Human and Climate Forcing of Zooplankton Populations

Total Page:16

File Type:pdf, Size:1020Kb

Human and Climate Forcing of Zooplankton Populations 4th International Zooplankton Production Symposium Human and Climate Forcing of Zooplankton Populations 28 May - 1 June 2007 Hiroshima, Japan 4th International Zooplankton Production Symposium Contents Page Welcome ............................................................................................................................................. iii Background ....................................................................................................................................... v The organisation and sponsors ........................................................................................................ vii Notes for guidance ............................................................................................................................. ix General programme .......................................................................................................................... xi Agenda and orders of the day by session ....................................................................................... 1 Abstracts of the papers and posters by session .............................................................................. 41 List of participants ............................................................................................................................ 241 Author index ...................................................................................................................................... 273 i 4th International Zooplankton Production Symposium Welcome On behalf of the symposium organisers, I warmly welcome fellow zooplanktologists from all over the world to Hiroshima, a peace city revived from the ruins after the atomic bomb some 60 years ago. At this symposium there will be more than 450 delegates from 54 countries, which may be the largest meeting of zooplanktologists ever. The scientific focus of this symposium “Human and climate forcing of zooplankton populations” is timely reflecting our current concerns about global warming, climate change, coastal ecosystem degradation and decreases in fisheries. It is also of great significance that this is the first such meeting to be held in Asia, where serious degradation of the marine ecosystem is occurring although holistic studies on the relationship between zooplankton and the environment are still at an early stage in many Asian countries. I hope that this symposium will provide an opportunity for all participants to present their own research findings, exchange experiences and data, obtain new ideas and techniques, and of course, make warm mutual friendships. The traditional name of this symposium, “Zooplankton Production Symposium” may not fit with today’s multidisciplinary approach to zooplankton studies. We may need a new framework for future zooplankton symposia in the same way that we need a new barrel for new sake (Japanese rice wine). I hope that this symposium may give future directions for zooplankton studies. The organisation of this symposium started after an informal request to me over the extravaganza dinner table in Gijón. I have explored the availability of conference facilities, hotels, manpower, etc., and decided to hold the symposium in Hiroshima, my hometown. I have been given enormous support from many sectors during the preparation, and the organisers are very happy to be able to open the door of the Hiroshima International Conference Center on 28 May. I wish that both this symposium and your stay in Hiroshima are memorable for all participants. Shin-ichi Uye Symposium Convenor and Chair of the local organising committee iii 4th International Zooplankton Production Symposium Background Zooplankton play a key role in the pelagic food web by controlling phytoplankton production and shaping pelagic ecosystems. In addition, because of their critical role as a food source for larval and juvenile fish, the dynamics of zooplankton populations have a critical influence on recruitment to fish stocks. It is this latter role which has made zooplankton ecology of particular interest to ICES. In 1961, ICES convened the 1st Zooplankton Production Symposium in Charlottenlund (Denmark). ICES also had a lead role in the 2nd Symposium on “Zooplankton Production: Measurement and role in global ecosystems dynamics and biogeochemical cycles”, held in Plymouth (UK), in 1994. The increasing importance of international programmes such as GLOBEC (Global Ocean Ecosystem Dynamics) and the general concerns about global change and the changing role of zooplankton in ocean ecosystems have been reflected in the development of these Symposia. This trend was further enhanced in the 3rd Zooplankton Production Symposium “The role zooplankton in global ecosystem dynamics: Comparative studies from the world oceans”, which was held in 2003, in Gijón (Spain). For the first time the Symposium was co-sponsored by ICES, PICES and GLOBEC. The Gijón Symposium attracted 333 participants from 38 countries from around the world. The 4th Zooplankton Production Symposium again co-sponsored by ICES, PICES and GLOBEC, will be held 28 May - 1 June 2007 at the International Conference Centre in Hiroshima, Japan. The Symposium is the first of the series to be held outside Europe, and will focus on “Human and climate forcing of zooplankton populations”. As such, it represents a timely topic and will provide an important opportunity to further develop the truly international nature of zooplankton research. v 4th International Zooplankton Production Symposium The organisation and sponsors Symposium Convenors Michael J. Dagg (USA/PICES) Roger P. Harris (UK/GLOBEC) Shin-ichi Uye (Japan) Luis Valdés (Spain/ICES) Scientific Steering Committee Local Organising Committee Michael J. Dagg (USA/PICES) Michio J. Kishi (Hokkaido University) Rubén V. Escribano (Chile/GLOBEC) Hideaki Nakata (Nagasaki University) Roger P. Harris (UK/GLOBEC) Shuhei Nishida (University of Tokyo) Steven Hay (UK/ICES) Shin-ichi Uye (Hiroshima University) David L. Mackas (Canada/PICES) Sun Song (China) Luis Valdés (Spain/ICES) International sponsors North Pacific Marine Science Global Ocean Ecosystem Dynamics International Council for the Organization (PICES) (GLOBEC) Exploration of the Sea (ICES) Local sponsors With additional support from Hiroshima University Hiroshima Convention and Visitors Bureau The Japanese Society of Fisheries Oceanography (JSFO) Shibuya Scholarship Foundation Commemorative Organization for the Japan World The Plankton Society of Japan (PSJ) Exposition (’70) Scientific Committee on Oceanic Research Financial support was also gratefully received from: AMCO Inc. Japan Radio Co., Ltd. Biosphere Sciences Institute Co., Ltd. Kurita Water and Environment Foundation BL-Tech Co., Ltd. Mitsui Engineering and Shipbuilding Co., Ltd. Electric Technology Research Foundation of Chugoku NGS Limited Responsibility Company EMS Co., Ltd. Nichimo Co., Ltd. Fishing Boat and System Engineering Association of Ootsuka Instrument Co., Ltd. Japan Furuno Kansai Hanbai Co., Ltd. Sogo-Koukoku Co., Ltd. Hiroshima University Supporters Association Japan NUS Co., Ltd. Toyo Corporation vii 4th International Zooplankton Production Symposium Notes for guidance Registration The registration desk will be located in the lobby of the 2nd basement floor and will be open from 09:00 to 17:30 on 28 May and from 08:00 to 17:30 on 29 May. The symposium secretariat will be based in room Ran 1. Presentations In order to allow the sessions to run smoothly and in fairness to the other speakers, please note that all presentations are expected to adhere strictly to the time allocated. The time for your presentation can be found in the agendas starting on page 1 of this abstracts book. Please give a copy of the electronic file of your presentation to the Symposium secretariat at registration or at least one day before your presentation. Operating systems available are Windows XP (Powerpoint 2003) and Mac OS10 (Powerpoint 2004). Posters Posters will be on display after the afternoon break on 29 to 31 May (noon) in the Himawari room. Posters may be put up from the afternoon of 28 May. Poster presenters are expected to be available to answer questions during the two evening poster sessions/receptions on 29 and 30 May from 18:00-20:00. Refreshments There will be morning and afternoon tea/coffee breaks (please see the agenda on pages 1-39 for times). Tea and coffee will be served in the lobby on the morning of 28 May and on 31 May - 1 June. The Himawari room will be used for tea/coffee breaks in the afternoon of 28 May and for both breaks on 29-30 May. A Japanese style lunch box including tea (price: 800 JPY) and a sandwich and juice (price: 600 JPY) will be sold at the Conference Center. It is necessary to buy the lunch ticket on the previous day. A complimentary lunch (sandwich and juice) will be provided on 31 May prior to the afternoon excursion. Internet access Free internet access via wireless LAN is available in the International Conference Center building in the poster session room (Himawari) and lobby area of the 2nd basement floor. Standard: IEEE802.11b/g base Connection: Automatic assignment of IP-address by DHCP server SSID: FREESPOT Please note that the organisers are unable to lend wireless LAN cards and that no extra security measures are implemented. Each user is responsible for adjusting their own PC settings and the organisers will not be held responsible for any mechanical failures and other damage that may arise from the use of this service. Social activities 28 May: Welcome reception
Recommended publications
  • Zootaxa,Crustacean Classification
    Zootaxa 1668: 313–325 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Crustacean classification: on-going controversies and unresolved problems* GEOFF A. BOXSHALL Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom E-mail: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . 313 Introduction . 313 Treatment of parasitic Crustacea . 315 Affinities of the Remipedia . 316 Validity of the Entomostraca . 318 Exopodites and epipodites . 319 Using of larval characters in estimating phylogenetic relationships . 320 Fossils and the crustacean stem lineage . 321 Acknowledgements . 322 References . 322 Abstract The journey from Linnaeus’s original treatment to modern crustacean systematics is briefly characterised. Progress in our understanding of phylogenetic relationships within the Crustacea is linked to continuing discoveries of new taxa, to advances in theory and to improvements in methodology. Six themes are discussed that serve to illustrate some of the major on-going controversies and unresolved problems in the field as well as to illustrate changes that have taken place since the time of Linnaeus. These themes are: 1. the treatment of parasitic Crustacea, 2. the affinities of the Remipedia, 3. the validity of the Entomostraca, 4. exopodites and epipodites, 5. using larval characters in estimating phylogenetic rela- tionships, and 6. fossils and the crustacean stem-lineage. It is concluded that the development of the stem lineage concept for the Crustacea has been dominated by consideration of taxa known only from larval or immature stages.
    [Show full text]
  • Data Structure
    Data structure – Water The aim of this document is to provide a short and clear description of parameters (data items) that are to be reported in the data collection forms of the Global Monitoring Plan (GMP) data collection campaigns 2013–2014. The data itself should be reported by means of MS Excel sheets as suggested in the document UNEP/POPS/COP.6/INF/31, chapter 2.3, p. 22. Aggregated data can also be reported via on-line forms available in the GMP data warehouse (GMP DWH). Structure of the database and associated code lists are based on following documents, recommendations and expert opinions as adopted by the Stockholm Convention COP6 in 2013: · Guidance on the Global Monitoring Plan for Persistent Organic Pollutants UNEP/POPS/COP.6/INF/31 (version January 2013) · Conclusions of the Meeting of the Global Coordination Group and Regional Organization Groups for the Global Monitoring Plan for POPs, held in Geneva, 10–12 October 2012 · Conclusions of the Meeting of the expert group on data handling under the global monitoring plan for persistent organic pollutants, held in Brno, Czech Republic, 13-15 June 2012 The individual reported data component is inserted as: · free text or number (e.g. Site name, Monitoring programme, Value) · a defined item selected from a particular code list (e.g., Country, Chemical – group, Sampling). All code lists (i.e., allowed values for individual parameters) are enclosed in this document, either in a particular section (e.g., Region, Method) or listed separately in the annexes below (Country, Chemical – group, Parameter) for your reference.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • Seasonal Variation in Body Composition, Metabolic Activity, Feeding, and Growth of Adult Krill Euphausia Superba in the Lazarev Sea
    Vol. 398: 1–18, 2010 MARINE ECOLOGY PROGRESS SERIES Published January 5 doi: 10.3354/meps08371 Mar Ecol Prog Ser OPENPEN ACCESSCCESS FEATURE ARTICLE Seasonal variation in body composition, metabolic activity, feeding, and growth of adult krill Euphausia superba in the Lazarev Sea Bettina Meyer1,*, Lutz Auerswald2, Volker Siegel3, Susanne Spahi´c1, Carsten Pape1, Bettina A. Fach1, 6, Mathias Teschke1, Andreas L. Lopata4, 7, Veronica Fuentes5, 8 1Alfred Wegener Institute for Polar and Marine Research, Scientific Division Polar Biological Oceanography, Handelshafen 12, 27570 Bremerhaven, Germany 2Marine & Coastal Management, Private Bag X2, Rogge Bay 8012, Cape Town, South Africa 3Sea Fisheries Institute, Palmaille 9, 22767 Hamburg, Germany 4Allergy and Asthma Group, Division of Immunology, University of Cape Town, 7925 Observatory, Cape Town, South Africa 5Department of Biodiversity and Experimental Biology, University of Buenos Aires, Buenos Aires, Argentina 6Present address: METU Institute of Marine Sciences, Middle East Technical University, PO Box 28, 33731 Erdermli-Mersin, Turkey 7Present address: School of Applied Sciences, RMIT University, Melbourne, Victoria, Australia 8Present address: Institut de Ciéncies del Mar (CSIC), Passeig Maritim de la Barcelona 37–49, Spain ABSTRACT: We investigated physiological parameters (elemental and biochemical composition, metabolic rates, feeding activity and growth) of adult Antarctic krill in the Lazarev Sea in late spring (December), mid autumn (April) and mid winter (July and August) to evaluate proposed hypotheses of overwintering mech- anisms. Our major observations are: (1) respiration rates were reduced by 30 to 50% in autumn and win- ter, compared to values in late spring; (2) feeding activ- ity was reduced by 80 to 86% in autumn and winter, compared to late spring, at similar food concentrations; (3) feeding was omnivorous during winter; (4) with each moult, krill grew by 0.5 to 3.8% in length; (5) body lipids and, to a small extent, body proteins were consumed during winter.
    [Show full text]
  • Evaluation of Trade-Offs in Traditional Methodologies for Measuring
    Progress in Oceanography 178 (2019) 102137 Contents lists available at ScienceDirect Progress in Oceanography journal homepage: www.elsevier.com/locate/pocean Review Evaluation of trade-offs in traditional methodologies for measuring metazooplankton growth rates: Assumptions, advantages and disadvantages T for field applications ⁎ Toru Kobaria, , Akash R. Sastrib, Lidia Yebrac, Hui Liud, Russell R. Hopcrofte a Aquatic Sciences, Faculty of Fisheries, Kagoshima University, Kagoshima, Japan b Fisheries and Ocean Canada, Institute of Ocean Sciences Sidney, BC, Canada c Instituto Español de Oceanografía, Centro Oceanográfico de Málaga, Fuengirola, Málaga, Spain d Department of Marine Biology, Texas A&M University at Galveston, TX, USA e College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, AK, USA ARTICLE INFO ABSTRACT Keywords: Zooplankton growth rates ultimately shape the functional response of marine ecosystems to regional and global Metazooplankton climate changes, because they determine the quantity and distribution of matter and energy within the zoo- Weight-specific growth plankton community available to higher trophic levels. Despite the variety of techniques available for measuring Natural cohort zooplankton growth, no or few approaches have been universally applied to the natural zooplankton populations Artificial cohort or community and there are only a limited number of comparisons among the methods. Here we review and Molting rate compile data for the traditional methods for estimating metazooplankton weight-specific growth rates, describe Egg production fi Model the principles and underlying assumptions of each method, and nally their advantages and disadvantages. This review encompasses the analysis of time-series (i.e., Natural Cohort method), three experimental approaches (i.e., Artificial Cohort, Molting Rate and Egg Production) and several empirical models that have been applied to specific stages, populations or community guilds of metazooplankton in the field.
    [Show full text]
  • The Plankton Lifeform Extraction Tool: a Digital Tool to Increase The
    Discussions https://doi.org/10.5194/essd-2021-171 Earth System Preprint. Discussion started: 21 July 2021 Science c Author(s) 2021. CC BY 4.0 License. Open Access Open Data The Plankton Lifeform Extraction Tool: A digital tool to increase the discoverability and usability of plankton time-series data Clare Ostle1*, Kevin Paxman1, Carolyn A. Graves2, Mathew Arnold1, Felipe Artigas3, Angus Atkinson4, Anaïs Aubert5, Malcolm Baptie6, Beth Bear7, Jacob Bedford8, Michael Best9, Eileen 5 Bresnan10, Rachel Brittain1, Derek Broughton1, Alexandre Budria5,11, Kathryn Cook12, Michelle Devlin7, George Graham1, Nick Halliday1, Pierre Hélaouët1, Marie Johansen13, David G. Johns1, Dan Lear1, Margarita Machairopoulou10, April McKinney14, Adam Mellor14, Alex Milligan7, Sophie Pitois7, Isabelle Rombouts5, Cordula Scherer15, Paul Tett16, Claire Widdicombe4, and Abigail McQuatters-Gollop8 1 10 The Marine Biological Association (MBA), The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK. 2 Centre for Environment Fisheries and Aquacu∑lture Science (Cefas), Weymouth, UK. 3 Université du Littoral Côte d’Opale, Université de Lille, CNRS UMR 8187 LOG, Laboratoire d’Océanologie et de Géosciences, Wimereux, France. 4 Plymouth Marine Laboratory, Prospect Place, Plymouth, PL1 3DH, UK. 5 15 Muséum National d’Histoire Naturelle (MNHN), CRESCO, 38 UMS Patrinat, Dinard, France. 6 Scottish Environment Protection Agency, Angus Smith Building, Maxim 6, Parklands Avenue, Eurocentral, Holytown, North Lanarkshire ML1 4WQ, UK. 7 Centre for Environment Fisheries and Aquaculture Science (Cefas), Lowestoft, UK. 8 Marine Conservation Research Group, University of Plymouth, Drake Circus, Plymouth, PL4 8AA, UK. 9 20 The Environment Agency, Kingfisher House, Goldhay Way, Peterborough, PE4 6HL, UK. 10 Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK.
    [Show full text]
  • Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica
    15 NOVEMBER 2020 S T R A S S E T A L . 9863 Multidecadal Warming and Density Loss in the Deep Weddell Sea, Antarctica VOLKER H. STRASS,GERD ROHARDT,TORSTEN KANZOW,MARIO HOPPEMA, AND OLAF BOEBEL Alfred-Wegener-Institut Helmholtz-Zentrum fur€ Polar- und Meeresforschung, Bremerhaven, Germany (Manuscript received 16 April 2020, in final form 10 August 2020) ABSTRACT: The World Ocean is estimated to store more than 90% of the excess energy resulting from man-made greenhouse gas–driven radiative forcing as heat. Uncertainties of this estimate are related to undersampling of the subpolar and polar regions and of the depths below 2000 m. Here we present measurements from the Weddell Sea that cover the whole water column down to the sea floor, taken by the same accurate method at locations revisited every few years since 1989. Our results show widespread warming with similar long-term temperature trends below 700-m depth at all sampling sites. The mean heating rate below 2000 m exceeds that of the global ocean by a factor of about 5. Salinity tends to increase—in contrast to other Southern Ocean regions—at most sites and depths below 700 m, but nowhere strongly enough to fully compensate for the warming effect on seawater density, which hence shows a general decrease. In the top 700 m neither temperature nor salinity shows clear trends. A closer look at the vertical distribution of changes along an ap- proximately zonal and a meridional section across the Weddell Gyre reveals that the strongest vertically coherent warming is observed at the flanks of the gyre over the deep continental slopes and at its northern edge where the gyre connects to the Antarctic Circumpolar Current (ACC).
    [Show full text]
  • (Actinopterygii: Pomacentridae) from Micronesia, with Comments on Its Phylogenetic Relationships Shang-Yin Vanson Liu1,2*†, Hsuan-Ching Hans Ho3† and Chang-Feng Dai1
    Liu et al. Zoological Studies 2013, 52:6 http://www.zoologicalstudies.com/content/52/1/6 RESEARCH Open Access A new species of Pomacentrus (Actinopterygii: Pomacentridae) from Micronesia, with comments on its phylogenetic relationships Shang-Yin Vanson Liu1,2*†, Hsuan-Ching Hans Ho3† and Chang-Feng Dai1 Abstract Background: Many widely distributed coral reef fishes exhibit cryptic lineages across their distribution. Previous study revealed a cryptic lineage of Pomacentrus coelestis mainly distributed in the area of Micronesia. Herein, we attempted to use molecular and morphological approaches to descript a new species of Pomacentrus. Results: The morphological comparisons have been conducted between cryptic species and P. coelestis. Pomacentrus micronesicus sp. nov. is characterized by 13 to 16 (typically 15) anal fin rays (vs. 13 to 15, typically 14 rays in P. coelestis) and 15 or 16 rakers on the lower limb of the first gill arch (vs. 13 or 14 rakers in P. coelestis). Divergence in cytochrome oxidase subunit I sequences of 4.3% is also indicative of species-level separation of P. micronesicus and P. coelestis. Conclusions: P. micronesicus sp.nov.isdescribedfromtheMarshallIslands, Micronesia on the basis of 21 specimens. Both morphological and genetic evidences support its distinction as a separate species from P. coelestis. Keywords: Cryptic species; Pomacentrus micronesicus; Speciation Background Japan and is widely distributed in the Indo-Pacific region Marine organisms that are morphologically undistinguish- (Allen 1991). Liu et al. (2012) conducted a phylogeographic able but genetically distinct are known as ‘cryptic species’ study of P. coelestis across its distribution using both (Knowlton 2000). In the past decade, DNA sequencing the mtDNA control region and microsatellite loci as has provided an independent means of testing the validity genetic markers and revealed two deeply divergent clades; of existing taxonomic units, revealing cases of inappropriate the first clade was shown to encompass the ‘true’ P.
    [Show full text]
  • Reef Fishes of the Bird's Head Peninsula, West
    Check List 5(3): 587–628, 2009. ISSN: 1809-127X LISTS OF SPECIES Reef fishes of the Bird’s Head Peninsula, West Papua, Indonesia Gerald R. Allen 1 Mark V. Erdmann 2 1 Department of Aquatic Zoology, Western Australian Museum. Locked Bag 49, Welshpool DC, Perth, Western Australia 6986. E-mail: [email protected] 2 Conservation International Indonesia Marine Program. Jl. Dr. Muwardi No. 17, Renon, Denpasar 80235 Indonesia. Abstract A checklist of shallow (to 60 m depth) reef fishes is provided for the Bird’s Head Peninsula region of West Papua, Indonesia. The area, which occupies the extreme western end of New Guinea, contains the world’s most diverse assemblage of coral reef fishes. The current checklist, which includes both historical records and recent survey results, includes 1,511 species in 451 genera and 111 families. Respective species totals for the three main coral reef areas – Raja Ampat Islands, Fakfak-Kaimana coast, and Cenderawasih Bay – are 1320, 995, and 877. In addition to its extraordinary species diversity, the region exhibits a remarkable level of endemism considering its relatively small area. A total of 26 species in 14 families are currently considered to be confined to the region. Introduction and finally a complex geologic past highlighted The region consisting of eastern Indonesia, East by shifting island arcs, oceanic plate collisions, Timor, Sabah, Philippines, Papua New Guinea, and widely fluctuating sea levels (Polhemus and the Solomon Islands is the global centre of 2007). reef fish diversity (Allen 2008). Approximately 2,460 species or 60 percent of the entire reef fish The Bird’s Head Peninsula and surrounding fauna of the Indo-West Pacific inhabits this waters has attracted the attention of naturalists and region, which is commonly referred to as the scientists ever since it was first visited by Coral Triangle (CT).
    [Show full text]
  • Latitudinal and Seasonal Shaping Effects on Krill Respiration Rates
    Ecological Modelling 291 (2014) 233–241 Contents lists available at ScienceDirect Ecological Modelling journa l homepage: www.elsevier.com/locate/ecolmodel Euphausiid respiration model revamped: Latitudinal and seasonal shaping effects on krill respiration rates a,∗ a a a Nelly Tremblay , Thorsten Werner , Kim Huenerlage , Friedrich Buchholz , a b a Doris Abele , Bettina Meyer , Thomas Brey a Functional Ecology, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen, 27570 Bremerhaven, Germany b Polar Biological Oceanography, Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Am Handelshafen, 27570 Bremerhaven, Germany a r t i c l e i n f o a b s t r a c t Article history: Euphausiids constitute a major biomass component in shelf ecosystems and play a fundamental role in Received 11 April 2014 the rapid vertical transport of carbon from the ocean surface to the deeper layers during their daily vertical Received in revised form 26 July 2014 migration (DVM). DVM depth and migration patterns depend on oceanographic conditions with respect Accepted 28 July 2014 to temperature, light and oxygen availability at depth, factors that are highly dependent on season in Available online 28 August 2014 most marine regions. Here we introduce a global krill respiration ANN (artificial neural network) model including the effect of latitude (LAT), the day of the year (DoY), and the number of daylight hours (DLh), in Keywords: addition to the basal variables that determine ectothermal oxygen consumption (temperature, body mass Euphausia superba and depth). The newly implemented parameters link space and time in terms of season and photoperiod Euphausia pacifica 2 to krill respiration.
    [Show full text]
  • Arctic and Antarctic Research Institute” Russian Antarctic Expedition
    FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №4 (65) October - December 2013 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations St. Petersburg 2014 FEDERAL SERVICE OF RUSSIA FOR HYDROMETEOROLOGY AND ENVIRONMENTAL MONITORING Federal State Budgetary Institution “Arctic and Antarctic Research Institute” Russian Antarctic Expedition QUARTERLY BULLETIN №4 (65) October – December 2013 STATE OF ANTARCTIC ENVIRONMENT Operational data of Russian Antarctic stations Edited by V.V. Lukin St. Petersburg 2014 Editor-in-Chief M.O. Krichak (Russian Antarctic Expedition – RAE) Authors and contributors Section 1 M.O. Krichak (RAE), Section 2 Ye.I. Aleksandrov (Department of Sea-Air Interaction) Section 3 G.Ye. Ryabkov (Department of Ice Regime and Forecasting) Section 4 A.I. Korotkov (Department of Ice Regime and Forecasting) Section 5 Ye.Ye. Sibir (Department of Sea-Air Interaction) Section 6 I.V. Moskvin, Yu.G. Turbin (Department of Geophysics) Section 7 V.L. Martyanov (RAE) Translated by I.I. Solovieva http://www.aari.aq/, Antarctica/ Quarterly Bulletin/ Acknowledgements: Russian Antarctic Expedition is grateful to all AARI staff for participation and help in preparing this Bulletin. For more information about the contents of this publication, please, contact Arctic and Antarctic Research Institute of Roshydromet Russian Antarctic Expedition Bering St., 38, St. Petersburg 199397 Russia Phone: (812) 352 15 41; 337 31 04 Fax: (812) 337 31 86 E-mail: [email protected] CONTENTS PREFACE 1 1. DATA OF AEROMETEOROLOGICAL OBSERVATIONS AT THE RUSSIAN ANTARCTIC STATIONS 3 2. METEOROLOGICAL CONDITIONS IN OCTOBER-DECEMBER 2013 42 3.
    [Show full text]
  • Pomacentridae): Structural and Expression Variation in Opsin Genes
    Molecular Ecology (2017) 26, 1323–1342 doi: 10.1111/mec.13968 Why UV vision and red vision are important for damselfish (Pomacentridae): structural and expression variation in opsin genes SARA M. STIEB,*† FABIO CORTESI,*† LORENZ SUEESS,* KAREN L. CARLETON,‡ WALTER SALZBURGER† and N. J. MARSHALL* *Sensory Neurobiology Group, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia, †Zoological Institute, University of Basel, Basel 4051, Switzerland, ‡Department of Biology, The University of Maryland, College Park, MD 20742, USA Abstract Coral reefs belong to the most diverse ecosystems on our planet. The diversity in col- oration and lifestyles of coral reef fishes makes them a particularly promising system to study the role of visual communication and adaptation. Here, we investigated the evolution of visual pigment genes (opsins) in damselfish (Pomacentridae) and exam- ined whether structural and expression variation of opsins can be linked to ecology. Using DNA sequence data of a phylogenetically representative set of 31 damselfish species, we show that all but one visual opsin are evolving under positive selection. In addition, selection on opsin tuning sites, including cases of divergent, parallel, conver- gent and reversed evolution, has been strong throughout the radiation of damselfish, emphasizing the importance of visual tuning for this group. The highest functional variation in opsin protein sequences was observed in the short- followed by the long- wavelength end of the visual spectrum. Comparative gene expression analyses of a subset of the same species revealed that with SWS1, RH2B and RH2A always being expressed, damselfish use an overall short-wavelength shifted expression profile. Inter- estingly, not only did all species express SWS1 – a UV-sensitive opsin – and possess UV-transmitting lenses, most species also feature UV-reflective body parts.
    [Show full text]