications to administer for the procedure are gathered and used quickly. Alternatively, elective cardioversion is a planned procedure that is done after a health clinician has assessed the patient’s condition in a non-emergency setting. The clinician must assess whether there are underlying conditions contributing to the arrhythmia that should be treated before cardioversion is done.26,45 In this assessment, the clinician will also consider potential alternative treatments. Once this assessment is completed, a determination is made that cardioversion is appropriate or necessary. With planned cardioversion, the patient typically has an arrhythmia that needs treatment but is most likely in a stable enough condition that the arrhythmia is not an emergency. With elective cardioversion, there is time to plan and set up for the procedure, discuss the benefits of the process with the patient and the patient’s family, and deliver the appropriate medications that will be needed. Planned cardioversion is typically delivered under controlled conditions. The procedure may be performed on an outpatient basis but a patient is usually admitted to a hospital for the procedure. A patient who is already hospitalized may have cardioversion during an 6 nursece4less.com nursece4less.com nursece4less.com nursece4less.com inpatient stay. The process is set up so that the patient is closely monitored throughout the cardioversion, and this may take place in a procedure room or specialty suite that has the equipment needed for hemodynamic monitoring. To maintain controlled conditions, the patient’s blood pressure and oxygen saturations are monitored throughout the procedure. The patient’s heart is also monitored to evaluate the heart rate and the rhythm. The patient’s arrhythmia may exhibit a regular or irregular rate, and
Recommended publications
  • Incidence of Post Cross Clamp Ventricular Fibrillation in Isolated Coronary Artery Bypass Surgery Using Del Nido Cardioplegia and Conventional Blood Cardioplegia
    Jemds.com Original Research Article Incidence of Post Cross Clamp Ventricular Fibrillation in Isolated Coronary Artery Bypass Surgery Using del Nido Cardioplegia and Conventional Blood Cardioplegia Biju Kambil Thyagarajan1, Anandakuttan Sreenivasan2, Ravikrishnan Jayakumar3, Ratish Radhakrishnan4 1, 2, 3, 4 Department of Cardiovascular and Thoracic Surgery, Government T D Medical College, Alappuzha, Kerala, India. ABSTRACT BACKGROUND The cardiac surgical procedures and surgical outcomes witnessed a dramatic Corresponding Author: improvement with the introduction of cardiopulmonary bypass and cardioplegia Dr. Anandakuttan Sreenivasan, techniques. Ventricular fibrillation immediately after removal of aortic cross clamp is Department of Cardiovascular and an energy consuming process leading to myocardial injury in an already energy Thoracic Surgery, Government T D Medical College, Alappuzha, Kerala, India, depleted heart. Electrical cardioversion, which itself causes myocardial injury, is E-mail: [email protected] required to regain normal rhythm. Prevention of ventricular fibrillation is important in preventing myocardial injury. We retrospectively analysed the incidence of post DOI: 10.14260/jemds/2020/797 cross clamp ventricular fibrillation requiring electrical defibrillation in isolated coronary artery bypass surgery using del Nido cardioplegia and conventional blood How to Cite This Article: cardioplegia. Thyagarajan BK, Sreenivasan A, Jayakumar R, et al. Incidence of post cross clamp METHODS ventricular fibrillation in isolated coronary
    [Show full text]
  • Left Anterior Descending Coronary Artery Dissection During Ventricular Tachycardia Ablation – Case Report
    CASE REPORTS Left anterior descending coronary artery dissection during ventricular tachycardia ablation – case report KRESIMIR KORDIC, SIME MANOLA, IVAN ZELJKOVIC, IVICA BENKO, NIKOLA PAVLOVIC University Hospital Center Sisters of Charity, Department of Cardiology, Zagreb, Croatia Fascicular left ventricular tachycardia (VT) is the second most frequent idiopathic left VT in the setting of a structurally normal heart. Catheter ablation is curative in most patients with low complication rates. We report a case of ostial left anterior descending coronary artery (LAD) occlusion during fascicular ventricular tachycardia ablation. Dissection was the most likely cause of LAD obstruction. To the authors’ best knowledge, this is the first case reporting selective LAD dissection during electrophysiology study with no left main coronary artery (LMCA) affection. Key words: ventricular tachycardia, electrophysiology, radiofrequency catheter ablation, ST elevation myocardial infarction, percutaneous coronary intervention. INTRODUCTION An electrocardiogram following cardioversion showed normal sinus rhythm, without preexcitation Fascicular left ventricular tachycardia (VT) is or conduction abnormalities. There was no structural the second most frequent idiopathic left VT, after heart disease found on transthoracic echocardio- left ventricular outflow tract VT, occurring in the graphy. setting of a structurally normal heart [1]. An electrophysiology study was performed According to current ESC guidelines [2], using right femoral approach. During the tachy- catheter ablation is curative in most patients with cardia, His was activated after the ventricular VT without overt structural heart disease, with low activation and tachycardia could be entrained from complication rates (around 3%) [3]. Complications atrium and the ventricle. Based on these findings, include access site vascular complications, thrombo- the diagnosis of fascicular ventricular tachycardia embolism, atrioventricular block, myocardial per- was established.
    [Show full text]
  • Late Presentation of Constrictive Pericarditis After Limited Epicardial Ablation for Inappropriate Sinus Tachycardia
    Late presentation of constrictive pericarditis after limited epicardial ablation for inappropriate sinus tachycardia Adam Oesterle, MD,* Amita Singh, MD,* Husam Balkhy, MD,* Aliya N. Husain, MD,† Deborah Moyer, APN,* Roderick Tung, MD, FHRS,* Hemal M. Nayak, MD, FHRS* From the *Center for Arrhythmia Care, Heart and Vascular Center, The University of Chicago Medicine, Chicago, Illinois, and †Department of Pathology, The University of Chicago Medicine, Chicago, Illinois. Introduction Biosense-Webster Thermocool SF catheter (Diamond Bar, CA) was delivered in the endocardium. The ablation catheter The number of radiofrequency catheter ablation (RFA) and the angioplasty balloon were both removed and the procedures performed in the epicardial space is increasing.1 ablation catheter was inserted into the epicardial space Major acute complications (primarily pericardial bleeding) through the deflectable sheath, and 5 focal lesions were and delayed complications have been reported in 5% and 2% – delivered in the epicardium overlying the sinus node. At the of cases, respectively.2 4 To the best of our knowledge, a end of the procedure his heart rate decreased from 140 to 70 single case of constrictive pericarditis after multiple epicar- beats per minute. Kenalog (1 mg/kg) was injected into the dial ablations for ventricular tachycardia has been reported.5 pericardial space and the epicardial sheath was removed We describe a late presentation of constrictive pericarditis immediately after the procedure. The fluid was serous, that occurred after a single percutaneous epicardial without any evidence of bleeding, throughout the case. procedure with limited ablation for inappropriate sinus Twelve hours after the procedure, the patient developed tachycardia. pleuritic chest pain, treated with indomethacin, colchicine, and his home dose of aspirin 81 mg daily.
    [Show full text]
  • Electrophysiology with Artificial Intelligence Context and Challenge
    Envisioning Cardiac Electrophysiology with Artificial Intelligence Context and Challenge An estimated 17 million people die of cardiovascular As technology advances, various industries are adopting diseases (CVDs) every year worldwide. CVD covers technologies such as digital transformation, internet of hypertension, sudden cardiac arrest, arrhythmia/rhythm things (IoT), artificial intelligence (AI), nanotechnology, disturbance, stroke, peripheral artery disease, and many and so on within their product/service portfolio and the more. Arrhythmias constitute a major problem, wherein the medical device industry is no exception. the heart beats either too quickly or too slowly or with an irregular pattern [1]. This indicates the malfunctioning of The focus of this paper is to discuss software-based the hearth’s electrical system. Clinical symptoms including solutions incorporating AI within EP systems that can shortness of breath, dizziness, sudden weakness, fluttering improve overall system performance, improve the in the chest, lightheadedness, and fainting, are indications therapeutic outcomes, reduce procedural time, and assist for malfunctioning of the heart. the electrophysiologist during the procedure. An electrophysiology (EP) study is a test to assess a person’s cardiac electrical activity. It helps the electrophysiologist to diagnose and determine the precise location and nature of arryhthmias. The test is performed by inserting catheters and wired electrodes to measure electrical activity through blood vessels that enter the heart. The two main goals of a cardiac EP study are (1) to accurately diagnosis the conduction-disturbance mechanism and (2) to determine the best line of treatment for the conduction-disturbances. Treatment following a cardiac EP study could range from ablation therapy to pharmacologic to device to surgical intervention based on the nature of the findings.
    [Show full text]
  • Flecainide Considerations For
    Flecainide (Tambocor) Considerations for Use* US/FDA Approved Indications: Heart Rhythm Control for Atrial Fibrillation Black Box Warning* Proarrhythmic. Increased mortality in patients with non-life-threatening ventricular arrhythmias, structural heart disease (ie, MI, LV dysfunction); not recommended for use with chronic atrial fibrillation. Mechanism of Action Depresses phase 0 depolarization significantly, slows cardiac conduction significantly (Class 1C). Dosing† Cardioversion: 200 to 300 mg PO‡1 Maintenance: 50 to 150 mg PO every 12 hrs Hepatic Impairment: Reduce initial dosage. Monitor serum level frequently. Allow at least 4 days after dose changes to reach steady state level before adjusting dosage. Renal Impairment: CrCl > 35 ml/min: No dosage adjustment is required. CrCl <= 35 ml/min: Initially, 100 mg PO once daily or 50 mg PO twice daily. Adjust dosage at intervals > 4 days, since steady-state conditions may take longer to achieve in these patient Contraindications cardiogenic shock sick sinus syndrome or significant conduction delay 2nd/3rd degree heart block or bundle brand block without pacemaker acquired/congenital QT prolongation patients with history of torsade de pointes Major Side Effects hypotension, atrial flutter with high ventricular rate, ventricular tachycardia, HF Dosage forms and Strengths PO: 50, 100, 150mg tablets Special Notes Close monitoring of this drug is required. When starting a patient on flecainide, it is prudent to do a treadmill stress test after the patient is fully loaded.4 Do not use in patients with ischemic heart disease or LV dysfunction; increases risk of arrhythmias. Additional AV nodal blocking agent may be required to maintain rate control when AF recurs.
    [Show full text]
  • About Electrophysiology Study of the Heart
    About Electrophysiology Study of the Heart What is an Electrophysiology Study? An ElectroPhysiology (EP) Study is a test that looks at the electrical system of your heart. An EP Study will show if you have a heart rhythm problem and what is causing the problem. Heart rhythm problems are known as arrhythmias. Why is an EP Study done? An EP Study is done when you have problems such as fainting, dizziness, heart palpitations or an abnormal heart beat. How does the heart work? To understand this procedure, you need to know how the heart’s electrical system works. The sinoatrial node (SA node) is a natural pacemaker. It starts the electrical signal that travels across the upper 2 chambers or atria of the heart to the atrioventricular node (AV node). The AV node transfers the electrical signal from the upper part of the heart to the lower 2 pumping chambers or ventricles. The bundle branches are specialized tissues that help send electrical impulses through the ventricles. This makes a normal heart beat called normal sinus rhythm. 01-77-0623-0 (Rev 03/2016) Page 1 of 4 What causes heart rhythm problems? Problems happen when the heart beats too fast or too slow. Some people are born with heart rhythm problems. Problems may also be caused by aging or heart disease. There are many different kinds of arrhythmias. Problems occur when the heart beats too fast or too slow. When this happens you may feel: dizzy faint short of breath very tired palpitations (pounding in your chest) The treatment for heart rhythm problems may include one or more of the following: medication a pacemaker a defibrillator ablation Who will do the EP Study? A doctor who specializes in ElectroPhysiology (EP) will do the procedure.
    [Show full text]
  • Discharge Advice After Atrial Fibrillation Ablation
    Oxford University Hospitals NHS Trust Oxford Heart Centre Discharge advice after Atrial Fibrillation ablation Information for patients page 2 This booklet contains important advice about discharge after your Atrial Fibrillation (AF) ablation. It contains information about what to do when you get home. Contents 1. Discharge summary 4 Follow-up 4 Transport 4 2. What to do when you get home 5 Puncture site care 5 Bleeding 6 Sedation/General Anaesthetic 6 After the catheter ablation 6 Recurrence of AF symptoms - what to do 6 Driving 7 Return to work 8 3. Medication 8 4. How to contact us 9 5. Further information 10 6. Message for doctor reviewing this patient 10 page 3 1. Discharge summary Your Consultant at the John Radcliffe Hospital is: ………………………….…............................................................…….. Follow-up You will be sent an appointment for follow-up in the Arrhythmia clinic. (This appointment will be sent in the post. If you do not receive a date for an appointment within 8 weeks, please call the John Radcliffe Hospital and ask to speak to the secretary of your Consultant. Follow-up appointments are currently planned approximately 3 to 4 months after your procedure.) Transport to your outpatient appointments If you have difficulty getting to your outpatient appointments your GP surgery may have the phone numbers of voluntary transport schemes which operate at subsidised rates. A directory of these services is available at www.oxonrcc.org.uk for residents of the Oxfordshire area. page 4 2. What to do when you get home When you are discharged home, you should have a quiet few days resting to recover from your procedure.
    [Show full text]
  • Resuscitation and Defibrillation
    AARC GUIDELINE: RESUSCITATION AND DEFIBRILLATION AARC Clinical Practice Guideline Resuscitation and Defibrillation in the Health Care Setting— 2004 Revision & Update RAD 1.0 PROCEDURE: signs, level of consciousness, and blood gas val- Recognition of signs suggesting the possibility ues—included in those conditions are or the presence of cardiopulmonary arrest, initia- 4.1 Airway obstruction—partial or complete tion of resuscitation, and therapeutic use of de- 4.2 Acute myocardial infarction with cardio- fibrillation in adults. dynamic instability 4.3 Life-threatening dysrhythmias RAD 2.0 DESCRIPTION/DEFINITION: 4.4 Hypovolemic shock Resuscitation in the health care setting for the 4.5 Severe infections purpose of this guideline encompasses all care 4.6 Spinal cord or head injury necessary to deal with sudden and often life- 4.7 Drug overdose threatening events affecting the cardiopul- 4.8 Pulmonary edema monary system, and involves the identification, 4.9 Anaphylaxis assessment, and treatment of patients in danger 4.10 Pulmonary embolus of or in frank arrest, including the high-risk de- 4.11 Smoke inhalation livery patient. This includes (1) alerting the re- 4.12 Defibrillation is indicated when cardiac suscitation team and the managing physician; (2) arrest results in or is due to ventricular fibril- using adjunctive equipment and special tech- lation.1-5 niques for establishing, maintaining, and moni- 4.13 Pulseless ventricular tachycardia toring effective ventilation and circulation; (3) monitoring the electrocardiograph and recogniz-
    [Show full text]
  • 2018 EP Reimbursement and Coding Guide Physicians and Facilities Resources to Assist You with the Reimbursement Process!
    2018 EP Reimbursement and Coding Guide Physicians and Facilities Resources to assist you with the Reimbursement Process! Reimbursement and Coding and Reimbursement Electrophysiology EP Procedure Documentation Coding Guide Frequently Asked Questions Coding Checklist Best Practices Online HCPCS C-Code Finder Coding & Reimbursement Webinars Email your Coding Questions www.biosensewebster.com/reimbursement Electrophysiology Diagnostic, Ablation, and Intracardiac Echocardiography Guided Transcatheter Procedures This guide has been developed to assist you in obtaining physician payment and hospital reimbursement for: • Electrophysiology (EP) diagnostic and ablation procedures • The acquisition of radiological images • EP and Cardiology procedures that may utilize intracardiac echocardiography (ICE) These procedures may be a covered service if they meet all of the requirements established by Medicare and private payers. It is essential that each claim be coded properly and supported with appropriate documentation in the medical record. TABLE OF CONTENTS PHYSICIAN SERVICES 4-6 CPT® Codes OUTPATIENT FACILITY SERVICES 7 Ambulatory Payment Classifications (APCs) INPATIENT FACILITY SERVICES 8 Medicare Severity Diagnosis Related Groups (MS-DRGs) PROCEDURE CODES 9-10 ICD-10-CM Procedure Codes DIAGNOSIS CODES 11-13 ICD-10-CM Diagnosis Codes HCPCS CODES FOR BIOSENSE WEBSTER, INC. PRODUCTS 14-15 NOTES 16 DISCLAIMER The information contained in this guide is provided to assist you in understanding the reimbursement process. It is intended to assist providers in accurately obtaining reimbursement for health care services. It is not intended to increase or maximize reimbursement by any payer. We strongly suggest that you consult your payer organization with regard to local reimbursement policies. The information contained in this document is provided for information purposes only and represents no statement, promise or guarantee by Biosense Webster, Inc.
    [Show full text]
  • MANAGING ATRIAL FIBRILLATION (AF) (MODULE 2) MODULE 2: MANAGING ATRIAL FIBRILLATION Ii CONTENTS
    YOUR COMPLETE GUIDE TO ATRIAL FIBRILLATION MANAGING ATRIAL FIBRILLATION (AF) (MODULE 2) MODULE 2: MANAGING ATRIAL FIBRILLATION ii CONTENTS iii Overview of managing AF 28 How are blood thinners used to reduce the risk of stroke in AF? 1 What are the goals of managing AF and atrial flutter? 31 What are the signs of a stroke? 2 Rate Control Strategy: 32 Being realistic when managing AF How is the heart rate controlled? (a) Medicine (b) Procedures 9 Rhythm Control Strategy: How is the heart rhythm controlled? (a) Medicine (b) Procedures 25 Reducing the risk of stroke: How is my stroke risk assessed? HEARTANDSTROKE.CA/AFGUIDE Published: February 2014 © 2014 Canadian Cardiovascular Society and Heart and Stroke Foundation of Canada. All rights reserved. Unauthorized use prohibited. MODULE 2: MANAGING ATRIAL FIBRILLATION iii OVERVIEW OF MANAGING AF AF Diagnosed MODULE 1 Find and Treat Common Causes What is it? Is it harmful? MODULE 2 Manage Arrhythmia Symptoms Assess Stroke Risk (CHADS2) Rate Control Rhythm Control • Medicine • Medicine Blood Thinner, Aspirin, or Nothing • Procedures • Procedures MODULE 3 Living Well with AF What to Expect Understanding Following a from Your AF Common Responses Patient Stories Healthy Lifestyle Management Plan and Finding Support FACT SHEET: OVERVIEW OF MANAGING AF HEARTANDSTROKE.CA/AFGUIDE Published: February 2014 © 2014 Canadian Cardiovascular Society and Heart and Stroke Foundation of Canada. All rights reserved. Unauthorized use prohibited. MODULE 2: MANAGING ATRIAL FIBRILLATION iv WHAT ARE TWO WAYS TO MANAGE AF? While AF is a chronic condition, it can be managed by: • medicine • procedures Medicine is usually tried first to manage symptoms caused by AF.
    [Show full text]
  • Electrophysiology Study
    Electrophysiology (EP) Study Highly trained specialists perform EP studies in a specially designed EP lab outfitted with advanced technology and equipment. Why an EP study? The Value of an EP Study While electrocardiograms (ECGs An electrophysiology, or EP, study or EKGs) are important tests of the provides information that is key to heart’s electrical system, they diagnosing and treating arrhythmias. provide only a brief snapshot of Although it is more invasive than an the heart’s electrical activity. electrocardiogram (ECG) or echocar - Arrhythmias can be unpredictable diogram, and involves provoking and intermittent, which makes it arrhythmias, the test produces data unlikely that an electrocardiogram that makes it possible to : will capture the underlying electri - Normally, electricity flows through - cal pathway problem. Even tests • Diagnose the source of arrhythmia out the heart in a regular, meas - that stretch over longer time periods , symptoms such as Holter monitoring, may not ured pattern. This electrical system • Evaluate the effectiveness of capture an event. brings about coordinated heart certain medications in controlling muscle contractions. A problem During an EP study, a specially the heart rhythm disorder anywhere along the electrical trained cardiac specialist may pro - • Predict the risk of a future cardiac pathway causes an arrhythmia, voke arrhythmia events and collect event, such as Sudden Cardiac or heart rhythm disturbance. By data about the flow of electricity Death accurately diagnosing the precise during actual events. As a result, cause of an arrhythmia, it is possi - • Assess the need for an implantable EP studies can diagnose the ble to select the best possible device (a pacemaker or ICD) or cause and precise location of the treatment.
    [Show full text]
  • Cardiac Ablation: Types and Outcomes
    CARDIAC ABLATION: TYPES AND OUTCOMES CARDIOVERSION AND ABLATION JASSIN M. JOURIA Dr. Jassin M. Jouria is a practicing Emergency Medicine physician, professor of academic medicine, and medical author. He graduated from Ross University School of Medicine and has completed his clinical clerkship training in various teaching hospitals throughout New York, including King’s County Hospital Center and Brookdale Medical Center, among others. Dr. Jouria has passed all USMLE medical board exams, and has served as a test prep tutor and instructor for Kaplan. He has developed several medical courses and curricula for a variety of educational institutions. Dr. Jouria has also served on multiple levels in the academic field including faculty member and Department Chair. Dr. Jouria continues to serve as a Subject Matter Expert for several continuing education organizations covering multiple basic medical sciences. He has also developed several continuing medical education courses covering various topics in clinical medicine. Recently, Dr. Jouria has been contracted by the University of Miami/Jackson Memorial Hospital’s Department of Surgery to develop an e-module training series for trauma patient management. Dr. Jouria is currently authoring an academic textbook on Human Anatomy & Physiology. ABSTRACT Atrial arrhythmias are serious disorders that can cause an irregular and/or rapid heartbeat, which can lead to serious clinical sequelae. Atrial fibrillation is an example of an atrial arrhythmia that can lead to blood clots, stroke, or heart failure. Electrical cardioversion and ablation are two procedures that can minimize these risks and treat atrial arrhythmia. Each of these treatments have risks and neither offers a complete success rate, but they can be very effective in providing greater quality of life, and extending the life expectancy of patients.
    [Show full text]